TW201005278A - Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby - Google Patents

Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby Download PDF

Info

Publication number
TW201005278A
TW201005278A TW97128709A TW97128709A TW201005278A TW 201005278 A TW201005278 A TW 201005278A TW 97128709 A TW97128709 A TW 97128709A TW 97128709 A TW97128709 A TW 97128709A TW 201005278 A TW201005278 A TW 201005278A
Authority
TW
Taiwan
Prior art keywords
silver
acid polymer
electrode
perfluorosulfonic acid
carbon nanotube
Prior art date
Application number
TW97128709A
Other languages
Chinese (zh)
Other versions
TWI364534B (en
Inventor
Yu-Chen Tsai
Ping-Chieh Hsu
Tzong-Ming Wu
Yen-Wen Lin
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW97128709A priority Critical patent/TW201005278A/en
Publication of TW201005278A publication Critical patent/TW201005278A/en
Application granted granted Critical
Publication of TWI364534B publication Critical patent/TWI364534B/zh

Links

Abstract

The invention provides a silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film, which includes a carbon nanotube-perfluorinated sulfonic acid polymer thin film and silver nano particles deposited on the carbon nanotube-perfluorinated sulfonic acid polymer thin film, wherein the carbon nanotube-perfluorinated sulfonic acid polymer thin film is formulated by carbon nanotube and perfluorinated sulfonic acid polymer with a weight ratio between1/10-1/200, and the deposition electric charge of silver is between 10 mC/cm<2> to 15000mC/cm<2>. The invention also provides an electrode modified by silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film, which includes an electrode carrier and a silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film formed on the surface of the electrode carrier. The electrode of this invention can be used as a surface-reinforced Raman scattering active substrate for detecting chemical and biological molecules; furthermore, the invention also provides an electrochemical reduction method for the manufacturing of the aforementioned thin film or electrode, which has the advantages of simple and economical.

Description

201005278 九、發明說明: 【發明所屬之技術領域】 本發明的銀-奈米碳管-全氟磺酸聚合物薄膜或以該薄膜修飾之電 極係一表面增強拉曼散射活性基材,可應用於偵測化學或生物分子 的,包括偵測羅丹明6G (Rhodamine 6G,簡稱R6G)、對氨基硫酚 (p-aminothiophenol,ρ-ΑΤΡ )、笨曱酸、去氧核醣核酸鹽基腺嘌呤(DNA bases adenine)等本身具有表面增強拉曼散射的效果的分子。201005278 IX. Description of the invention: [Technical field of the invention] The silver-nanocarbon tube-perfluorosulfonic acid polymer film of the invention or the electrode modified by the film is a surface-enhanced Raman scattering active substrate, which can be applied For the detection of chemical or biomolecules, including detection of Rhodamine 6G (R6G), p-aminothiophenol (ρ-ΑΤΡ), scorpion citrate, deoxyribonuclease-based adenine ( DNA bases adenine) and the like which have the effect of surface-enhanced Raman scattering.

【先前技術】 1970年,Fleischmann等人發現了吡啶(pyridine,C5H5N)在粗糙的銀 電極表面產生很強大的拉曼訊號,這種因為分子吸附於某些粗糙的金 屬表面而產生出巨大拉曼訊號的現象,稱為表面增強拉曼散射 (Surface-Enhanced Raman Scattering ’ 簡稱 SERS)。SERS 發生在粗糙的 金屬表面,尤其是在銀的表面上,其他金屬如金、銅、鋰、鋅、鎘等, 也會產生SERS效應。目此’近社有許錢於製備銀金屬在不同種類 的基材上,以作為SERS活性基材的探討。例如,將銀奈米粒子配置在 Si〇2/Si上料SERS表面,用㈣㈣方法練奈妹子沉積在 ITO-〇=glass表面’銀奈米粒子成長在陽極氧化銘的奈米孔道内作為 ^表面’ 氧化法⑽_魏電極,製備—層銀奈米粒子 舰8 ^雜糾,躲微祕奈雜板作為 寸管徑、高強度、咖、高高比表面積、奈米尺 為槎井習知度了作為很好的金屬擔持的材料。 年研究經驗,驗實驗,終絲碳料特性及多 出具有高的表面增強拉曼散射強度的銀w碳管簡 5 201005278 膜及以該薄膜修飾表面之電極。 【發明說明】 本發明之目的在於提供一種銀-奈米碳管-全氟磺酸聚合物薄膜及 其製造方法’該製造方法簡單且經濟,所製造的薄膜具有高的表面增 強拉曼散射強度。 本發明之另一目的在於提供一種以銀_奈米碳管·全氟磺酸聚合物 薄膜修飾之電極及其製造方法,該製造方法簡單且經濟,所製造的電 Ο 極具有高的表面增強拉曼散射強度。 為達成上述目的,本發明之銀-奈米碳管-全氟磺酸聚合物薄膜主要 包括一奈米碳管-全氟磺酸聚合物薄膜,及沉積於該奈米碳管_全氟磺酸 聚合物薄膜上的銀奈米粒子;其中該奈米碳管-全氟磺酸聚合物薄膜係 奈米碳管與全氟磺酸聚合物以重量比l/m/200混合形成之薄膜,銀 沉積電荷為 10 mC/cm2-15000 mC/cm2。 上述之奈米碳管與全氟磺酸聚合物的重量比較佳為&quot;504/^0,而 銀沉積電荷較佳為30 mC/cm2-12000 mC/cm2。 • 本發明以銀-奈米碳管-全氟磺酸聚合物薄膜修飾之電極則包括一 電極載體及形成於該電極載體表面之一銀-奈米碳管-全氟磺酸聚合物 薄膜’其中銀-奈米碳管-全氟磺酸聚合物薄膜如上所述。 上述之電極載體可為麵錫氧化物(Indium Tin Oxide,ITO)導電玻 璃、玻璃碳電極、白金電極或矽基板。 本發明以銀-奈米碳管-全氟磺酸聚合物薄膜修飾之電極,用途包括 作為SERS的活性基材,亦可用於摘測化學或生物分子,例如:羅丹明 6G(Rhodamine 6G)、苯甲酸、吡啶、對氨基硫酚(p-aminothiophenol)、 去氧核糖核酸鹽基腺嘌吟(DNAbases adenine)、紛或氰化物。 201005278 本發明製造銀-奈米碳管-全氟磺酸聚合物薄膜之方法主要包括下 列步驟:(1)將奈米碳管與全氟磺酸聚合物以重量比1/10_1/2〇〇混合後 塗佈於7導電載艎上,經乾燥後於該可導電載體表面形成一奈米碳 管-全氟磺酸聚合物薄膜;(2)於三電極系統中,利用電化學還原法使 银奈米粒子沉積在奈米碳管-全氟磺酸聚合物薄膜上,形成銀_奈来破管 -全11¾酸聚合物薄膜,其中該三電極系統包括一銀參考電極,一輔助 電極,一工作電極為以奈米碳管·全氟磺酸聚合物薄膜修飾之可導電載 體’及銀離子電解液;銀沉積電荷為1〇mC/cm2-15000mC/cm2。 上述之全氟磺酸聚合物與奈米碳管係可於pH7.0之磷酸緩衝液中 混合,較佳為以超音波震盪方式混合。可導電載體可於旋轉塗佈機上 以奈米碳管與全氟磺酸聚合物塗佈,亦可使用其他習知的塗佈方式進 行。上述之可導電載體通常為一電極,例如:銦錫氧化物(IndiumTin Oxide ’ ITO)導電玻璃、玻璃碳電極、白金電極或矽基板。但亦可使 用其他適合塗佈奈米碳管與全氟磺酸聚合物、並可以電化學還原法操 作的載髏。 上述之參考電極通常為Ag/AgCl,輔助電極為白金電極,電解液為 内含有硝酸銀之硝酸鉀溶液。銀沉積電荷較佳為3〇 mC/cm2_12〇〇〇 【實施方法】 本發明較佳實施例使用的材料包括: ⑴多層壁奈米碳管:multi-wall cnt (MWCNT),純度約99%,購自東 元奈米應材。 (2) 硝酸銀:AgN03,購自 Riedel-deHagn®。 (3) 硝酸鉀:KN〇3,購自 Riedel-deHaSn®。 7 201005278 (4) 磷酸氫二鈉:Na2HP04,純度約99%,購自Showa。 (5) 磷酸二氫鈉:NaH2P04,純度約98% ’購自Showa。 (6) 全氟磺酸聚合物·· 5 wt%,溶於低級脂肪酵及水的混合物中’購自 Nafion。Nafion為杜邦公司之產品0 ⑺羅丹明 6G : Rhodamine 6G,簡稱 R6G,C28H3iN2〇3C1 ’ 購自 Fluka。 本發明產物特性分析所使用的儀器包括: (1)電化學分析儀(Autolab Potentiostat/Galvanostat) φ 用於將銀奈米粒子沉積於電極上,廠牌Eco Chemie,型號 PGSTAT30。 (2) 三電極系統 a. 工作電極(working electrode,WE) : ITO 導電玻璃。 b. 參考電極(reference, RE): Ag/AgCl( 3M,於 KC1 ),廠牌 Metrohm。 c. 辅助電極(counter electrode,CE):白金電極,薇牌 Metrohm。 d. 電化學測試槽:可裝盛電解液,可裝盛容量為10_9〇mL,廠牌 Metrohm &gt; (3) 場發射式掃描式電子顯微鏡(Field emission-scanning electron Microscope &gt; FE-SEM) 用於觀察實驗樣品之表面形貌,廠牌JEOL,型號JSM-6700F » ⑷ X 光能量散譜儀(X_ray energy dispersive spectrometer,EDS) 用於對材料做元素的定性與定量分析,廠牌OXFORD,型號INCA ENERGY400。 (5)顯微拉曼光譜儀(Raman Spectroscopy) 可量測物質分子受雷射激發後所產生之振動能量,用於分析材料 8 201005278 _與結晶結構之研究。在本發明實施射是用來侧R6G分子對於 杜基材的拉曼訊號’獻牌Jobin Yvon,型號Triax 550。 為避免ITO導電玻璃表面污染物的影響,於使用前需先經下列清 洗步驟: (1) 用海綿沾清潔劑,輕輕搓洗IT〇導電玻璃的表面,之後浸泡於適當 比例之水與清潔劑中,以超音波震盪清洗15分鐘。 (2) 以純水沖洗pro導電玻璃,除去清潔劑的殘留。 (3) 將ΙΤΟ導電玻璃置於異丙醇中,以超音波震盈清洗15分鐘。 φ ⑷將ΙΤΟ導電玻璃置於丙咐,以超音波錄清洗15分鐘。 (5) 將ΙΤΟ導電玻璃置於去離子水中,以超音波震盪清洗15分鐘。 (6) 清洗完畢的ΙΤΟ導電玻璃,以氮氣槍吹淨表面的水份,未使用時放 置乾燥箱存放。 本發明製作Ag_cnt-Nafion薄膜,並以Ag-cnt-Nafion薄膜修飾ΙΤΟ 導電玻璃的詳細操作步驟說明如下列實施例,並舉數比較例作比較。 實施例1 ⑴精秤 NaPH04 ( 8.6596g)與 NaH2P04 ( 4.6792g) ’ 置於 1L 容量瓶, 再以去離子純水稀釋至標線,配製成磷酸緩衝液(phosphatebuffer solution,PBR,0.1M,pH7.0,1L)。 (2)秤取全氟磺酸聚合物(5 wt%’ lg),分散溶解於PBr(〇 1M,9g), 配製成全氟磺酸聚合物溶液(0.5 wt%)。 ⑶於樣品瓶中,依序加入全氟磺酸聚合物溶液(〇.5wt%,lmL,含全 氟項酸聚合物〇.992g)及奈米碳管(l〇mg),置於超音波震盘器震 201005278 盪一小時,形成均勻分散的黑色奈米碳管-全氟磺酸聚合物 (cnt-Nafion)溶液,其中全氟磺酸聚合物與奈米碳管的重量比為 1/99.2。 ⑷控制ITO導電玻璃表面的可反應面積,將此IT〇導電玻璃放置旋轉 塗佈機上’使用可調式微量吸管吸取cnt_Naflon溶液(3μ1),滴在 ΙΤΟ導電玻璃表面上。 (5)以燒杯^於ΙΤΟ導電玻璃試片上,以隔絕空氣中的塵埃,於室溫下 自然乾燥,即完成經cnt_Nafi〇n薄膜修飾之ΙΤ〇導電玻璃。 ® (6)於三電極系統中,利用電化學還原法使銀奈米粒子沉積在 cnt-Nafion薄膜上’參考電極選用Ag/AgC1 (3Μ,於κα中),辅 助電極為白金電極,工作電極為以cm_Nafl〇n薄膜修飾之IT〇導電 玻璃,電解液為内含有硝酸銀(1〇mM)之硝酸卸溶液(〇 1Μ),還 原電位為-0.3V,銀沉積的電荷為1〇〇 mC/cm2,即完成經 Ag-cnt-Nafion薄膜修飾之IT〇導電玻璃。 實施例2-6 重複實施例1的操作步驟卜6,但步驟6之單位面積銀粒子沉積電 φ 荷量分別改為 31,5 mC/cm2、63 mC/cm2、407.5 mC/cm2、1640 mC/cm2 及 11000 mC/cm2。 比較例1 重複實施例1的操作步驟1〜5,未沉積銀,因此形成以ent_Naflon 薄膜修飾ITO導電玻璃。 比較例2 重複實施例1的操作步驟6,但工作電極為單純ITO導電玻璃,因 201005278 此形成銀薄膜修飾ITO導電玻璃。 比較例3 重複實施例1的操作步驟1-6,但步驟3的奈米碳管改為碳黑,因 此形成以銀·碳黑-全氟磺酸聚合物薄膜修飾ΙΤΟ導電玻璃 特性分析 φ 1.場發射式掃描式電子顯微鏡分析(FE-SEM) 第1及2圖分別為比較例1的cnt-Nafion薄膜與實施例1的 Ag-cnt-Nafion薄膜的FE-SEM圖,加速電壓為3KV,放大倍數為50,000 倍,銀沉積的電荷為100 mC/cm2。由第1圖中,可以看出一根一根的 棒狀物,此為多層壁奈米碳管,奈米碳管被均勻的分散於全氟磺酸聚 合物高分子鏈之中,直徑為約20-40nm。圖中亦可看見全氟磺酸聚合物 高分子呈現不規則的形狀,而奈米碳管上並未發現任何的金屬顆粒。 第2圖中’可以觀察到在一根一根棒狀物為奈米碳管上,出現了白色 的奈米粒子’此為沉積在奈米碳管上的銀奈米粒子,直徑大約為 ® 60-80nm ’有些銀奈米粒子會聚集而形成較大的銀粒子,圖中呈現不規 則的形狀的高分子為全氟磺酸聚合物。在電化學沉積銀奈米粒子的過 程中,因為ITO導電玻璃的表面是一層導電層,而在cnt_Nafi〇n薄膜 層中,一根一根像棒狀物的奈米碳管穿插在全氟磺酸聚合物高分子鏈 中,而且互相接觸彼此,這些彼此間交互穿插並且延伸連結到接觸電 極表面的奈米碳f ’在纟氣績豸聚合物高分子鍵中扮演著I来導線的 角色,可以有效的傳遞電子’並且增加了電沉積銀金屬的效率,而銀 奈来粒子麻這些與賊且形絲料線的奈米碳管上。 11 201005278 2.X光能量散譜儀分析(EDS) 第3及4圖分別為比較例1的cnt_Nafl〇n薄膜及實施例i的 Ag-cnt-Nafion薄膜的EDS圖’銀沉積的電荷為100mC/cm2。第3圖的 cnt-Nafion薄膜可以看到在〇.27KeV處有一明顯的波蜂,此為碳(⑺ 元素的能量波峰,其來源為奈米碳管的碳元素及全氟磺酸聚合物結構 中的碳元素。在0.68KeV處也有一個波峰,此為氟(F)元素的能量波 峰,其來源為全氟磺酸聚合物結構中的氟元素。第4圖的Ag-cnt-Nafion 薄膜除了可以看到原有的碳元素及氣元素的波峰之外,在2.99KeV、 3.15KeV、3.30KeV處亦有明顯的波峰,此為銀(Ag)元素的波峰。因 ® 此,藉由EDS的組成元素定性分析結果,證明利用電化學法可以沉積 銀金屬在cnt-Nafion薄膜上。 3.拉曼光譜分析_(Raman Spectroscopy) 以實施例1的Ag-cnt-Nafion薄膜修飾之ITO導電玻璃作SERS的 活性基材’浸泡於R6G溶液(10_4M)中,並將拉曼的雷射光聚焦在 Ag-cnt-Nafion薄膜的表面上,以獲得SERS拉曼光譜。另外,取比較 例1的cnt-Nafion薄膜修飾於ITO導電玻璃、比較例2的銀-ITO導電 玻璃、比較例3的銀-碳黑·全氟磺酸聚合物薄膜修飾於ITO導電玻璃作 為不同的SERS活性基材,並做比較,銀沉積的電荷量均為1〇〇 mC/cm2。第5圖中,光譜a為cnt-Nafion薄膜修飾於ITO導電玻璃表 面的拉曼光譜,光譜b為銀-ITO導電玻璃表面的拉曼光譜,光譜c為 銀•碳黑-全氟磺酸聚合物薄膜修飾於ITO導電玻璃表面的拉曼光譜,光 譜d為Ag-cnt-Nafion薄膜修飾於ITO導電玻璃表面的拉曼光譜,銀沉 積的電荷均為100 mC/cm2。光错a中,在1570 cm·1的位置上有波峰的 出現’此為奈米碳管的G band。光譜b、c及d中,亦可觀察到在1186 cm·1、1310 cm·1、1362 cm·1、1509 cirf1、1650 cnT1 的位置上,有明顯 的波峰出現,此為典型的R6G被吸附在銀金屬上的SERS光譜,其中 12 201005278 在1362 cm·1、1509 cm-1、1650cm_1位置的波峰,是歸於芳香族C-C的 伸縮形式(stretching modes)。另外,由光譜d可看出Ag-cnt-Nafion 薄膜修飾於ITO導電玻璃表面吸附R6G的拉曼光譜’其SERS強度為 最強;在1509 cm-1的位置上的SERS強度,大約是銀-碳黑-全氟磺酸 聚合物薄膜修飾於ITO導電玻璃的1.5倍,銀·ΙΤΟ導電玻璃的3倍。 因此’在SERS的應用中,Ag-cnt-Nafion薄膜的三度空間奈米結構, 對於銀奈米粒子的沉積是個合適的基材。 第6圖為實施例2-6的Ag-cnt-Nafion薄膜修飾ITO導電玻璃,在 R6G (1(Γ4μ)溶液中吸附R6G的SERS拉曼光譜圖,探討不同銀粒子 沉積電荷量對SERS效應的影響。在第6圖中,光譜a為實施例2 (銀 粒子沉積電荷量為31.5 mC/cm2),b光譜為實施例3 (銀粒子沉積電荷 量為63 mC/cm2,光譜c為實施例4 (銀粒子沉積電荷量為407 5 mC/cm2)’光譜d為實施例5 (銀粒子沉積電荷量為164〇 mc/cm2),光 譜e為實施例6 (銀粒子沉積電荷量為iiooo mC/cm2)。光譜a雖然顯 示出銀的訊號,但因銀粒子沉積電荷量不多,因此在cnt_Nafi〇n薄膜上 的銀粒子也不多,所以產生出來的強度比較弱。由光譜b_e,可觀察到 隨著銀粒子沉積電荷量增加,SERS拉曼光譜的強度也開始增強並且更 φ 為明顯。SERS拉曼光譜的強度亦會隨著銀沉積的時間增加而增強,是 因為雷射光打在Ag_cnt-Nafion薄膜修飾於ITO導電玻璃的表面,其面 積是固定的,而隨著銀沉積的時間增加,單位面積的銀數量也增加了; 因此,所產生出來的SERS拉曼光譜的強度也會隨之增強。[Prior Art] In 1970, Fleischmann et al. discovered that pyridine (C5H5N) produced a very strong Raman signal on the surface of a rough silver electrode, which produced a huge Raman due to the adsorption of molecules on some rough metal surfaces. The phenomenon of the signal is called Surface-Enhanced Raman Scattering (SERS). SERS occurs on rough metal surfaces, especially on the surface of silver, and other metals such as gold, copper, lithium, zinc, cadmium, etc., also produce SERS effects. Therefore, the company has the money to prepare silver metal on different kinds of substrates as a SERS active substrate. For example, the silver nanoparticles are placed on the SERS surface of the Si〇2/Si, and the (4) (4) method is used to deposit the Naizi deposition on the ITO-〇=glass surface. The silver nanoparticles grow in the anodized nano-channel as ^ Surface 'oxidation method (10) _ Wei electrode, preparation - layer of silver nanoparticle ship 8 ^ miscellaneous correction, hiding micro-mysterious board as inch diameter, high strength, coffee, high specific surface area, nanometer is for the well I know the material that is a good metal. Years of research experience, test, final wire carbon material characteristics and extra silver-w carbon tube with high surface-enhanced Raman scattering intensity 5 201005278 Membrane and electrode for modifying the surface with the film. [Explanation of the Invention] An object of the present invention is to provide a silver-nanocarbon tube-perfluorosulfonic acid polymer film and a method for producing the same. The manufacturing method is simple and economical, and the produced film has high surface-enhanced Raman scattering intensity. . Another object of the present invention is to provide an electrode modified with a silver-carbon nanotube-perfluorosulfonic acid polymer film and a method for producing the same, which is simple and economical, and has a high surface enhancement of the fabricated electrode. Raman scattering intensity. In order to achieve the above object, the silver-nanocarbon tube-perfluorosulfonic acid polymer film of the present invention mainly comprises a carbon nanotube-perfluorosulfonic acid polymer film, and is deposited on the carbon nanotube_perfluorosulfonate. a silver nanoparticle on an acid polymer film; wherein the carbon nanotube-perfluorosulfonic acid polymer film is a film formed by mixing a carbon nanotube with a perfluorosulfonic acid polymer at a weight ratio of l/m/200, The silver deposition charge is 10 mC/cm 2 - 15,000 mC/cm 2 . The weight of the above carbon nanotubes and the perfluorosulfonic acid polymer is preferably &quot;504/^0, and the silver deposition charge is preferably 30 mC/cm2-12000 mC/cm2. The electrode modified with the silver-nanocarbon tube-perfluorosulfonic acid polymer film of the present invention comprises an electrode carrier and a silver-nanocarbon tube-perfluorosulfonic acid polymer film formed on the surface of the electrode carrier. The silver-nanocarbon tube-perfluorosulfonic acid polymer film is as described above. The above electrode carrier may be an Indium Tin Oxide (ITO) conductive glass, a glassy carbon electrode, a platinum electrode or a tantalum substrate. The invention relates to an electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film, and the application comprises the same as an active substrate of SERS, and can also be used for extracting chemical or biological molecules, for example, Rhodamine 6G, Benzoic acid, pyridine, p-aminothiophenol, DNA bases adenine, sulphate or cyanide. 201005278 The method for producing a silver-nanocarbon tube-perfluorosulfonic acid polymer film of the invention mainly comprises the following steps: (1) the carbon nanotubes and the perfluorosulfonic acid polymer are in a weight ratio of 1/10_1/2〇〇 After mixing, it is coated on a 7-conducting carrier, and after drying, a carbon nanotube-perfluorosulfonic acid polymer film is formed on the surface of the conductive carrier; (2) in a three-electrode system, by electrochemical reduction The silver nanoparticle is deposited on the carbon nanotube-perfluorosulfonic acid polymer film to form a silver-Nylon tube-all-113⁄4 acid polymer film, wherein the three-electrode system comprises a silver reference electrode and an auxiliary electrode. A working electrode is a conductive carrier modified with a carbon nanotube/perfluorosulfonic acid polymer film and a silver ion electrolyte; the silver deposition charge is 1 〇 mC/cm 2-15000 mC/cm 2 . The above perfluorosulfonic acid polymer and the carbon nanotube system may be mixed in a phosphate buffer of pH 7.0, preferably by ultrasonic vibration. The electrically conductive support can be applied to a spin coater by a carbon nanotube and a perfluorosulfonic acid polymer, or by other conventional coating methods. The above-mentioned electrically conductive carrier is usually an electrode such as an indium tin oxide (ITO) conductive glass, a glassy carbon electrode, a platinum electrode or a tantalum substrate. However, other loadings suitable for coating carbon nanotubes with perfluorosulfonic acid polymers and operating electrochemically can also be used. The above reference electrode is usually Ag/AgCl, the auxiliary electrode is a platinum electrode, and the electrolyte is a potassium nitrate solution containing silver nitrate therein. The silver deposition charge is preferably 3 〇 mC/cm 2 _ 12 〇〇〇 [Method of Implementation] The materials used in the preferred embodiment of the present invention include: (1) multi-walled carbon nanotubes: multi-wall cnt (MWCNT), purity of about 99%, Purchased from Dongyuan Nano. (2) Silver nitrate: AgN03, available from Riedel-deHagn®. (3) Potassium nitrate: KN〇3, available from Riedel-deHaSn®. 7 201005278 (4) Disodium hydrogen phosphate: Na2HP04, about 99% pure, purchased from Showa. (5) Sodium dihydrogen phosphate: NaH2P04, purity about 98% 'purchased from Showa. (6) Perfluorosulfonic acid polymer·· 5 wt%, dissolved in a mixture of low-grade fatty yeast and water 'purchased from Nafion. Nafion is a product of DuPont 0 (7) Rhodamine 6G: Rhodamine 6G, referred to as R6G, C28H3iN2〇3C1 ’ from Fluka. The instruments used in the characterization of the products of the present invention include: (1) Electrochemical Analyzer (Autolab Potentiostat/Galvanostat) φ is used to deposit silver nanoparticles on electrodes, brand Eco Chemie, model PGSTAT30. (2) Three-electrode system a. Working electrode (WE): ITO conductive glass. b. Reference electrode (reference, RE): Ag/AgCl (3M, at KC1), label Metrohm. c. Counter electrode (CE): Platinum electrode, Vichy Metrohm. d. Electrochemical test tank: can hold the electrolyte, can hold a capacity of 10_9〇mL, the brand Metrohm &gt; (3) Field emission-scanning electron microscope (FE-SEM) Used to observe the surface topography of the experimental sample, the brand JEOL, model JSM-6700F » (4) X-ray energy dispersive spectrometer (EDS) for the qualitative and quantitative analysis of the elements of the material, the brand OXFORD, Model INCA ENERGY400. (5) Raman Spectroscopy The vibration energy generated by the excitation of a substance molecule by laser can be measured for the analysis of materials 8 201005278 _ and crystal structure. In the practice of the present invention, the Raman signal for the side R6G molecule for the Du substrate was presented as the brand Jobin Yvon, model Triax 550. In order to avoid the influence of contaminants on the surface of ITO conductive glass, the following cleaning steps should be carried out before use: (1) Using a sponge dampening agent, gently wash the surface of the IT conductive glass, then soak in a proper proportion of water and detergent. In the middle, clean with ultrasonic shock for 15 minutes. (2) Rinse the pro-conductive glass with pure water to remove the residue of the detergent. (3) Place the crucible conductive glass in isopropyl alcohol and wash it with ultrasonic shock for 15 minutes. φ (4) Place the ΙΤΟ conductive glass in the 咐 咐 and clean it for 15 minutes with ultrasonic recording. (5) Place the conductive glass in deionized water and clean it with ultrasonic wave for 15 minutes. (6) After cleaning the conductive glass, use a nitrogen gun to blow off the surface water. When not in use, place it in a dry box. The detailed operation steps of the Ag_cnt-Nafion film of the present invention and the modification of the ΙΤΟ conductive glass by the Ag-cnt-Nafion film are as follows in the following examples, and comparative examples are compared. Example 1 (1) The precision scale NaPH04 (8.6596g) and NaH2P04 (4.6792g) were placed in a 1L volumetric flask and diluted with deionized pure water to the mark to prepare a phosphate buffer solution (PBR, 0.1M, pH 7.0, 1 L). (2) A perfluorosulfonic acid polymer (5 wt%' lg) was weighed and dispersed in PBr (〇 1 M, 9 g) to prepare a perfluorosulfonic acid polymer solution (0.5 wt%). (3) In the sample vial, a perfluorosulfonic acid polymer solution (〇. 5wt%, 1mL, containing perfluorocarboxylic acid polymer 〇.992g) and a carbon nanotube (l〇mg) were sequentially added to the ultrasonic wave. The shock disk shocks 201005278 for one hour to form a uniformly dispersed black carbon nanotube-perfluorosulfonic acid polymer (cnt-Nafion) solution, wherein the weight ratio of perfluorosulfonic acid polymer to carbon nanotube is 1/ 99.2. (4) Control the reactive area of the surface of the ITO conductive glass, and place the IT〇 conductive glass on a rotary coater. Use a tunable micropipette to aspirate the cnt_Naflon solution (3μ1) onto the surface of the conductive glass. (5) Using a beaker on a conductive glass test piece to isolate the dust in the air and naturally dry at room temperature, that is, the conductive glass modified by the cnt_Nafi〇n film is completed. ® (6) In the three-electrode system, silver nanoparticles are deposited on the cnt-Nafion film by electrochemical reduction method. 'The reference electrode is Ag/AgC1 (3Μ, in κα), the auxiliary electrode is platinum electrode, and the working electrode is used. It is an IT〇 conductive glass modified with a film of cm_Nafl〇n. The electrolyte is a solution of nitrate containing silver nitrate (1 mM), the reduction potential is -0.3V, and the charge of silver deposition is 1〇〇mC/ Cm2, that is, the IT〇 conductive glass modified by the Ag-cnt-Nafion film. Example 2-6 The operation procedure of Example 1 was repeated, but the electric φ charge per unit area of the silver particles in step 6 was changed to 31,5 mC/cm2, 63 mC/cm2, 407.5 mC/cm2, and 1640 mC, respectively. /cm2 and 11000 mC/cm2. Comparative Example 1 The operation steps 1 to 5 of Example 1 were repeated, and silver was not deposited, so that ITO conductive glass was formed by ent_Naflon film. Comparative Example 2 The operation step 6 of Example 1 was repeated, but the working electrode was a simple ITO conductive glass, and a silver film-modified ITO conductive glass was formed as of 201005278. Comparative Example 3 The operation steps 1-6 of Example 1 were repeated, but the carbon nanotubes of the step 3 were changed to carbon black, so that the silver-carbon black-perfluorosulfonic acid polymer film was modified to modify the characteristics of the conductive glass φ 1 Field emission scanning electron microscope analysis (FE-SEM) Figs. 1 and 2 are FE-SEM images of the cnt-Nafion film of Comparative Example 1 and the Ag-cnt-Nafion film of Example 1, respectively, with an acceleration voltage of 3 kV. The magnification is 50,000 times and the charge of silver deposition is 100 mC/cm2. From Fig. 1, it can be seen that one rod is a multi-layered wall carbon nanotube, and the carbon nanotube is uniformly dispersed in the perfluorosulfonic acid polymer chain, and the diameter is About 20-40 nm. It can also be seen that the perfluorosulfonic acid polymer has an irregular shape, and no metal particles are found on the carbon nanotubes. In Fig. 2, it can be observed that white nano particles appear on the carbon nanotubes of one bar. This is a silver nanoparticle deposited on a carbon nanotube with a diameter of about ® 60-80 nm 'Some silver nanoparticles aggregate to form larger silver particles. The polymer with irregular shape in the figure is a perfluorosulfonic acid polymer. In the process of electrochemically depositing silver nanoparticles, since the surface of the ITO conductive glass is a conductive layer, in the cnt_Nafi〇n film layer, a carbon nanotube like a rod is interspersed with perfluorosulfonate. In the polymer chain of the acid polymer, and in contact with each other, the nanocarbons f' interpenetrating and extending to the surface of the contact electrode play a role of a wire in the polymer bond of the polymer. It can effectively transfer electrons' and increase the efficiency of electrodeposited silver metal, while the silver-near particles are on the carbon nanotubes of the thief and the wire. 11 201005278 2. X-ray energy dispersive spectrometer analysis (EDS) Figures 3 and 4 show the EDS diagram of the cnt_Nafl〇n film of Comparative Example 1 and the Ag-cnt-Nafion film of Example i, respectively. The charge of silver deposition is 100 mC. /cm2. The cnt-Nafion film in Fig. 3 shows that there is a distinct wave bee at 〇27KeV, which is the energy peak of carbon ((7) element, which is derived from the carbon element of the carbon nanotube and the perfluorosulfonic acid polymer structure. Carbon in the middle. There is also a peak at 0.68KeV, which is the energy peak of the fluorine (F) element, which is derived from the fluorine element in the perfluorosulfonic acid polymer structure. In addition to the Ag-cnt-Nafion film in Figure 4 It can be seen that the peaks of the original carbon and gas elements also have obvious peaks at 2.99KeV, 3.15KeV, 3.30KeV, which is the peak of the silver (Ag) element. Because of this, by EDS The qualitative analysis results of the constituent elements prove that the silver metal can be deposited on the cnt-Nafion film by electrochemical method. 3. Raman Spectroscopy The ITO conductive glass modified with the Ag-cnt-Nafion film of Example 1 is used. The SERS active substrate was immersed in R6G solution (10_4M), and the Raman laser light was focused on the surface of the Ag-cnt-Nafion film to obtain SERS Raman spectrum. In addition, the cnt- of Comparative Example 1 was taken. Nafion film modified on ITO conductive glass, silver-ITO guide of Comparative Example 2 The glass, the silver-carbon black perfluorosulfonic acid polymer film of Comparative Example 3 was modified on ITO conductive glass as a different SERS active substrate, and the charge amount of the silver deposition was 1 〇〇 mC/cm 2 . In the figure 5, the spectrum a is the Raman spectrum of the cnt-Nafion film modified on the surface of the ITO conductive glass, the spectrum b is the Raman spectrum of the surface of the silver-ITO conductive glass, and the spectrum c is the silver•carbon black-perfluorosulfonic acid polymer. The Raman spectrum of the film modified on the surface of ITO conductive glass, the spectrum d is the Raman spectrum of Ag-cnt-Nafion film modified on the surface of ITO conductive glass, the charge of silver deposition is 100 mC/cm2. In the optical fault a, at 1570 The presence of a peak at the position of cm·1 'This is the G band of the carbon nanotube. In the spectra b, c and d, it can also be observed at 1186 cm·1, 1310 cm·1, 1362 cm·1, 1509. At the position of cirf1, 1650 cnT1, there are obvious peaks. This is the typical SERS spectrum of R6G adsorbed on silver metal, and the peak of 12 201005278 at 1362 cm·1, 1509 cm-1, 1650 cm_1 is attributed to The stretching mode of the aromatic CC. In addition, the spectrum d can be seen as Ag-cnt-Na The Raman spectrum of fion film modified on the surface of ITO conductive glass adsorbs R6G's SERS intensity is the strongest; the SERS intensity at 1509 cm-1 is about silver-carbon black-perfluorosulfonic acid polymer film modified on ITO 1.5 times that of conductive glass and 3 times that of silver · bismuth conductive glass. Therefore, in the application of SERS, the three-dimensional nanostructure of Ag-cnt-Nafion film is a suitable substrate for the deposition of silver nanoparticles. Figure 6 is a SERS Raman spectrum of the Ag-cnt-Nafion film modified ITO conductive glass of Example 2-6, adsorbing R6G in R6G (1(Γ4μ) solution, and discussing the effect of different silver particle deposition charge on SERS In Fig. 6, spectrum a is Example 2 (silver particle deposition charge is 31.5 mC/cm2), b spectrum is Example 3 (silver particle deposition charge is 63 mC/cm2, spectrum c is an example) 4 (silver particle deposition charge amount is 407 5 mC/cm2) 'Spectrum d is Example 5 (silver particle deposition charge amount is 164 〇mc/cm 2 ), and spectrum e is Example 6 (silver particle deposition charge amount is iiooo mC) /cm2). Although the spectrum a shows the signal of silver, the amount of deposited silver particles is not much, so there are not many silver particles on the cnt_Nafi〇n film, so the intensity generated is relatively weak. From the spectrum b_e, It is observed that as the amount of deposited ions of silver particles increases, the intensity of the SERS Raman spectrum also begins to increase and is more pronounced. The intensity of the SERS Raman spectrum also increases with the time of silver deposition, because the laser strikes The Ag_cnt-Nafion film is modified on the surface of ITO conductive glass, and its area is Given, and with the silver deposition time increases, the number of silver per unit area is also increased; therefore, the intensity of the generated out of the SERS enhanced Raman spectrum will follow.

第7圖為以Ag-cnt-Nafion薄膜修飾於ιτο導電玻璃為基材,不同 單位面積之銀粒子沉積電荷量,在1509 cm-i位置上之拉曼波峰強度 圖。由此圖可觀察到,當銀粒子沉積電荷量為〇mC/cm2的時候,並沒 有任何的拉曼訊號。當銀沉積的時間開始增加,拉曼的訊號強度也開 始增強,當絲子沉積電荷量由〇mC/cm2增加到2〇〇〇mC/cm2,SERS 拉曼光譜的強度快速上升·》而銀粒子沉積電荷量由2000 mc/cm2增加 到mo〇mC/cm2, SERS拉曼光譜的強度上升則趨於平緩。因此,我們 13 201005278 選擇銀沉積的電荷量為7500 mC/cm2的Ag-cnt-Nafion薄膜修飾於ITO 導電玻璃作為SERS的活性基材。將此SERS的活性基材,浸泡於R6G 溶液(1〇-8Μ)中,接著再加入較高濃度的R6G的溶液,使原本的R6G 溶液濃度由1〇-8Μ逐漸提高到1〇_4m。 第8圖為在R6G溶液中,Ag-cnt-Nafion薄膜修飾於ITO導電玻璃 表面,銀沉積的電荷為7500 mC/cm2,隨著R6CJ濃度增加所獲得的原 位(in-situ)拉曼光譜。其中’光譜a_g的R6G濃度分別為ιβΜ、10·7 Μ、10_6Μ、5χ10·6Μ、10_5Μ、5χ10·5Μ及 1〇-4Μ。由圖中可以觀察 到,隨著R6G濃度逐漸增加’SERS拉曼光譜強度則愈來愈強,在1186、 1310、1362、1509、1650 cm·1等位置上,可以看到明顯的波峰出現。 第9圖為以Ag-cnt-Nafion薄膜修飾於ITO導電玻璃為基材, 銀沉積電荷為7500 mC/cm2,在1509 cm·1位置上,不同R6G溶液濃 度的拉曼波峰強度校正曲線圖。由圖可觀察到,在R6G濃度為i〇_8m 到10 Μ之間’疋呈現線性的’其相關因數(c〇rreiati〇n fact〇r)為 0.994,亦即上述樣品濃度在液相中的原位偵測是可行的。當R6G濃 度繼續提高超過10·5Μ ’則出現非線性的行為,可歸因於在 Ag-cnt-Nafion薄膜修飾ΙΤΟ導電玻璃表面上吸附的r6g已經趨於飽 和。由此橫跨三個數量級(order)的線性偵測範圍的結果證明,本發明 製備的SERS基材為有效且靈敏。 綜上’本發明製備Ag-cnt-Nafion薄膜及以Ag-cnt-Nafion薄膜修飾 ITO導電玻璃的方法不僅簡單且有效。經修飾的ITO導電玻璃可以作 為SERS的活性基材’而利用R6G分子被吸附於Ag-cnt-Nafion薄膜表 面上可以獲得靈敏的SERS拉曼光譜。這種方法可以擴展到使用其他的 貴重金屬來製備新穎的奈米結構,以作為靈敏的光化學感測器之應用。 201005278 【圖式簡單說明】 第1及2圖分別為比較例1及實施例1所製得薄膜的fe-SEM圓。 第3及4圖分別為比較例1及實施例1所製得薄膜的eDS圖。 第5圖為實施例1及比較例1-3所製得薄膜的拉曼光譜圖。 第6圖為實施例2-6的拉曼光譜圖。 第7圖為不同單位面積之銀粒子沉積電荷量之拉曼波峰強度圖。 第8圖為R6G濃度增加時所獲得的原位拉曼光譜。 第9圖為第8圖的拉曼波峰強度校正曲線圖。Fig. 7 is a diagram showing the Raman peak intensity at a position of 1509 cm-i by using Ag-cnt-Nafion film modified on ιτο conductive glass as a substrate, and the deposition amount of silver particles in different unit areas. From this figure, it can be observed that when the amount of deposited silver particles is 〇mC/cm2, there is no Raman signal. When the silver deposition time begins to increase, the Raman signal intensity also begins to increase. When the filament deposition charge increases from 〇mC/cm2 to 2〇〇〇mC/cm2, the intensity of the SERS Raman spectrum rises rapidly. The amount of deposited particles increased from 2000 mc/cm2 to mo〇mC/cm2, and the intensity of the SERS Raman spectrum increased. Therefore, we 13 201005278 Ag-cnt-Nafion film with a charge of 7500 mC/cm2 deposited on silver was modified on ITO conductive glass as the active substrate of SERS. The SERS active substrate was immersed in R6G solution (1〇-8Μ), and then a higher concentration of R6G solution was added to gradually increase the concentration of the original R6G solution from 1〇-8Μ to 1〇_4m. Figure 8 is an in-situ Raman spectrum obtained by modifying the Ag-cnt-Nafion film on the surface of ITO conductive glass with a charge of 7500 mC/cm2 in R6G solution with increasing R6CJ concentration. . The R6G concentrations of the 'spectrum a_g are ιβΜ, 10·7 Μ, 10_6Μ, 5χ10·6Μ, 10_5Μ, 5χ10·5Μ and 1〇-4Μ, respectively. It can be observed from the figure that as the concentration of R6G increases, the intensity of the SERS Raman spectrum becomes stronger and stronger. At the positions of 1186, 1310, 1362, 1509, 1650 cm·1, obvious peaks can be seen. Fig. 9 is a graph showing the Raman peak intensity correction curve of different R6G solution concentrations with Ag-cnt-Nafion film modified on ITO conductive glass as the substrate and silver deposition charge of 7500 mC/cm2 at 1509 cm·1. It can be observed from the figure that the correlation coefficient (c〇rreiati〇n fact〇r) is 0.994 when the concentration of R6G is between i〇_8m and 10Μ, and the concentration of the above sample is in the liquid phase. In-situ detection is possible. When the R6G concentration continues to increase above 10·5 Å, nonlinear behavior occurs, which is attributed to the fact that r6g adsorbed on the surface of the Ag-cnt-Nafion film-modified iridium conductive glass has become saturated. The results of the linear detection range across three orders of magnitude thus demonstrate that the SERS substrate prepared by the present invention is effective and sensitive. In summary, the method of preparing an Ag-cnt-Nafion film of the present invention and modifying the ITO conductive glass with an Ag-cnt-Nafion film is not only simple and effective. The modified ITO conductive glass can be used as the active substrate of SERS and the sensitive SERS Raman spectrum can be obtained by adsorbing the R6G molecule on the surface of the Ag-cnt-Nafion film. This approach can be extended to the use of other precious metals to prepare novel nanostructures for use as sensitive photochemical sensors. 201005278 [Simple description of the drawings] Figs. 1 and 2 are fe-SEM circles of the films obtained in Comparative Example 1 and Example 1, respectively. The third and fourth graphs are the eDS patterns of the films obtained in Comparative Example 1 and Example 1, respectively. Fig. 5 is a Raman spectrum of the film obtained in Example 1 and Comparative Example 1-3. Figure 6 is a Raman spectrum of Example 2-6. Figure 7 is a Raman peak intensity map of the amount of deposited silver ions in different unit areas. Figure 8 is an in situ Raman spectrum obtained when the concentration of R6G is increased. Fig. 9 is a graph showing the Raman peak intensity correction curve of Fig. 8.

1515

Claims (1)

201005278 十、申請專利範圍: 1. 一種銀·奈米碳管-全氟磺酸聚合物薄膜,包括一奈米碳管-全氟磺酸 聚合物薄膜,及沉積於該奈米碳管-全氟磺酸聚合物薄膜上的銀奈 米粒子;其中該奈米碳管-全氟磺酸聚合物薄膜係奈米碳管與全氟 磺酸聚合物以重量比1/10-1/200混合形成之薄膜,銀沉積電荷為 10 mC/cm2-1500〇 mC/cm2 » 2. 如申請專利範圍第i項所述之銀_奈米碳管_全氟磺酸聚合物薄膜, 其中奈米碳管與全氟續酸聚合物的重量比為1/50-1/150。 ® 3·如申請專利範圍第1項所述之銀-奈米碳管-全氟磺酸聚合物薄膜, 其中銀沉積電荷為30 mC/cm2-12000 mC/cm2。 4. 一種以銀-奈米碳管-全I績酸聚合物薄媒修飾之電極,包括一電極 載鱧及形成於該電極載體表面之一銀-奈米碳管-全氟磺酸聚合物 薄膜;其中銀-奈米碳管·全氟磺酸聚合物薄膜包括一奈米碳管-全氟 磺酸聚合物薄膜及沉積於該奈米碳管-全氟磺酸聚合物薄膜上的銀 奈米粒子;其中該奈米碳管-全氟磺酸聚合物薄膜係奈米碳管與全 氟磺酸聚合物以重量比1/10-1/200混合形成之薄膜,銀沉積電荷為 10 mC/cm2-15000 mC/cm2。 5. 如申請專利範圍第4項所述之以銀_奈米碳管_全氟磺酸聚合物薄膜 修飾之電極,其中該電極載體為銦錫氧化物(Indium Tin Oxide, ITO)導電玻璃、玻璃碳電極、白金電極或矽基板。 6·如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,其中奈米碳管與全氟磺酸聚合物的重量比為 1/50-1/150。 7. 如申請專利範圍第4項所述之以銀-奈米碳管·全氟磺酸聚合物薄膜 修飾之電極,其中銀沉積電荷為30mC/cm2-12000mC/cm2。 8. 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 16 201005278 修飾之電極,係作為SERS的活性基材。 9. 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,係用於偵測化學或生物分子。 10. 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,係用於偵測羅丹明6G (Rhodamine6G)、苯甲酸、吡 啶、對氨基硫酚(p-aminothiophenol)、去氧核醣核酸鹽基腺嘌呤 (DNAbases adenine)、盼或氰化物。 11. 一種製造銀-奈米碳管-全氟磺酸聚合物薄膜之方法,包括下列步驟: (1) 將奈米碳管與全氟磺酸聚合物以重量比1/10-1/200混合後塗佈 於一可導電載體上,經乾燥後於該可導電載體表面形成一奈米 破管-全IL續酸聚合物薄膜, (2) 於三電極系統中,利用電化學還原法(amperometry)使銀奈米 粒子沉積在奈米碳管-全氟磺酸聚合物薄膜上,形成銀-奈米碳 管•全氟磺酸聚合物薄膜;其中該三電極系統包括一銀參考電 極,一辅助電極,一工作電極為以奈米碳管-全氟磺酸聚合物薄 膜修飾之可導電載體’及銀離子電解液;銀沉積電荷為10 mC/cm2_15000 mC/cm2。 12. 如申請專利範圍第u項所述之方法,其中全氟磺酸聚合物與奈米 碳管係於pH7.0之磷酸缓衝液中混合。 13. 如申請專利範圍第η項所述之方法,其中全氟續酸聚合物與奈米 碳管係以超音波震盪方式混合。 14. 如申請專利範圍第11項所述之方法,其中該可導電載體係於旋轉 塗佈機上以奈米碳管與全氟磺酸聚合物塗佈。 15. 如申請專利範圍第η項所述之方法,其中該可導電載體係一電極。 16·如申請專利範圍第η項所述之方法,其中該可導電載體為銦錫氧 17 201005278 化物(Indium Tin Oxide,ITO)導電玻璃、玻璃碳電極、白金電極 或$夕基板。 17. 如申請專利範圍第11項所述之方法,其中參考電極為Ag/AgCl。 18. 如申請專利範圍第11項所述之方法,其中輔助電極為白金電極, 19. 如申請專利範圍第11項所述之方法,其中電解液為内含有硝酸銀 之硝酸鉀溶液。 20. 如申請專利範圍第11項所述之方法,其中銀沉積電荷為30 mC/cm2-12000 mC/cm2。201005278 X. Patent application scope: 1. A silver-nanocarbon tube-perfluorosulfonic acid polymer film, including a carbon nanotube-perfluorosulfonic acid polymer film, and deposited on the carbon nanotube-all a silver nanoparticle on a fluorosulfonic acid polymer film; wherein the carbon nanotube-perfluorosulfonic acid polymer film is a carbon nanotube and a perfluorosulfonic acid polymer mixed at a weight ratio of 1/10 to 1/200 The formed film has a silver deposition charge of 10 mC/cm 2 - 1500 〇 mC/cm 2 . 2. 2. A silver-nanocarbon tube _ perfluoro sulfonic acid polymer film as described in claim i, wherein the nano carbon The weight ratio of the tube to the perfluoro acid-reducing polymer is from 1/50 to 1/150. ® 3. A silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 1, wherein the silver deposition charge is from 30 mC/cm to 22,000 mC/cm2. 4. An electrode modified with a silver-nanocarbon tube-all-acid acid polymer thin medium, comprising an electrode-loaded iridium and a silver-nanocarbon tube-perfluorosulfonic acid polymer formed on the surface of the electrode carrier a film; wherein the silver-nanocarbon tube perfluorosulfonic acid polymer film comprises a carbon nanotube-perfluorosulfonic acid polymer film and silver deposited on the carbon nanotube-perfluorosulfonic acid polymer film a nanoparticle; wherein the carbon nanotube-perfluorosulfonic acid polymer film is a film formed by mixing a carbon nanotube and a perfluorosulfonic acid polymer in a weight ratio of 1/10 to 1/200, and the silver deposition charge is 10 mC/cm2-15000 mC/cm2. 5. The electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, wherein the electrode carrier is Indium Tin Oxide (ITO) conductive glass, Glass carbon electrode, platinum electrode or tantalum substrate. 6. The electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, wherein the weight ratio of the carbon nanotube to the perfluorosulfonic acid polymer is 1/50. -1/150. 7. An electrode modified with a silver-nanocarbon tube perfluorosulfonic acid polymer film as described in claim 4, wherein the silver deposition charge is from 30 mC/cm to 22,000 mC/cm2. 8. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film 16 201005278 as described in claim 4, as an active substrate for SERS. 9. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, for the detection of chemical or biological molecules. 10. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, for detecting Rhodamine 6G, benzoic acid, pyridine, p-amino P-aminothiophenol, DNA bases adenine, hope or cyanide. 11. A method of making a silver-nanocarbon tube-perfluorosulfonic acid polymer film comprising the steps of: (1) weighting a carbon nanotube with a perfluorosulfonic acid polymer at a ratio of 1/10 to 1/200 After mixing, it is coated on a conductive support, dried to form a nano-tube-all-IL polymer film on the surface of the conductive support, and (2) in a three-electrode system, using an electrochemical reduction method ( Amperometry) deposits silver nanoparticles on a carbon nanotube-perfluorosulfonic acid polymer film to form a silver-nanocarbon tube/perfluorosulfonic acid polymer film; wherein the three-electrode system includes a silver reference electrode, An auxiliary electrode, a working electrode is a conductive carrier modified with a carbon nanotube-perfluorosulfonic acid polymer film and a silver ion electrolyte; the silver deposition charge is 10 mC/cm2 to 15000 mC/cm2. 12. The method of claim 5, wherein the perfluorosulfonic acid polymer is mixed with the carbon nanotubes in a phosphate buffer of pH 7.0. 13. The method of claim n, wherein the perfluoroacid-reduced polymer and the carbon nanotube system are mixed in an ultrasonically oscillating manner. 14. The method of claim 11, wherein the electrically conductive carrier is coated on a spin coater with a carbon nanotube and a perfluorosulfonic acid polymer. 15. The method of claim n, wherein the electrically conductive carrier is an electrode. The method of claim n, wherein the electrically conductive carrier is an indium tin oxide (ITO) conductive glass, a glassy carbon electrode, a platinum electrode or a substrate. 17. The method of claim 11, wherein the reference electrode is Ag/AgCl. 18. The method of claim 11, wherein the auxiliary electrode is a platinum electrode, 19. The method of claim 11, wherein the electrolyte is a potassium nitrate solution containing silver nitrate therein. 20. The method of claim 11, wherein the silver deposition charge is from 30 mC/cm to 21,000 mC/cm2. 1818
TW97128709A 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby TW201005278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Publications (2)

Publication Number Publication Date
TW201005278A true TW201005278A (en) 2010-02-01
TWI364534B TWI364534B (en) 2012-05-21

Family

ID=44826207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Country Status (1)

Country Link
TW (1) TW201005278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717091A (en) * 2016-01-29 2016-06-29 南京理工大学 Long-lasting efficient SERS substrate and preparation method thereof
TWI644953B (en) * 2017-09-21 2018-12-21 微相科技股份有限公司 DUV mask frame protection film preparation method
EP3452810A4 (en) * 2016-05-02 2019-12-18 Baker Hughes, a GE company, LLC Nanomaterial-based substrates for chemical sensors using surface enhanced raman spectroscopy
CN114441504A (en) * 2022-01-25 2022-05-06 北京航空航天大学 Flexible surface-enhanced Raman substrate and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717091A (en) * 2016-01-29 2016-06-29 南京理工大学 Long-lasting efficient SERS substrate and preparation method thereof
CN105717091B (en) * 2016-01-29 2019-01-18 南京理工大学 A kind of SERS substrate of persistent high efficiency and preparation method thereof
EP3452810A4 (en) * 2016-05-02 2019-12-18 Baker Hughes, a GE company, LLC Nanomaterial-based substrates for chemical sensors using surface enhanced raman spectroscopy
TWI644953B (en) * 2017-09-21 2018-12-21 微相科技股份有限公司 DUV mask frame protection film preparation method
CN114441504A (en) * 2022-01-25 2022-05-06 北京航空航天大学 Flexible surface-enhanced Raman substrate and preparation method thereof

Also Published As

Publication number Publication date
TWI364534B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
Li et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film
Shahrokhian et al. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Xu et al. Ultrasensitive voltammetric detection of trace lead (II) and cadmium (II) using MWCNTs‐nafion/bismuth composite electrodes
Gong et al. Sol− gel-derived ceramic− carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications
Wen et al. N-doped reduced graphene oxide/MnO2 nanocomposite for electrochemical detection of Hg2+ by square wave stripping voltammetry
Lin et al. High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
Zuo et al. Voltammetric sensing of Pb (II) using a glassy carbon electrode modified with composites consisting of Co3O4 nanoparticles, reduced graphene oxide and chitosan
Afraz et al. Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode
JP2018523836A (en) Electrode for detecting explosives and other volatile substances and method of use thereof
Ghalkhani et al. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles
Li et al. New antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor
Azri et al. Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development
Wei et al. Fullerene hollow microspheres prepared by bubble-templates as sensitive and selective electrocatalytic sensor for biomolecules
Kavitha et al. Low-cost electrochemical detection of L-tyrosine using an rGO–Cu modified pencil graphite electrode and its surface orientation on a Ag electrode using an ex situ spectroelectrochemical method
Hesse et al. Investigation by surface-enhanced Raman spectroscopy of the effect of oxygen and hydrogen plasmas on adsorbate-covered gold and silver island films
Masheter et al. Voltammetric and X-ray photoelectron spectroscopic fingerprinting of carboxylic acid groups on the surface of carbon nanotubes via derivatisation with arylnitro labels
JP2013510792A (en) Protection and surface modification of carbon nanostructures
Bai et al. Ultrasensitive electrochemical immunoassay based on graphene oxide–Ag composites for rapid determination of clenbuterol
Bui et al. Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film
Silina et al. Novel galvanic nanostructures of Ag and Pd for efficient laser desorption/ionization of low molecular weight compounds
Dumitrescu et al. Single-walled carbon nanotube network ultramicroelectrodes
Ueno et al. Graphene-modified interdigitated array electrode: fabrication, characterization, and electrochemical immunoassay application
Liang et al. Fabrication, characterization, and application of potentiometric immunosensor based on biocompatible and controllable three-dimensional porous chitosan membranes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees