JPH0210117A - Infrared ray detecting element - Google Patents

Infrared ray detecting element

Info

Publication number
JPH0210117A
JPH0210117A JP63160272A JP16027288A JPH0210117A JP H0210117 A JPH0210117 A JP H0210117A JP 63160272 A JP63160272 A JP 63160272A JP 16027288 A JP16027288 A JP 16027288A JP H0210117 A JPH0210117 A JP H0210117A
Authority
JP
Japan
Prior art keywords
semiconductor layer
infrared rays
semiconductor layers
bands
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63160272A
Other languages
Japanese (ja)
Other versions
JPH0758224B2 (en
Inventor
Yasuaki Yoshida
保明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63160272A priority Critical patent/JPH0758224B2/en
Publication of JPH0210117A publication Critical patent/JPH0210117A/en
Publication of JPH0758224B2 publication Critical patent/JPH0758224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To detect infrared rays in plural bands with one optical system by laminating 1st to 3rd semiconductor layers, whose widths of forbidden bands get wider and wider in order, in order of the 1st, 3rd and 2nd layers, radiating the infrared rays and absorbing the infrared rays in the 1st and the 2nd semiconductor layers. CONSTITUTION:The 1st, 3rd and 2nd semiconductor layers 16, 17 and 18 are laminated on a high-resistance substrate 1. By notching the parts of the 3rd and the 2nd semiconductor layers, a 1st electrode 19 is formed. Then, a 2nd electrode 20 and a light receiving surface 5 are formed on the 3rd semiconductor layer 18 with the technique of photomechanical process and the light receiving surface 5 is covered with a reflection preventing film. The widths of the forbidden bands of the semiconductor layers become wider in order of the 1st, 2nd and 3rd layers and the infrared rays absorbed in the 1st and the 2nd semiconductor layers 16 and 18 are detected by the 1st and the 2nd electrodes 19 and 20. Thus, the infrared rays near two bands, for example, the bands of 3 to 5mum and 10mum, can be detected with one optical system, thereby simplifying a device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は赤外線検知素子に関し、特に複数の波長、た
とえば3〜5μm帯および10μm帯に感度を有する光
導電型の赤外線検知素子に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an infrared sensing element, and particularly to a photoconductive infrared sensing element that is sensitive to a plurality of wavelengths, for example, a 3 to 5 μm band and a 10 μm band. .

〔従来の技術〕[Conventional technology]

第4図fa)は従来の光導電型赤外線検知素子の構造を
示す平面図、第4図(b)はその断面図である。
FIG. 4fa) is a plan view showing the structure of a conventional photoconductive infrared sensing element, and FIG. 4(b) is a sectional view thereof.

又、第5図(a)は従来の2つの波長域に感度を有する
赤外線探知素子の平面図、第5図(b)はその断面図で
ある。
Further, FIG. 5(a) is a plan view of a conventional infrared detection element having sensitivity in two wavelength ranges, and FIG. 5(b) is a sectional view thereof.

図において1はCdTeよりなる高抵抗の基板、2はC
dXHg、□Teよりなる半導体層、3は電極、4は反
射防止膜、5は受光面である。また6は波長3〜5μm
帯に感度を有する赤外線検知素子、7は波長10μm帯
に感度を有する赤外線検知素子、8は冷却用基板である
In the figure, 1 is a high-resistance substrate made of CdTe, and 2 is CdTe.
A semiconductor layer made of dXHg and □Te, 3 an electrode, 4 an antireflection film, and 5 a light-receiving surface. Also, 6 is a wavelength of 3 to 5 μm
7 is an infrared detecting element sensitive to a wavelength band of 10 μm, and 8 is a cooling substrate.

次に第4図、第5図を用いて従来の赤外線検知素子につ
いて説明する。
Next, a conventional infrared detection element will be explained using FIGS. 4 and 5.

CdXHg1−x TeはIT−Vl族の化合物半導体
で、組成比Xにより禁制帯幅が変化し、特にx−0,2
のものは波長10μm帯の、X =0.3のものは波長
3〜5μm帯の赤外線検知素子材料として広く利用され
ている。CdXHg1−XTeを用いた赤外線検知素子
の構造としでは第4図のような光導電型のものが公知で
ある。光導電型赤外線検知素子は、赤外線入射による半
導体層2の抵抗値変化により赤外線を検知する素子であ
る。このような赤外線検知素子は、空間を機械的に走査
する光学系と組み合わせ、目標を画像認識するための装
置に用いられる。第6図は目標を画像認識するための装
置を示す模式図で、9は光学系の視野、10は瞬時視野
、11は光学系、12は走査装置、13は赤外線検知素
子、14は信号処理装置、15は表示装置である。走査
装置12によって瞬時視野10の位置を変えることによ
り、単一の素子でも画像認識が可能となる。
CdXHg1-x Te is an IT-Vl group compound semiconductor, and the forbidden band width changes depending on the composition ratio X, especially x-0,2
Those with X = 0.3 are widely used as infrared sensing element materials for wavelengths of 3 to 5 μm. As a structure of an infrared detecting element using CdXHg1-XTe, a photoconductive type as shown in FIG. 4 is known. The photoconductive infrared sensing element is an element that detects infrared rays by changing the resistance value of the semiconductor layer 2 due to incidence of infrared rays. Such an infrared detection element is used in a device for image recognition of a target in combination with an optical system that mechanically scans space. FIG. 6 is a schematic diagram showing a device for image recognition of a target, where 9 is the field of view of the optical system, 10 is the instantaneous field of view, 11 is the optical system, 12 is the scanning device, 13 is the infrared detection element, and 14 is the signal processing The device 15 is a display device. By changing the position of the instantaneous field of view 10 by means of the scanning device 12, image recognition is possible even with a single element.

以上のような装置に用いられる赤外線検知素子13は通
常、10μm帯あるいは3〜5μm帯のどちらか一方の
波長域にのみ感度を有するものであったが、識別能力向
上のため、二つの波長域に感度を有することが望ましか
った。
The infrared detection element 13 used in the above-mentioned devices is normally sensitive only to either the 10 μm band or the 3 to 5 μm wavelength band, but in order to improve the discrimination ability, it has been developed to have sensitivity in the two wavelength bands. It was desirable to have sensitivity to

このため従来は、その各々に光学系、及び冷却系を備え
た2つの異なる波長域の赤外線検知素子を併用する方法
、或いは第5図に示すように波長域の異なる素子を並列
に並べ、1つの光学系と冷却系で済ませる方法がとられ
ていた。
For this reason, the conventional methods have been to use two infrared sensing elements each equipped with an optical system and a cooling system, each with a different wavelength range, or to arrange elements with different wavelength ranges in parallel as shown in Figure 5. A method was used that required only one optical system and cooling system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の赤外線検知素子においては二つの波長域に感度を
有するようにするために以上のような方法がとられてい
るので、2つの異なる波長域の赤外線検知素子を併用す
る方法では光学系、冷却系が複数になり、装置が大型に
なるという問題点があり、波長域の異なる素子を並列に
並べる方法では光学系の焦点が2つになるため、素子を
非常に精度よく貼り付ける必要があるうえに、たとえ精
度良く貼り付けることができたとしても、木質的に感度
、分解能の低下が避けられないという問題点があった。
Conventional infrared sensing elements use the methods described above to be sensitive to two wavelength ranges, so the method of using infrared sensing elements with two different wavelength ranges requires the optical system, cooling, etc. The problem is that there are multiple systems and the equipment becomes large, and the method of arranging elements with different wavelength ranges in parallel results in two focal points of the optical system, so it is necessary to attach the elements with great precision. Furthermore, even if the adhesive could be pasted with high precision, there was a problem in that sensitivity and resolution would inevitably deteriorate due to the nature of the wood.

この発明は上記のような問題点を解消するためなされた
もので、単体で複数の波長域に感度を有する赤外線検知
素子を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain an infrared sensing element that is sensitive to a plurality of wavelength ranges.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る赤外線検知素子は、第1の波長域の光を
吸収する第1の半導体層と第2の波長域の光を吸収する
上記第1の半導体層より禁制帯幅の広い第2の半導体層
を第2の半導体層より禁制帯幅の広い第3の半導体層を
介して接して形成し、上記第2の半導体層側から赤外線
が入射されるようにしたものである。
The infrared sensing element according to the present invention includes a first semiconductor layer that absorbs light in a first wavelength range, and a second semiconductor layer that absorbs light in a second wavelength range and has a wider forbidden band width than the first semiconductor layer. The semiconductor layer is formed in contact with the second semiconductor layer through a third semiconductor layer having a wider forbidden band width, so that infrared rays are incident from the second semiconductor layer side.

〔作用〕[Effect]

この発明においては、第1の波長域の光を吸収する第1
の半導体層と第2の波長域の光を吸収する上記第1の半
導体層より禁制帯幅の広い第2の半導体層を第2の半導
体層より禁制帯幅の広い第3の半導体層を介して接して
形成し、これらを縦方向に重ねた構成としたから、光学
系の焦点が1点でよく、感度および分解能の低下を防ぐ
ことができる。
In this invention, the first
and a second semiconductor layer that absorbs light in a second wavelength range and has a wider bandgap than the first semiconductor layer through a third semiconductor layer that has a bandgap wider than the second semiconductor layer. Since they are formed in contact with each other and stacked vertically, the optical system only needs to focus at one point, which prevents deterioration in sensitivity and resolution.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(alはこの発明の一実施例による赤外線検知素
子の構造を示す平面図、第1図山)はその断面図であり
、第2図はその斜視図である。
FIG. 1 (Al is a plan view showing the structure of an infrared detecting element according to an embodiment of the present invention, and the crest in FIG. 1) is a sectional view thereof, and FIG. 2 is a perspective view thereof.

図において、1はCdTeよりなる高抵抗の基板、4は
反射防止膜、5は受光面、16はcdo。
In the figure, 1 is a high-resistance substrate made of CdTe, 4 is an antireflection film, 5 is a light-receiving surface, and 16 is a CDO.

z Hgo、a T eからなる第1の半導体層、17
はX >0.3のcdXHg、−+ Teからなる第3
の半導体層、18はCdo、3Hgo、7Teからなる
第2の半導体、19は第1の電極、20は第2の電極、
21は赤外線である。
z Hgo, a first semiconductor layer consisting of a Te, 17
is the third cdXHg with X > 0.3, consisting of −+ Te.
, 18 is a second semiconductor made of Cdo, 3Hgo, and 7Te, 19 is a first electrode, 20 is a second electrode,
21 is infrared rays.

次に本実施例素子の作製工程について説明する。Next, the manufacturing process of the device of this example will be explained.

まず高抵抗の基板1上に例えば液相エピタキシャル成長
法により第1の半導体層16を10〜20μm程度、第
3の半導体層17を1〜3μm程度、第2の半導体層1
8を10〜20μm程度、順次形成し、続いて通常の写
真製版技術により反射防止膜4.第2の電極20を形成
し、第2の半導体層18及び第3の半導体層17の一部
を除去し、第1の半導体層16が露出した部分に第1の
電極19を形成することにより第1図に示す素子が完成
する。
First, on a high-resistance substrate 1, for example, by liquid phase epitaxial growth, a first semiconductor layer 16 is formed to a thickness of about 10 to 20 μm, a third semiconductor layer 17 is formed to a thickness of about 1 to 3 μm, and a second semiconductor layer 1 is formed to a thickness of about 1 to 3 μm.
8 is sequentially formed to a thickness of about 10 to 20 μm, and then an antireflection film 4. By forming the second electrode 20, removing part of the second semiconductor layer 18 and the third semiconductor layer 17, and forming the first electrode 19 in the exposed part of the first semiconductor layer 16, The device shown in FIG. 1 is completed.

次に動作について説明する。Next, the operation will be explained.

上述のようにして作製された本実施例による赤外線検知
素子に赤外線21が入射すると波長3〜5μm帯の赤外
線は第2の半導体層18で吸収され、波長10μm帯の
赤外線は第2の半導体層18、第3の半導体層17を透
過し、第1の半導体層16で吸収される。第1の半導体
層16で発生したキャリアと第2の半導体層18で吸収
されたキャリアとは第3図に示すように第3の半導体層
17の形成により生じたポテンシャル障壁により分離さ
れているので、混ざり合うことはない。従って、第1の
半導体層16で吸収された赤外線は第1の電極19で検
出され、第2の半導体層18で吸収された赤外線は第2
の電極20で検出されるので、2つの異なる波長の赤外
線を独立に検出することが可能となる。
When infrared rays 21 are incident on the infrared sensing element according to the present example manufactured as described above, the infrared rays in the wavelength band of 3 to 5 μm are absorbed by the second semiconductor layer 18, and the infrared rays in the wavelength band of 10 μm are absorbed in the second semiconductor layer 18. 18, transmitted through the third semiconductor layer 17 and absorbed by the first semiconductor layer 16. Carriers generated in the first semiconductor layer 16 and carriers absorbed in the second semiconductor layer 18 are separated by a potential barrier created by the formation of the third semiconductor layer 17, as shown in FIG. , never mix. Therefore, the infrared rays absorbed by the first semiconductor layer 16 are detected by the first electrode 19, and the infrared rays absorbed by the second semiconductor layer 18 are detected by the second electrode 19.
Since the infrared rays are detected by the electrode 20, it is possible to independently detect infrared rays of two different wavelengths.

なお、上記実施例では10μm帯と3〜5μm帯の2つ
の波長域にのみ感度を有する赤外線検知素子について述
べたが、さらに多くの波長域を備えた赤外線検知素子に
も適用が可能である。
In the above embodiment, an infrared detection element sensitive only to two wavelength ranges, a 10 μm band and a 3 to 5 μm band, was described, but the present invention can also be applied to an infrared detection element having more wavelength ranges.

又、上記実施例は単素子の例を示したが、多素子の場合
にも適用できる。
Furthermore, although the above embodiments have shown examples of single elements, they can also be applied to cases of multiple elements.

又、上記実施例は表面入射型の例を示したが、第1の半
導体層16と第2の半導体層18を入れ替えれば裏面入
射型にもすることが可能である。
Furthermore, although the above-mentioned embodiment shows an example of a front-illuminated type, it is also possible to use a back-illuminated type by replacing the first semiconductor layer 16 and the second semiconductor layer 18.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば赤外線検知素子におい
て、第1の波長域の光を吸収する第1の半導体層と第2
の波長域の光を吸収する上記第1の半導体層より禁制帯
幅の広い第2の半導体層を第2の半導体層より禁制帯幅
の広い第3の半導体層を介して接して形成し、これらを
縦方向に重ねた構成としたから、光学系焦点が1点でよ
く、高感度・高分解能の複数の波長域に感度を有する赤
外線検知素子が得られる効果がある。
As described above, in the infrared sensing element according to the present invention, the first semiconductor layer that absorbs light in the first wavelength range and the second semiconductor layer absorb light in the first wavelength range.
a second semiconductor layer having a wider forbidden band width than the first semiconductor layer that absorbs light in a wavelength range of is formed in contact with a third semiconductor layer having a wider forbidden band width than the second semiconductor layer; Since these are stacked vertically, the optical system only needs to focus at one point, and an infrared sensing element with high sensitivity and high resolution that is sensitive to a plurality of wavelength ranges can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa)はこの発明の一実施例による赤外線検知素
子の構造を示す平面図、第1図(blはその断面図、第
2図はその斜視図、第3図は第1図の実施例の動作を説
明するためのバンド図、第4図(alは従来の光導電型
赤外線検知素子の構造を示す平面図、第4図(blはそ
の断面図、第5図(alは従来の2つの波長域に感度を
有する赤外線検知素子の平面図、第5図(blはその断
面図、第6図は赤外線検知素子を用い目標を画像認識す
るための装置を示す模式図である。 図において、1は高抵抗の基板、4は反射防止膜、5は
受光面、16は第1の半導体層、17は第3の半導体層
、18は第2の半導体層、19は第1の電極、20は第
2の電極である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 fa) is a plan view showing the structure of an infrared sensing element according to an embodiment of the present invention, FIG. Band diagram for explaining the operation of the example, FIG. 4 (al is a plan view showing the structure of a conventional photoconductive infrared sensing element, FIG. 4 (bl is a cross-sectional view thereof, and FIG. 5 (al is a conventional FIG. 5 is a plan view of an infrared detection element sensitive to two wavelength regions (bl is a cross-sectional view thereof, and FIG. 6 is a schematic diagram showing an apparatus for image recognition of a target using an infrared detection element. , 1 is a high-resistance substrate, 4 is an antireflection film, 5 is a light-receiving surface, 16 is a first semiconductor layer, 17 is a third semiconductor layer, 18 is a second semiconductor layer, and 19 is a first electrode. , 20 is a second electrode. Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の波長域に感度を有する光導電型の赤外線検
知素子において、 第1の波長域の光を吸収する第1の半導体層と、該第1
の半導体層より広い禁制帯幅を有する第3の半導体層を
介して上記第1の半導体層に積層された、第2の波長域
の光を吸収する、上記第1の半導体層より禁制帯幅の狭
い第2の半導体層とを備え、上記第1の半導体層側から
赤外線が入射することを特徴とする赤外線検知素子。
(1) In a photoconductive infrared sensing element sensitive to a plurality of wavelength ranges, a first semiconductor layer that absorbs light in a first wavelength range;
A third semiconductor layer, which absorbs light in a second wavelength range, is laminated on the first semiconductor layer via a third semiconductor layer having a wider bandgap than the first semiconductor layer. and a narrow second semiconductor layer, the infrared rays detecting element being characterized in that infrared rays are incident from the first semiconductor layer side.
JP63160272A 1988-06-28 1988-06-28 Infrared detector Expired - Lifetime JPH0758224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160272A JPH0758224B2 (en) 1988-06-28 1988-06-28 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160272A JPH0758224B2 (en) 1988-06-28 1988-06-28 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0210117A true JPH0210117A (en) 1990-01-12
JPH0758224B2 JPH0758224B2 (en) 1995-06-21

Family

ID=15711412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160272A Expired - Lifetime JPH0758224B2 (en) 1988-06-28 1988-06-28 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0758224B2 (en)

Also Published As

Publication number Publication date
JPH0758224B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US4581625A (en) Vertically integrated solid state color imager
US4791468A (en) Radiation-sensitive semiconductor device
EP1280207B1 (en) Semiconductor energy detector
EP0281011B1 (en) Edge-illuminated impurity band conduction detector arrays
US4053773A (en) Mosaic infrared sensor
JP2547908B2 (en) Radiation detector
US4656109A (en) Layered solid state color photosensitive device
US4962303A (en) Infrared image detector utilizing Schottky barrier junctions
JPH0210117A (en) Infrared ray detecting element
JPH0575087A (en) Image sensor
EP0543537B1 (en) Photodetector having reduced blind area
JPH0265181A (en) Infrared detector
US5438200A (en) Composite photodetector substrate and method of forming the same
JPH065832A (en) Apparatus and method for position detection
US5502300A (en) Compound optically tipped detectors
EP0547516B1 (en) Striped contact IR detector
US20240136380A1 (en) Active pixel sensor and method for fabricating an active pixel sensor
EP4362098A1 (en) Active pixel sensor and method for fabricating an active pixel sensor
JPS59182561A (en) Semiconductor image sensor
JPH05226686A (en) Photodetector
JPS63153857A (en) Line-like photodetector
JPS61205827A (en) Multielement type infrared detector and its preparation
JPS6378580A (en) Semiconductor device
JP6931161B2 (en) Compound semiconductor device, infrared detector and imaging device
JPS6249680A (en) Semiconductor position detector