TWI364534B - - Google Patents

Download PDF

Info

Publication number
TWI364534B
TWI364534B TW97128709A TW97128709A TWI364534B TW I364534 B TWI364534 B TW I364534B TW 97128709 A TW97128709 A TW 97128709A TW 97128709 A TW97128709 A TW 97128709A TW I364534 B TWI364534 B TW I364534B
Authority
TW
Taiwan
Prior art keywords
silver
acid polymer
perfluorosulfonic acid
electrode
polymer film
Prior art date
Application number
TW97128709A
Other languages
Chinese (zh)
Other versions
TW201005278A (en
Inventor
Yu Chen Tsai
Ping Chieh Hsu
Tzong Ming Wu
Yen Wen Lin
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW97128709A priority Critical patent/TW201005278A/en
Publication of TW201005278A publication Critical patent/TW201005278A/en
Application granted granted Critical
Publication of TWI364534B publication Critical patent/TWI364534B/zh

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

1364534 t t 九、發明說明: 【發明所屬之技術領域】 本發明的銀-奈米碳管-全氟磺酸聚合物薄膜或以該薄膜修飾之電 極係一表面增強拉曼散射活性基材,可應用於偵測化學或生物分子 的,包括偵測羅丹明6G (Rhodamine 6G,簡稱R6G)、對氨基硫紛 (p-aminothiopheno卜ρ-ΑΤΡ )、苯甲酸、去氧核醣核酸鹽基腺嘌呤(dna bases adenine)等本身具有表面增強拉曼散射的效果的分子。 _【先前技術】 1970年’ Fleischmann等人發現了吡啶(pyridine,C5H5N)在粗糙的銀 電極表面產生很強大的拉曼訊號,這種因為分子吸附於某些粗糙的金 屬表面而產生出巨大拉曼訊號的現象,稱為表面增強拉曼散射 (Surface-Enhanced Raman Scattering,簡稱 SERS)。SERS 發生在粗糙的 金屬表面’尤其是在銀的表面上’其他金屬如金、鋼、鋰、辞、錢等, 也會產生SERS效應。因此,近年來有許多關於製備銀金屬在不同種類 的基材上,以作為SERS活性基材的探討。例如,將銀奈米粒子配置在 φ Si〇2/Si上作為SERS表面,用電化學的方法將銀奈米粒子沉積在 ΙΤΟ-οη-glass表面,銀奈米粒子成長在陽極氧化銘的奈米孔道内作為 SERS表面,利用氧化還原法製備粗糙的銀電極,製備一層銀奈米粒子 在金的表面上以作為SERS的活性基材,特殊形狀的銀奈米模板作 SERS表面等。 、’”、 已知奈米碳管(carbon nanotube,cm)具有高比表面積、奈米尺 寸管徑、高強度、高韌性 '高導電度,可作為很好的金屬擔持的^/料^ 為提升習知SERS活性基材的特性,本發明人根據奈米碳管的特性及多 年研究經驗,幾經實驗,終於開發出一種可藉由簡單經濟的方法製二 出具有高的表面增強拉曼散射強度的銀-奈米碳管-全氟磺酸聚合物= =發明製造銀.Μ碳管·全Μ酸聚合物薄膜之方法主要包括下 塗ί於⑴將奈未碳官與全氣橫酸聚合物以重量比1/10-1/200混合後 ί入ΓΛ導電韻上,經乾驗賊可導電傭表面縣一奈求碳 銀:乎二,膜,(2)於三電極系統中,利用電化學還原法使 ^未粒子_在絲碳全㈣酸聚合㈣,形絲奈米碳管 -王㈣酸聚合物薄膜;其中該三電極系統包括—銀參考電極,一輔助 ^極,-工作電極為以奈米碳管·全氟俩聚合物薄膜修飾之可導電載 镫’及銀離子電解液;銀沉積電荷為10mc/cmM5000mc/em2。 上述之全a姐聚合物與奈米碳管係可於pH7G之姐緩衝液中 處合,較佳為以超音波震t方式混合。可導電龍可於旋轉塗佈機上 二奈米碳管與全氟顧聚合物塗佈’亦可㈣其他習知的塗佈方式進 仃。上述之可導電載體通常為一電極,例如:銦踢氧化物(臟⑽加 〇涵’ ITO)導電玻璃、玻璃碳電極、白金電極切基心但亦可使 用其他適合塗佈奈米碳管與全氟微聚合物、並可以電化學還原法操 作的載體。 上述之參考電極通常為Ag/AgC1,輔助電極為白金電極,電解液為 内含有硝酸銀之硝酸鉀溶液。銀沉積電荷較佳為3〇 mC/cm2_i2〇〇〇 mC/cm2。 【實施方法】 本發明較佳實施例使用的材料包括: ⑴多層壁奈米碳管:multi-wall cnt ( MWCNT),純度約99%,購自東 兀*奈米應材。 (2) 硝酸銀:AgN03,購自 Riedel-deHagn®。 (3) 硝酸鉀:KN〇3,購自 Riedel-deHagn®。 1364534 ⑷磷酸氫二鈉·· Na2HP04,純度約99%,購自Showa。 (5)磷酸二氫鈉:NaH2P04 ’純度約98%,購自Showa。 ⑹全氟磺酸聚合物:5 wt%,溶於低級脂肪醇及水的混合物中,購自 Nafion。Nafion為杜邦公司之產品。 ⑺羅丹明 6G : Rhodamine 6G,簡稱 R6G,C28H3丨N203C1,購自 Fluka。 本發明產物特性分析所使用的儀器包括·· (1) 電化學分析儀(Autolab Potentiostat/Galvanostat) 鲁 用於將銀奈米粒子沉積於電極上,廠牌Eco Chemie,型號 PGSTAT30。 (2) 三電極系統 a.工作電極(working electrode, WE) : ITO 導電玻璃》 b·參考電極(reference, RE): Ag/AgCl( 3M,於 KC1 ),廠牌 Metrohm 〇 c. 辅助電極(counter electrode,CE):白金電極,廠牌 Metrohm。 d. 電化學測試槽:可裝盛電解液,可裝盛容量為i〇_9〇rnL,廠牌 • Metrohm 〇 (3) % 發射式抑描式電子顯微鏡(Field emission-scanning electron Microscope,FE-SEM) 用於觀察實驗樣品之表面形貌,廠牌JEOL ’型號JSM-6700F » (4) X 光能量散譜儀(X-ray energy dispersive spectrometer,EDS) 用於對材料做元素的定性與定量分析,廠牌OXFORD,型號INCA ENERGY400。 (5) 顯微拉曼光譜儀(Raman Spectroscopy) 可量測物質分子受雷射激發後所產生之振動能量,用於分析材料 1364534 - » · 鍵、··〇’、、-〇 aa、-〇構之研究。在本發明實施例中是用來偵測R6G分子對於 SERS活性基材的拉曼訊號,礙牌遍n γν〇η,型號Triax 55〇。 為避免ITO導電玻璃表面污染物的影響,於使用前需先經下列清 洗步驟: ⑴用海綿沾清潔劑,輕輕搓洗⑽導電玻璃的表面,之後浸泡於適當 比例之水與清潔劑中,以超音波震盪清洗15分鐘。 (2)以純水沖洗ITQ導電玻璃,除去清雜的殘留。 _ 將IT0導電玻璃置於異丙醇中,以超音波震盪清洗15分鐘。 ⑷將ιτο導f玻璃置於賴巾,以超音波震盪清洗15分鐘。 (5) 將ITO導電玻璃置於去離子水中,以超音波震盪清洗15分鐘。 (6) 清洗完畢的ιΤΟ導電玻璃,以氮氣槍吹淨表面的水份,未使用時放 置乾燥箱存放。 本發明製作Ag-cnt-Nafion薄膜,並以Ag-cnt-Nafion薄膜修飾ITO 導電玻璃的詳細操作步驟說明如下列實施例,並舉數比較例作比較。 實施例1 ⑴精秤 NaPH04 ( 8.6596g)與 NaH2P04 (4.6792g) ’ 置於 il 容量瓶, 再以去離子純水稀釋至標線’配製成磷酸緩衝液(ph〇sphatebuffer solution,PBR,0.1M,ρΗ7.0,1L) » (2) 秤取全氤確酸聚合物(5 wt%,lg),分散溶解於pbr ( 〇 iM,9g), 配製成全氟磺酸聚合物溶液(0.5 wt%)。 (3) 於樣品瓶中,依序加入全氟續酸聚合物溶液(〇 5 wt%,lmL,含全 氟罐酸聚合物0.992g)及奈米碳管(10mg),置於超音波震盪器震 1364534 盪一小時’形成均勻分散的黑色奈米碳管-全氟磺酸聚合物 (cnt-Nafion)溶液,其中全氟磺酸聚合物與奈米碳管的重量比為 1/99.2。 (4) 控制ITO導電玻璃表面的可反應面積’將此ITO導電玻璃放置旋轉 塗佈機上’使用可調式微量吸管吸取cnt-Nafion溶液(3μ1),滴在 ΙΤΟ導電玻璃表面上。 (5) 以燒杯蓋於ΙΤΟ導電玻璃試片上,以隔絕空氣中的塵埃,於室溫下 自然乾燥’即完成經cnt-Nafion薄膜修飾之ΙΤΟ導電玻璃。 _ (6)於三電極系統中,利用電化學還原法使銀奈米粒子沉積在 cnt-Nafion薄膜上’參考電極選用Ag/AgC1 (3M,於KC1中),輔 助電極為白金電極’工作電極為以cnt_Nafion薄膜修飾之ITO導電 • 玻璃’電解液為内含有硝酸銀(10mM)之硝酸鉀溶液(0·1Μ),還 原電位為-0.3V ’銀沉積的電荷為1〇〇 mC/cm2,即完成經 Ag-cnt-Naficm薄臈修飾之ιΤ〇導電玻璃。 實施例2-6 重複實施例1的操作步驟卜6,但步驟6之單位面積銀粒子沉積電 φ 荷量分別改為 31.5 mC/cm2、63 mC/cm2、407.5 mC/cm2 ' 1640 mC/cm2 及 11000 mC/cm2。 比較例1 重複實施例1的操作步驟卜5,未沉積銀,因此形成以cnt_Nafi〇n 薄膜修飾ιτο導電坡璃。 比較例2 重複實施例1 _作步驟6,但玉作電極為單純ιτ◦導電玻璃,因 1364534 « ♦ 此形成銀薄膜修飾ITO導電玻璃。 比較例3 重複實施例1的操作步驟丨_6,但步驟3的奈米碳管改為碳黑,因 此形成以銀·碳黑-全氟磺酸聚合物薄膜修飾ITO導電玻璃 : 特性分析 * φ 1.場發射式掃描式電子顯微鏡分析(FE-SEM) 第1及2圖分別為比較例1的cnt-Nafion薄膜與實施例1的1364534 tt IX. Description of the invention: [Technical field of the invention] The silver-nanocarbon tube-perfluorosulfonic acid polymer film of the invention or the electrode modified by the film is a surface-enhanced Raman scattering active substrate, Used to detect chemical or biological molecules, including detection of Rhodamine 6G (R6G), p-aminothiopheno (p-aminothiopheno), benzoic acid, deoxyribonuclease-based adenine ( Dna bases adenine) and the like which have the effect of surface-enhanced Raman scattering. _[Prior Art] 1970' Fleischmann et al. found that pyridine (C5H5N) produces a very strong Raman signal on the surface of a rough silver electrode, which is produced by the adsorption of molecules on some rough metal surfaces. The phenomenon of the Mann signal is called Surface-Enhanced Raman Scattering (SERS). SERS occurs on rough metal surfaces 'especially on the surface of silver'. Other metals such as gold, steel, lithium, rheology, money, etc., also produce SERS effects. Therefore, in recent years, there have been many discussions on the preparation of silver metal on different kinds of substrates as a SERS active substrate. For example, silver nanoparticles are disposed on φ Si〇2/Si as a SERS surface, and silver nanoparticles are electrochemically deposited on the surface of ΙΤΟ-οη-glass, and silver nanoparticles are grown in anodized As a SERS surface in the rice channel, a rough silver electrode was prepared by a redox method, and a layer of silver nanoparticles was prepared on the surface of gold to serve as an active substrate for SERS, and a special shape of silver nanoplate was used as a SERS surface. , '', known carbon nanotube (cm) has a high specific surface area, nanometer diameter, high strength, high toughness 'high conductivity, can be used as a good metal ^ / material ^ In order to enhance the characteristics of the conventional SERS active substrate, the inventors have finally developed a method which can be produced by a simple and economical method with high surface-enhanced Raman based on the characteristics of the carbon nanotubes and years of research experience. Scattering intensity of silver-nanocarbon tube-perfluorosulfonic acid polymer ==Inventive method for manufacturing silver. ΜCarbon tube·percapric acid polymer film mainly includes undercoating (1) polymerizing nafic carbon and total gas cross-acid The material is mixed with the weight ratio of 1/10-1/200 and then transferred into the conductive rhyme. After the dry thief can be electrically conductive, the surface of the county is looking for carbon silver: two, membrane, (2) in the three-electrode system, Electrochemical reduction method enables the polymerization of a non-particle _ in a silk carbon (tetra) acid (four), a shape of a nano carbon tube - a (four) acid polymer film; wherein the three-electrode system includes a silver reference electrode, an auxiliary electrode, - work The electrode is a conductive 镫' and a silver ion modified by a carbon nanotube/perfluoropolymer film. Sub-electrolyte; silver deposition charge is 10mc/cmM5000mc/em2. The above-mentioned all-a polymer and nano-carbon tube system can be combined in pH 7G sister buffer, preferably mixed by ultrasonic wave t. The conductive dragon can be coated on a rotary coater with a carbon nanotube and a perfluoro-polymer coating. It can also be applied to other conventional coating methods. The above-mentioned conductive carrier is usually an electrode, for example: indium kick Oxide (dirty (10) plus bismuth 'ITO) conductive glass, glassy carbon electrode, platinum electrode base, but other suitable for coating carbon nanotubes and perfluoromicropolymers, and can be operated by electrochemical reduction The above reference electrode is usually Ag/AgC1, the auxiliary electrode is a platinum electrode, and the electrolyte is a potassium nitrate solution containing silver nitrate. The silver deposition charge is preferably 3〇mC/cm2_i2〇〇〇mC/cm2. The materials used in the preferred embodiment of the present invention include: (1) Multi-walled carbon nanotubes: multi-wall cnt (MWCNT), purity of about 99%, purchased from Donghao*Nylon. (2) Silver nitrate: AgN03, Available from Riedel-deHagn® (3) Potassium nitrate: KN〇3, available from R iedel-deHagn® 1364534 (4) Disodium hydrogen phosphate · Na2HP04, purity about 99%, purchased from Showa. (5) Sodium dihydrogen phosphate: NaH2P04 'purity of about 98%, purchased from Showa. (6) Perfluorosulfonic acid polymer : 5 wt%, soluble in a mixture of lower aliphatic alcohol and water, purchased from Nafion. Nafion is a product of DuPont. (7) Rhodamine 6G: Rhodamine 6G, abbreviated as R6G, C28H3丨N203C1, available from Fluka. The instruments used for the analysis include: (1) Electrochemical Analyzer (Autolab Potentiostat/Galvanostat) Lu is used to deposit silver nanoparticles on the electrode, the brand Eco Chemie, model PGSTAT30. (2) Three-electrode system a. Working electrode (WE): ITO conductive glass b. Reference electrode (reference, RE): Ag/AgCl (3M, at KC1), label Metrohm 〇c. Auxiliary electrode ( Counter electrode, CE): Platinum electrode, label Metrohm. d. Electrochemical test tank: can hold the electrolyte, can hold the capacity of i〇_9〇rnL, the brand • Metrohm 〇(3) % Field emission-scanning electron microscope (FE) -SEM) Used to observe the surface topography of the experimental sample, the brand JEOL 'Model JSM-6700F » (4) X-ray energy dispersive spectrometer (EDS) is used to characterize the material Quantitative analysis, brand OXFORD, model INCA ENERGY400. (5) Raman Spectroscopy The vibration energy generated by the excitation of a substance molecule by laser can be used to analyze the material 1364534 - » · Key, ·····, -〇aa, -〇 Research. In the embodiment of the invention, the Raman signal of the R6G molecule for the SERS active substrate is detected, and the circumstance is n γν〇η, model Triax 55〇. In order to avoid the influence of surface contamination of ITO conductive glass, the following cleaning steps should be carried out before use: (1) Using a sponge dampening agent, gently wash (10) the surface of the conductive glass, and then soak in a proper proportion of water and detergent to Ultrasonic vibration cleaning for 15 minutes. (2) Rinse the ITQ conductive glass with pure water to remove the residue. _ Place the IT0 conductive glass in isopropyl alcohol and rinse with ultrasonic for 15 minutes. (4) Place the ιτο guide glass on the towel and wash it with ultrasonic wave for 15 minutes. (5) The ITO conductive glass was placed in deionized water and ultrasonically shaken for 15 minutes. (6) After cleaning the ITO conductive glass, use a nitrogen gun to blow off the surface moisture. When not in use, place it in a dry box. The detailed operation steps of the present invention for producing an Ag-cnt-Nafion film and modifying the ITO conductive glass with an Ag-cnt-Nafion film are as follows in the following examples, and comparative examples are compared. Example 1 (1) Precision meter NaPH04 (8.6596g) and NaH2P04 (4.6792g) ' placed in il volumetric flask, diluted with deionized pure water to the mark line' formulated as phosphate buffer (Ph, sphatebuffer solution, PBR, 0.1 M, ρΗ7.0,1L) » (2) Weighing a full acid polymer (5 wt%, lg), dispersing and dissolving in pbr (〇iM, 9g), making a perfluorosulfonic acid polymer solution (0.5 wt %). (3) In the sample vial, add perfluoro acid-renewed polymer solution (〇5 wt%, lmL, containing 0.992 g of perfluoro-tantoic acid polymer) and carbon nanotubes (10 mg) in a sample bottle, placed in a supersonic shock The device shakes 1364534 for one hour to form a uniformly dispersed black carbon nanotube-perfluorosulfonic acid polymer (cnt-Nafion) solution in which the weight ratio of perfluorosulfonic acid polymer to carbon nanotube is 1/99.2. (4) Controlling the reactive area of the surface of the ITO conductive glass 'Place the ITO conductive glass on a rotary coater'. Use a tunable micropipette to aspirate the cnt-Nafion solution (3μ1) onto the surface of the conductive glass. (5) Cover the conductive glass test piece with a beaker to isolate the dust in the air and dry it naturally at room temperature. The conductive glass modified by the cnt-Nafion film is completed. _ (6) In the three-electrode system, silver nanoparticles are deposited on the cnt-Nafion film by electrochemical reduction method. 'The reference electrode is Ag/AgC1 (3M in KC1), and the auxiliary electrode is platinum electrode' working electrode. The ITO conductive glass-modified electrolyte modified with cnt_Nafion film is a potassium nitrate solution (0·1Μ) containing silver nitrate (10 mM), and the reduction potential is -0.3 V. The charge of silver deposition is 1 〇〇 mC/cm 2 , that is, The ITO conductive glass modified with Ag-cnt-Naficm was completed. Example 2-6 The operation procedure of Example 1 was repeated, but the charge φ charge per unit area of silver particles in step 6 was changed to 31.5 mC/cm2, 63 mC/cm2, 407.5 mC/cm2 '1640 mC/cm2, respectively. And 11000 mC/cm2. Comparative Example 1 The procedure of Example 1 was repeated, and no silver was deposited, so that a conductive glass was modified with a cnt_Nafi〇n film. Comparative Example 2 Example 1 was repeated as step 6, but the jade electrode was simply ιτ◦ conductive glass, as 1364534 « ♦ This silver film was used to modify the ITO conductive glass. Comparative Example 3 The procedure of Example 1 was repeated 丨_6, but the carbon nanotube of Step 3 was changed to carbon black, thereby forming an ITO conductive glass modified with a silver·carbon black-perfluorosulfonic acid polymer film: Characteristic Analysis* Φ 1. Field emission scanning electron microscope analysis (FE-SEM) Figs. 1 and 2 are the cnt-Nafion film of Comparative Example 1 and Example 1 respectively.

Ag-cnt-Nafion薄膜的FE-SEM圖,加速電壓為3KV,放大倍數為50,000 倍,銀沉積的電荷為1〇〇 mC/cm2。由第i圖中,可以看出一根一根的 棒狀物,此為多層壁奈米碳管,奈米碳管被均勻的分散於全氟磺酸聚 合物尚分子鏈之中,直徑為約2〇-4〇nm。圖中亦可看見全氟磺酸聚合物 高分子呈現不規則的形狀,而奈米碳管上並未發現任何的金屬顆粒。 第2圖中,可以觀察到在一根一根棒狀物為奈米碳管上,出現了白色 的奈米粒子,此為沉積在奈米碳管上的銀奈米粒子,直徑大約為 ^ 60_80nm,有些銀奈米粒子會聚集而形成較大的銀粒子,圖中呈現不規 則的形狀的尚分子為全氟磺酸聚合物。在電化學沉積銀奈米粒子的過 程中’因為ιτο導電玻璃的表面是一層導電層,而在cnt_Nafi〇n薄膜 層中,一根一根像棒狀物的奈米碳管穿插在全氟磺酸聚合物高分子鏈 中’而且互相接觸彼此,這些彼此間交互穿插並且延伸連結到接觸電 極表面的奈米碳;f ’在全氣雜聚合物高分子鏈巾扮料奈米導線的 角色,可以有效的傳遞電子,並且增加了電沉積銀金屬的效率,而銀 奈米粒子則沉積在這些與電極接觸且形成奈米導線的奈米碳管上。 1364534 * : * 2.X光能量散譜儀分析(EDS) 第3及4圖分別為比較例! #咖财咖薄膜及實施例ι的 Ag-cnt-Nafi〇n薄膜的EDS圖,銀沉積的電荷為1〇〇mC/cm2。第3圖的 cnt-Nafumj|膜可以看到在0.27KeV處有-明顯的波峰,此為碳⑹ 7C素的能1波峰’其來源為奈米碳管的碳元素及全氟姐聚合物結構 中的竣το素。在〇.68KeV處也有一個波峰,此為氟(F)元素的能量波 峰’其來源為过確酸聚合物結構中的說元素。第4圖的Ag_cnt-Nafi〇n . 薄膜除了可以看到原有的碳元素及氟元素的波峰之外,在2.99KeV、 龜3.15KeV、3.30KeV處亦有明顯的波峰,此為銀(Ag)元素的波峰。因 •此,藉由EDS的組成元素定性分析結果,證明利用電化學法可以沉積 銀金屬在cnt-Nafion薄膜上。 3 ·拉曼光谱分析(Raman Spectroscopy ) 以實施例1的Ag-cnt-Nafion薄膜修飾之ITO導電玻璃作SERS的 活性基材,浸泡於R6G溶液(10·4Μ)中,並將拉曼的雷射光聚焦在 Ag-cnt-Nafion薄膜的表面上,以獲得SERS拉曼光譜。另外,取比較 例1的cnt-Nafion薄膜修飾於ITO導電玻璃、比較例2的銀_IT〇導電 • 玻璃、比較例3的銀-碳黑•全氟磺酸聚合物薄膜修飾於ΙΤ〇導電玻璃作 為不同的SERS活性基材,並做比較,銀沉積的電荷量均為1〇〇 mC/cm2。第5圖申’光譜a為cnt-Nafion薄膜修飾於ΙΤ0導電玻璃表 面的拉曼光譜,光譜b為銀-ΙΤ0導電玻璃表面的拉曼光譜,光错c為 銀-碳黑·全氟磺酸聚合物薄膜修飾於ΙΤ0導電玻璃表面的拉曼光譜,光 譜d為Ag-cnt-Nafion薄膜修飾於ΙΤ0導電玻璃表面的拉曼光譜,銀沉 積的電荷均為100 mC/cm2。光譜a中,在1570 cir^的位置上有波锋的 出現,此為奈米碳管的G band。光諸b、c及d中,亦可觀察到在1186 cm·1、1310 cm·1、1362 cm·1、1509 cm-1、1650 cm_1 的位置上,有明顯 的波峰出現,此為典型的R6G被吸附在銀金屬上的SERS光譜,其中 12 1364534 在1362 cm·1、1509 cm·1、1650cm·1位置的波峰,是歸於芳香族C-C的 伸縮形式(stretching modes)。另外,由光譜d可看出Ag-cnt-Nafion 薄膜修飾於ITO導電玻璃表面吸附R6G的拉曼光譜,其SERS強度為 最強;在1509 cm·1的位置上的SERS強度,大約是銀-碳黑-全氟磺酸 聚合物薄膜修飾於ITO導電玻璃的1.5倍,銀-ITO導電玻璃的3倍。 因此,在SERS的應用中,Ag-cnt-Nafion薄膜的三度空間奈米結構, 對於銀奈米粒子的沉積是個合適的基材。 第6圖為實施例2-6的Ag-cnt-Nafion薄膜修飾ITO導電玻璃,在 R6G (10—4M)溶液中吸附R6G的SERS拉曼光譜圖,探討不同銀粒子 沉積電荷量對SERS效應的影響。在第6圖中,光譜a為實施例2 (銀 粒子沉積電荷量為31.5 mC/cm2),b光譜為實施例3 (銀粒子沉積電荷 量為63 mC/cm2,光譜c為實施例4 (銀粒子沉積電荷量為407.5 mC/cm2)’光譜d為實施例5 (銀粒子沉積電荷量為1640 mC/cm2),光 譜e為實施例6 (銀粒子沉積電荷量為11000 mC/cm2)。光譜a雖然顯 示出銀的訊號,但因銀粒子沉積電荷量不多,因此在cnt_Nafl〇n薄膜上 的銀粒子也不多’所以產生出來的強度比較弱。由光譜b-e,可觀察到 隨著銀粒子沉積電荷量增加,SERS拉曼光譜的強度也開始增強並且更 為明顯。SERS拉曼光譜的強度亦會隨著銀沉積的時間增加而增強,是 因為雷射光打在Ag-cnt-Nafion薄膜修飾於ITO導電玻璃的表面,其面 積是固定的’而隨著銀沉積的時間增加’單位面積的銀數量也增加了; 因此,所產生出來的SERS拉曼光譜的強度也會隨之增強。 第7圖為以Ag-cnt-Nafion薄膜修飾於ITO導電玻璃為基材,不同 單位面積之銀粒子沉積電荷量,在1509 cm·1位置上之拉曼波峰強度 圖。由此圖可觀察到,當銀粒子沉積電荷量為〇mC/cm2的時候,並沒 有任何的拉曼訊號。當銀沉積的時間開始增加,拉曼的訊號強度也開 始增強’當銀粒子沉積電荷量由〇 mC/cm2增加到2〇〇〇 mc/cm2,SERS 拉曼光譜的強度快速上升。而銀粒子沉積電荷量由2000 mc/cm2增加 到llOOOmC/cm2, SERS拉曼光譜的強度上升則趨於平緩。因此,我們 13 1364534 選擇銀沉積的電荷量為75〇〇 mC/cm2的Ag-cnt-Nafion薄膜修飾於ITO 導電玻璃作為SERS的活性基材。將此SERS的活性基材,浸泡於R6G 溶液(10·8Μ)中,接著再加入較高濃度的R6G的溶液,使原本的R6G 溶液濃度由10·8Μ逐漸提高到ι〇·4Μβ 第8圖為在R6G溶液中,Ag-Cnt-Nafion薄膜修飾於ΙΤΟ導電玻璃 表面,銀沉積的電荷為7500 mc/Cm2,隨著R6G濃度增加所獲得的原 位(m-situ)拉曼光譜。其中,光譜a_g的R6G濃度分別為1〇·8μ、1〇-7 Μ、1〇6 Μ、5Μ0_6 Μ、1〇·5 Μ、5χ1(Γ5 Μ 及 ΙΟ·4 Μ。由圖中可以觀察 到,隨著R6G濃度逐漸增加,SERS拉曼光譜強度則愈來愈強,在U86、 1310、1362 ' 1509、165〇 cm·1等位置上,可以看到明顯的波峰出現。 第9圖為以Ag-cnt-Nafi〇n薄膜修飾於ιτο導電玻璃為基材, 銀沉積電荷為7500 mC/cm2,在1509 cm·1位置上,不同R6G溶液濃 度的拉曼波峰強度校正曲線圖。由圖可觀察到,在R6G濃度為1〇·8μ 到10 Μ之間,疋呈現線性的,其相關因數包以沉)為 0.994,亦即上述樣品濃度在液相中的原位偵測是可行的。當r6g濃 度繼續提高超過1〇-5Μ,則出現非線性的行為,可歸因於在 Ag-cnt-Naflon薄膜修飾IT0導電玻璃表面上吸_廳已經趨於飽 和。由此橫跨三個數量級(order)的線性偵測範圍的結果證明,本發明 製備的SERS基材為有效且靈敏。 綜上’本發明製備Ag-cnt-Nafi0n薄膜及以Α_Ν—η薄膜修飾 ιτο導電玻璃的方法不僅簡單且有效。經修飾的ιτ〇導電玻璃可以作 為SERS的活性基材,而利用R6G分子被吸附於Ag_cnt_Nafi〇n薄膜表 面上可以辦靈㈣SERS «光譜。這種方法可⑽制·其他的 貴重金屬來製備卿的奈緒構’以作為靈敏的光化學感測器之應用。 1364534 【圖式簡單說明】 第1及2圖分別為比較例1及實施例】所製得薄膜的fe_sem圖。 第3及4圖分別為比較例丨及實施例丨所製得薄膜的eds圖。 第5圖為實施例!及比較例U3所製得薄膜的拉曼光譜圖。 第6圖為實施例2-6的拉曼光譜圖。 第7圖為不同單位面積之銀粒子沉積電荷量之拉曼波峰強度圖。 第8圖為R6G濃度增加時所獲得的原位拉曼光譜。 第9圖為第8圖的拉曼波峰強度校正曲線圖。The FE-SEM image of the Ag-cnt-Nafion film has an accelerating voltage of 3 kV, a magnification of 50,000 times, and a silver deposition charge of 1 〇〇 mC/cm 2 . From the figure i, we can see the rods one by one. This is a multi-layered wall carbon nanotube. The carbon nanotubes are evenly dispersed in the molecular chain of the perfluorosulfonic acid polymer. The diameter is About 2〇-4〇nm. It can also be seen that the perfluorosulfonic acid polymer has an irregular shape, and no metal particles are found on the carbon nanotubes. In Fig. 2, it can be observed that white nanoparticles appear on the carbon nanotubes of one bar. This is a silver nanoparticle deposited on a carbon nanotube with a diameter of about ^ At 60_80 nm, some silver nanoparticles aggregate to form larger silver particles, and the irregular shape of the molecule is a perfluorosulfonic acid polymer. In the process of electrochemical deposition of silver nanoparticles, because the surface of the conductive glass is a conductive layer, in the cnt_Nafi〇n film layer, a carbon nanotube like a rod is interspersed with perfluorosulfonate. The acid polymer polymer chain 'and in contact with each other, these interpenetrate and extend to the surface of the contact electrode nano carbon; f 'in the role of the whole gas polymer polymer chain towel nanowires, Electrons can be efficiently transported and the efficiency of electrodepositing silver metal is increased, while silver nanoparticles are deposited on these carbon nanotubes that are in contact with the electrodes and form nanowires. 1364534 * : * 2. X-ray energy dispersive spectrometer analysis (EDS) Figures 3 and 4 are comparative examples respectively! The EDS diagram of the Ag-cnt-Nafi〇n film of the #咖财咖膜 and Example ι, the charge of silver deposition was 1〇〇mC/cm2. The cnt-Nafumj| film of Fig. 3 can be seen to have a distinct peak at 0.27KeV, which is the energy peak of carbon (6) 7C. The source is the carbon element of the carbon nanotube and the perfluoropolymer structure.竣το素. There is also a peak at 〇68KeV, which is the energy peak of the fluorine (F) element, which is derived from the element in the structure of the peracid polymer. In Fig. 4, Ag_cnt-Nafi〇n. In addition to the original carbon and fluorine peaks, the film also has a distinct peak at 2.99KeV, turtle 3.15KeV, 3.30KeV, which is silver (Ag). The crest of the element. Because of this, the qualitative analysis results of the constituent elements of EDS prove that the silver metal can be deposited on the cnt-Nafion film by electrochemical method. 3 · Raman Spectroscopy The Ag-cnt-Nafion film modified ITO conductive glass of Example 1 was used as the active substrate of SERS, immersed in R6G solution (10·4Μ), and Raman Ray The illuminating light was focused on the surface of the Ag-cnt-Nafion film to obtain a SERS Raman spectrum. Further, the cnt-Nafion film of Comparative Example 1 was modified on ITO conductive glass, the silver_IT〇 conductive glass of Comparative Example 2, and the silver-carbon black • perfluorosulfonic acid polymer film of Comparative Example 3 was modified to be conductive. Glass was used as a different SERS active substrate, and the charge of silver deposition was 1 〇〇 mC/cm 2 . Figure 5 shows that the spectrum a is the Raman spectrum of the cnt-Nafion film modified on the surface of the ΙΤ0 conductive glass, the spectrum b is the Raman spectrum of the surface of the silver-ΙΤ0 conductive glass, and the optical error c is silver-carbon black·perfluorosulfonic acid. The Raman spectrum of the polymer film modified on the surface of the ΙΤ0 conductive glass, the spectrum d is the Raman spectrum of the Ag-cnt-Nafion film modified on the surface of the ΙΤ0 conductive glass, and the charge of the silver deposition is 100 mC/cm2. In the spectrum a, there is a wave front at the position of 1570 cir^, which is the G band of the carbon nanotube. In the light b, c and d, it is also observed that at the positions of 1186 cm·1, 1310 cm·1, 1362 cm·1, 1509 cm-1, and 1650 cm_1, there are obvious peaks, which is typical. The SERS spectrum of R6G adsorbed on silver metal, in which the peak of 12 1364534 at 1362 cm·1, 1509 cm·1, and 1650 cm·1 is attributed to the stretching mode of aromatic CC. In addition, it can be seen from the spectrum d that the Raman spectrum of the Ag-cnt-Nafion film modified on the surface of the ITO conductive glass adsorbs R6G, and the SERS intensity is the strongest; the SERS intensity at the position of 1509 cm·1 is about silver-carbon. The black-perfluorosulfonic acid polymer film was modified 1.5 times in ITO conductive glass and 3 times in silver-ITO conductive glass. Therefore, in the application of SERS, the three-dimensional nanostructure of Ag-cnt-Nafion film is a suitable substrate for the deposition of silver nanoparticles. Fig. 6 is a SERS Raman spectrum of the Ag-cnt-Nafion film modified ITO conductive glass of Example 2-6, adsorbing R6G in R6G (10-4M) solution, and discussing the effect of different silver particle deposition charges on SERS. influences. In Fig. 6, spectrum a is Example 2 (silver particle deposition charge is 31.5 mC/cm2), b spectrum is Example 3 (silver particle deposition charge is 63 mC/cm2, and spectrum c is Example 4 ( The silver particle deposition charge amount was 407.5 mC/cm 2 ) 'spectrum d was Example 5 (silver particle deposition charge amount was 1640 mC/cm 2 ), and spectrum e was Example 6 (silver particle deposition charge amount was 11000 mC/cm 2 ). Although the spectrum a shows the signal of silver, the amount of charge deposited on the silver particles is not large, so there are not many silver particles on the cnt_Nafl〇n film. Therefore, the intensity generated is relatively weak. From the spectrum be, it can be observed that The amount of silver particles deposited increases, and the intensity of SERS Raman spectrum also begins to increase and is more obvious. The intensity of SERS Raman spectrum also increases with the time of silver deposition, because laser light hits Ag-cnt-Nafion. The film is modified on the surface of the ITO conductive glass, and its area is fixed. 'With the increase of silver deposition time, the amount of silver per unit area is also increased; therefore, the intensity of the generated SERS Raman spectrum is also enhanced. Figure 7 shows the Ag-cnt-Nafion film The Raman peak intensity map at 1509 cm·1 is deposited on ITO conductive glass as the substrate, and the charge amount of silver particles in different unit areas. It can be observed that when the deposited amount of silver particles is 〇mC/ At the time of cm2, there is no Raman signal. When the time of silver deposition begins to increase, the signal intensity of Raman begins to increase. 'When the deposition amount of silver particles increases from 〇mC/cm2 to 2〇〇〇mc/cm2, The intensity of SERS Raman spectroscopy increases rapidly, while the deposition charge of silver particles increases from 2000 mc/cm2 to llOOOmC/cm2, and the intensity of SERS Raman spectroscopy tends to be flat. Therefore, we choose the charge amount of silver deposition for 13 1364534. The 75-mC/cm2 Ag-cnt-Nafion film was modified on ITO conductive glass as the active substrate of SERS. The SERS active substrate was immersed in R6G solution (10·8Μ), followed by higher concentration. The solution of R6G gradually increases the concentration of the original R6G solution from 10·8Μ to 〇〇·4Μβ. Figure 8 shows that in the R6G solution, the Ag-Cnt-Nafion film is modified on the surface of the conductive glass, and the charge of silver deposition is 7500. Mc/Cm2, increasing with R6G concentration Add the obtained in-situ (m-situ) Raman spectrum, wherein the R6G concentration of the spectrum a_g is 1〇·8μ, 1〇-7 Μ, 1〇6 Μ, 5Μ0_6 Μ, 1〇·5 Μ, 5χ1 (Γ5 Μ and ΙΟ·4 Μ. It can be observed from the figure that as the R6G concentration increases gradually, the SERS Raman spectral intensity becomes stronger and stronger, at positions such as U86, 1310, 1362 '1509, 165〇cm·1, etc. On, you can see the obvious peaks appear. Figure 9 is a Raman peak intensity correction curve of different R6G solution concentrations with Ag-cnt-Nafi〇n film modified on ιτο conductive glass as substrate, with a silver deposition charge of 7500 mC/cm2 and 1509 cm·1. Figure. It can be observed from the figure that in the case of R6G concentration between 1〇·8μ and 10Μ, 疋 is linear, and the correlation factor is 0.994, that is, the in-situ detection of the above sample concentration in the liquid phase is feasible. When the r6g concentration continues to increase above 1 〇-5 Μ, non-linear behavior occurs, which is attributable to the fact that the sorption chamber has become saturated on the surface of the Ag-cnt-Naflon film-modified ITO conductive glass. The results of the linear detection range across three orders of magnitude thus demonstrate that the SERS substrate prepared by the present invention is effective and sensitive. In summary, the method for preparing an Ag-cnt-Nafi0n film and modifying the ιτο conductive glass with a Α_Ν-η film is not only simple and effective. The modified ιτ〇 conductive glass can be used as the active substrate of SERS, and the R6G molecule can be adsorbed on the surface of the Ag_cnt_Nafi〇n film to perform the (S)S spectrum. This method can be used as a sensitive photochemical sensor by (10) other precious metals to prepare the crystal structure of the crystal. 1364534 [Brief Description of the Drawings] Figs. 1 and 2 are fe_sem diagrams of the films obtained in Comparative Example 1 and Examples, respectively. Figures 3 and 4 are eds diagrams of the films produced in Comparative Examples and Examples, respectively. Figure 5 is an example! And the Raman spectrum of the film prepared in Comparative Example U3. Figure 6 is a Raman spectrum of Example 2-6. Figure 7 is a Raman peak intensity map of the amount of deposited silver ions in different unit areas. Figure 8 is an in situ Raman spectrum obtained when the concentration of R6G is increased. Fig. 9 is a graph showing the Raman peak intensity correction curve of Fig. 8.

1515

Claims (1)

十β請專利範圍: —種銀-奈米碳管-全氟磺酸聚合物薄膜,包括一奈米碳管-全氟磺酸 聚合物薄膜’及沉積於該奈米碳管-全氟磺酸聚合物薄膜上的銀奈 米粒子;其中該奈米碳管-全氟磺酸聚合物薄膜係奈米碳管與全氟 磺酸聚合物以重量比1/ΗΜ/200混合形成之薄膜,銀沉積電荷為 10 mC/cm2-15000 mC/cm2。 如申請專利範圍第1項所述之銀-奈米碳管-全氟磺酸聚合物薄膜, 其中奈米碳管與全氟磺酸聚合物的重量比為1/50-1/150。 如申請專利範圍第1項所述之銀-奈米碳管-全氟磺酸聚合物薄膜, 其中銀沉積電荷為30 mC/cm2-12000 mC/cm2。 一種以銀·奈米碳管-全氟磺酸聚合物薄膜修飾之電極,包括一電極 載體及形成於該電極載體表面之一銀-奈米碳管-全氟磺酸聚合物 薄膜;其中銀-奈米碳管-全氟磺酸聚合物薄膜包括一奈米碳管-全氟 磺酸聚合物薄膜及沉積於該奈米碳管-全氟磺酸聚合物薄膜上的銀 奈米粒子;其中該奈米碳管-全氟磺酸聚合物薄膜係奈米碳管與全 氟磺酸聚合物以重量比1/10-1/200混合形成之薄膜,銀沉積電荷為 10 mC/cm2-15 000 mC/cm2 ° 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,其中該電極載體為銦錫氧化物(Indium Tin Oxide, IT0)導電玻璃、玻璃碳電極、白金電極或矽基板。 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,其中奈米碳管與全氟磺酸聚合物的重量比為 1/50-1/150。 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,其中銀沉積電荷為30 mC/cm2-12000 mC/cm2。 如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 1364534 修飾之電極,係作為SERS的活性基材。 9·如申請專利範圍第4項所述之以銀-奈米碳管-全氟磺酸聚合物薄膜 修飾之電極,係用於偵測化學或生物分子。 10. 如申請專利範圍第4項所述之以銀-奈米碳管-全氣續酸聚合物薄膜 修飾之電極,係用於偵測羅丹明6G(Rh〇damine6G)、苯甲酸、响 啶、對氨基疏酚(p-aminothiophenol)、去氧核醣核酸鹽基腺嘌呤 (DNA bases adenine)、紛或氰化物。 11. 一種製造銀-奈米碳管-全氟項酸聚合物薄膜之方法,包括下列步驟: (1) 將奈米碳管與全氟磺酸聚合物以重量比1/1〇_1/2〇〇混合後塗佈 於一可導電載體上,經乾燥後於該可導電載體表面形成一奈米 碳管-全氟磺酸聚合物薄膜; (2) 於二電極系統中’利用電化學還原法(amperometry)使銀奈米 粒子沉積在奈米碳管-全氟磺酸聚合物薄膜上,形成銀-奈米碳 管·全氟磺酸聚合物薄膜;其中該三電極系統包括一銀參考電 極,一輔助電極,一工作電極為以奈米碳管-全氟磺酸聚合物薄 臈修飾之可導電載體,及銀離子電解液;銀沉積電荷為1〇 mC/cm2-15000 mC/cm2 0 12. 如申請專利範圍第u項所述之方法,其中全氟磺酸聚合物與奈米 碳管係於pH7.0之填酸緩衝液中混合。 13. 如申請專利範圍第u項所述之方法,其中全氟磺酸聚合物與奈米 碳管係以超音波震盪方式混合。 14. 如申請專利範圍第u項所述之方法,其中該可導電載體係於旋轉 塗佈機上以奈米碳管與全氟磺酸聚合物塗佈。 15. 如申請專利範圍第u項所述之方法,其中該可導電載體係一電極。 .如申請專利範圍第11項所述之方法,其中該可導電載體為銦錫氧 17 16 1364534 * 化物(Indium Tin Oxide ’ ITO)導電玻璃、玻璃碳電極、白金電極 或碎基板》 17. 如申請專利範圍第11項所述之方法,其中參考電極為Ag/AgCle 18. 如申請專利範圍第11項所述之方法,其中辅助電極為白金電極, 19. 如申請專利範圍第11頊所述之方法,其中電解液為内含有硝酸銀 之硝酸鉀溶液。 20. 如申請專利範圍第11頊迷之方法,其中銀沉積電荷為30 mC/cm2-12000 mC/cm2 °Ten beta patent scope: - a silver-nano carbon tube - perfluorosulfonic acid polymer film, including a carbon nanotube - perfluorosulfonic acid polymer film 'and deposited on the carbon nanotube - perfluorosulfonate a silver nanoparticle on an acid polymer film; wherein the carbon nanotube-perfluorosulfonic acid polymer film is a film formed by mixing a carbon nanotube with a perfluorosulfonic acid polymer at a weight ratio of 1/ΗΜ/200, The silver deposition charge is 10 mC/cm 2 - 15,000 mC/cm 2 . The silver-nanocarbon tube-perfluorosulfonic acid polymer film according to claim 1, wherein the weight ratio of the carbon nanotube to the perfluorosulfonic acid polymer is from 1/50 to 1/150. The silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 1, wherein the silver deposition charge is 30 mC/cm2-12000 mC/cm2. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film, comprising an electrode carrier and a silver-nanocarbon tube-perfluorosulfonic acid polymer film formed on the surface of the electrode carrier; wherein the silver - a carbon nanotube-perfluorosulfonic acid polymer film comprising a carbon nanotube-perfluorosulfonic acid polymer film and silver nanoparticles deposited on the carbon nanotube-perfluorosulfonic acid polymer film; The carbon nanotube-perfluorosulfonic acid polymer film is a film formed by mixing a carbon nanotube with a perfluorosulfonic acid polymer at a weight ratio of 1/10 to 1/200, and the deposition charge of silver is 10 mC/cm2. 15 000 mC/cm2 ° An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, wherein the electrode carrier is Indium Tin Oxide (IT0) A conductive glass, a glassy carbon electrode, a platinum electrode or a tantalum substrate. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, wherein the weight ratio of the carbon nanotube to the perfluorosulfonic acid polymer is 1/50-1 /150. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, wherein the silver deposition charge is from 30 mC/cm to 21,000 mC/cm2. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film 1364534 as described in claim 4 of the patent application is used as an active substrate for SERS. 9. An electrode modified with a silver-nanocarbon tube-perfluorosulfonic acid polymer film as described in claim 4, for detecting chemical or biological molecules. 10. An electrode modified with a silver-nanocarbon tube-total acid polymer film as described in claim 4, for detecting Rhodamine 6G, benzoic acid, and pyridine , p-aminothiophenol, DNA bases adenine, sputum or cyanide. 11. A method of making a silver-nanocarbon tube-perfluoro acid polymer film comprising the steps of: (1) by weighting a carbon nanotube with a perfluorosulfonic acid polymer by 1/1 〇 1 / 2〇〇 mixed and coated on a conductive support, dried to form a carbon nanotube-perfluorosulfonic acid polymer film on the surface of the conductive support; (2) in the two-electrode system Amperometric deposition of silver nanoparticles on a carbon nanotube-perfluorosulfonic acid polymer film to form a silver-nanocarbon tube perfluorosulfonic acid polymer film; wherein the three-electrode system comprises a silver a reference electrode, an auxiliary electrode, a working electrode is a conductive carrier modified with a carbon nanotube-perfluorosulfonic acid polymer thinner, and a silver ion electrolyte; the silver deposition charge is 1〇mC/cm2-15000 mC/ Cm2 0 12. The method of claim 5, wherein the perfluorosulfonic acid polymer is mixed with the carbon nanotubes in a pH 7.0 buffer. 13. The method of claim 5, wherein the perfluorosulfonic acid polymer and the carbon nanotube system are mixed in an ultrasonically oscillating manner. 14. The method of claim 5, wherein the electrically conductive carrier is coated on a spin coater with a carbon nanotube and a perfluorosulfonic acid polymer. 15. The method of claim 5, wherein the electrically conductive carrier is an electrode. The method of claim 11, wherein the electrically conductive carrier is indium tin oxide 17 16 1364534 * (Indium Tin Oxide 'ITO) conductive glass, glassy carbon electrode, platinum electrode or broken substrate. The method of claim 11, wherein the reference electrode is Ag/AgCle. 18. The method of claim 11, wherein the auxiliary electrode is a platinum electrode, 19. as described in claim 11 The method wherein the electrolyte is a potassium nitrate solution containing silver nitrate therein. 20. The method of claim 11, wherein the silver deposition charge is 30 mC/cm2-12000 mC/cm2 °
TW97128709A 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby TW201005278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Publications (2)

Publication Number Publication Date
TW201005278A TW201005278A (en) 2010-02-01
TWI364534B true TWI364534B (en) 2012-05-21

Family

ID=44826207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128709A TW201005278A (en) 2008-07-29 2008-07-29 Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby

Country Status (1)

Country Link
TW (1) TW201005278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313138A (en) * 2016-05-02 2019-02-05 通用电气(Ge)贝克休斯有限责任公司 Use the substrate based on nano material of the chemical sensor of surface enhanced Raman spectroscopy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717091B (en) * 2016-01-29 2019-01-18 南京理工大学 A kind of SERS substrate of persistent high efficiency and preparation method thereof
TWI644953B (en) * 2017-09-21 2018-12-21 微相科技股份有限公司 DUV mask frame protection film preparation method
CN114441504A (en) * 2022-01-25 2022-05-06 北京航空航天大学 Flexible surface-enhanced Raman substrate and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313138A (en) * 2016-05-02 2019-02-05 通用电气(Ge)贝克休斯有限责任公司 Use the substrate based on nano material of the chemical sensor of surface enhanced Raman spectroscopy

Also Published As

Publication number Publication date
TW201005278A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
Shahrokhian et al. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Promphet et al. An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium
JP2018523836A (en) Electrode for detecting explosives and other volatile substances and method of use thereof
Gong et al. Sol− gel-derived ceramic− carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications
Dudin et al. Electrochemistry at nanoscale electrodes: Individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires
Pujadó Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction
Dumitrescu et al. Functionalizing single-walled carbon nanotube networks: effect on electrical and electrochemical properties
Ghalkhani et al. Voltammetric studies of sumatriptan on the surface of pyrolytic graphite electrode modified with multi-walled carbon nanotubes decorated with silver nanoparticles
Tang et al. Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly (new fuchsin) composite film
Wang et al. Carbon nanotube-loaded nafion film electrochemical sensor for metal ions: europium
Zhang et al. Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes
Azri et al. Modification strategy of screen-printed carbon electrode with functionalized multi-walled carbon nanotube and chitosan matrix for biosensor development
Li et al. New antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor
Hesse et al. Investigation by surface-enhanced Raman spectroscopy of the effect of oxygen and hydrogen plasmas on adsorbate-covered gold and silver island films
Chen et al. Electrochemical oxidation and amperometric determination of isoniazid at functionalized multiwalled carbon nanotube modified electrode
TWI364534B (en)
Dumitrescu et al. Single-walled carbon nanotube network ultramicroelectrodes
Wang et al. DNA biosensor based on a glassy carbon electrode modified with electropolymerized Eriochrome Black T
Tao et al. Functionalized multiwall carbon nanotubes combined with bis (2, 2′-bipyridine)-5-amino-1, 10-phenanthroline ruthenium (II) as an electrochemiluminescence sensor
Lin et al. DNA deposition on carbon electrodes under controlled dc potentials
Jain et al. Polyaniline–graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine
Ardila et al. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film
Devnani et al. A novel graphene-chitosan-Bi 2 O 3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine
Zhou et al. Fabrication and evaluation of [Co (phen) 2L] 3+-modified DNA-MWCNT and SDS-MWCNT electrodes for electrochemical detection of 6-mercaptopurine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees