JPH02101106A - Desiliconizing method on casting floor - Google Patents

Desiliconizing method on casting floor

Info

Publication number
JPH02101106A
JPH02101106A JP25378688A JP25378688A JPH02101106A JP H02101106 A JPH02101106 A JP H02101106A JP 25378688 A JP25378688 A JP 25378688A JP 25378688 A JP25378688 A JP 25378688A JP H02101106 A JPH02101106 A JP H02101106A
Authority
JP
Japan
Prior art keywords
nozzle
desiliconizing
desiliconization
desiliconizing agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25378688A
Other languages
Japanese (ja)
Other versions
JPH066730B2 (en
Inventor
Takeshi Uchiyama
武 内山
Kanji Takeda
武田 幹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25378688A priority Critical patent/JPH066730B2/en
Publication of JPH02101106A publication Critical patent/JPH02101106A/en
Publication of JPH066730B2 publication Critical patent/JPH066730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To improve desiliconizing efficiency by using a submerged lance satisfying nozzle length and nozzle diameter so that the desiliconizing agent blowing speed in the tip of the nozzle exceeds the desiliconizing agent invasion limit speed to select the lance corresponding to change of the operational condition. CONSTITUTION:Relations between the nozzle length and the desiliconizing agent blowing speed in the nozzle tip prepared at every grain sizes and densities of the desiliconizing agent are shown in a diagram at each carrier gas flowing speed in the nozzle tip and characteristic diagram showing the desiliconizing agent invasion limit speed as additional note is prepared. Characteristic diagram showing the relation between the nozzle diameter and the carrier gas flowing rate at each carrier gas flowing speed in the nozzle tip is prepared. By using both characteristic diagrams, the submerged lance satisfying the nozzle length and the nozzle and the nozzle diameter so that the desiliconizing agent blowing speed at the nozzle tip exceeds the desiliconizing agent invasion limit speed in accordance with change of the desiliconizing operational condition, is selected. By this method, even if the gas flowing rate is decreased, the desiliconizing agent is burst through bubble and deeply invaded into molten iron and the desiliconizing ratio can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、溶銑樋を流れる溶銑に脱珪剤をキャリアーガ
ス(以下ガスと略す)と共にインジェクションする鋳床
での脱珪方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for desiliconization in a cast bed, in which a desiliconizing agent is injected into hot metal flowing through a hot metal trough together with a carrier gas (hereinafter abbreviated as gas). .

〈従来の技術〉 高炉鋳床における脱珪方法として、溶銑樋を流れる溶銑
にインジェクションランスを浸漬し、ガスと共に脱珪剤
を吹き込む技術が開発されてきている。特開昭62−7
809号公報には、浸漬ランスの先端から横向きに、溶
銑予備処理剤を吹込むことにより、溶銑樋下部の耐火物
の損耗を防ぐ技術が開示されている。しかし、この発明
は、ランスの浸漬部分がランスのノズルから噴出するガ
スによって漫触され寿命が短いという問題があった。そ
こで、本発明者らはこの問題を解決するために、先に出
願した特願昭62−229743号において、予備処理
剤吹込ノズルが、横方向に張り出すように先端部が突設
されている浸漬ランスを用いて、脱珪効率を高め、かつ
ランスの寿命を延長する溶銑予備処理方法を折本した。
<Prior Art> As a desiliconization method in a blast furnace casthouse, a technique has been developed in which an injection lance is immersed in hot metal flowing through a hot metal trough, and a desiliconization agent is injected together with gas. Japanese Patent Publication No. 62-7
Publication No. 809 discloses a technique for preventing wear and tear of refractories in the lower part of a hot metal gutter by injecting a hot metal pretreatment agent sideways from the tip of an immersion lance. However, this invention has a problem in that the immersed portion of the lance is exposed to gas ejected from the nozzle of the lance, resulting in a short life span. Therefore, in order to solve this problem, the present inventors proposed in the previously filed Japanese Patent Application No. 62-229743 that the tip of the pretreatment agent injection nozzle was provided so as to protrude laterally. A method for pretreatment of hot metal using an immersion lance that increases the desiliconization efficiency and extends the life of the lance was published.

しかし、この方法を用いる場合でも、脱珪の操業条件、
例えば脱珪剤の粒径を変更した場合、脱珪効率の良い条
件を見つけるのに長時間を必要とするという問題があっ
た。
However, even when using this method, the operating conditions for desiliconization
For example, when the particle size of the desiliconizing agent is changed, there is a problem in that it takes a long time to find conditions with good desiliconizing efficiency.

〈発明が解決しようとする課題〉 本発明は、脱珪操業条件の変更に速かに対応できるラン
スのノズル長さおよびノズル径を具えた浸漬ランスを選
択でき、更にキャリアーガス量を減少しても、脱珪剤を
十分加速して脱珪処理を行える脱珪方法をを提供するた
めになされたものである。
<Problems to be Solved by the Invention> The present invention makes it possible to select an immersion lance with a lance nozzle length and nozzle diameter that can quickly respond to changes in desiliconization operation conditions, and further reduces the amount of carrier gas. The present invention was also made in order to provide a desiliconization method that can perform desiliconization treatment by sufficiently accelerating the desiliconization agent.

く課題を解決するための手段〉 本発明は、■溶銑樋を流れる溶銑中に浸漬ランスの先端
から横向きに脱珪剤をキャリアーガスと共に吹込む脱珪
方法において、脱珪操業条件にもとづいて脱珪剤の粒径
と密度ごとに予め作成したノズル長さとノズル先端での
脱珪剤速度との関係をノズル先端でのをキャリアーガス
流速側に図示し、かつ脱珪剤進入限界速度を付記した特
性図と、ノズル径とキャリアーガス流量との関係をノズ
ル先端でのをキャリアーガス流速側に図示した特性図と
を使用して、ノズル先端での脱珪剤速度が脱珪剤進入限
界速度を超えるようになるノズル長さ。
Means for Solving the Problems> The present invention provides: (1) a desiliconization method in which a desiliconizing agent is injected sideways from the tip of an immersion lance together with a carrier gas into hot metal flowing through a hot metal trough; The relationship between the nozzle length created in advance for each silica particle size and density and the desiliconization agent speed at the nozzle tip is illustrated on the carrier gas flow rate side, and the limit speed of desiliconization agent entry is also added. Using the characteristic diagram and the characteristic diagram that shows the relationship between nozzle diameter and carrier gas flow rate at the nozzle tip on the carrier gas flow velocity side, it is possible to determine that the desiliconization agent speed at the nozzle tip is the limit speed for desiliconization agent entry. Nozzle length to be exceeded.

ノズル径を満足する浸漬ランスを用いることを特徴とす
る鋳床における脱珪方法であり、■前■項において、満
足するノズル径が複数ある場合には、キャリアーガス流
量が少いノズル径を有する浸漬ランスを用いることを特
徴とする鋳床における脱珪方法である。
This is a desiliconization method in a casthouse characterized by using an immersion lance that satisfies the nozzle diameter. This is a method for desiliconization in a casthouse, characterized by using an immersion lance.

〈発明をなす至った経過及び作用〉 従来の溶銑樋を流れる溶銑に脱珪剤をキャリアーガスと
共に吹き込んだ脱珪方法では、脱珪反応の他に脱炭反応
も相当量起こっていることが、本発明者らの研究の結果
判明した。従来法による脱炭効率と脱珪効率との関係を
第5図の゛′A″領域に示した。従来法では脱珪剤中に
含まれる有効酸素W(反応に寄与し得る酸素量)のうち
の25%〜35%が脱炭反応に関与している。脱珪効率
を向上させるためには反応を第5図中(1)〜(4)の
方向に進めれば良い。しかしながら脱珪剤の反応効率(
=脱珪効率十脱炭効率)は、領域′″A″′の形から判
るようにほぼ80%と一定になっている。これは、80
%以上反応が進むと脱珪スラグの粘性が極端に高くなり
、反応がほとんど起こらなくなるためであるが、このた
めに同じ脱珪剤を使用する限りでは第5図中の(1)〜
(3)の方向に領域を移動させることが不可能である。
<Process and operation leading to the invention> In the conventional desiliconization method in which a desiliconizing agent is injected together with a carrier gas into hot metal flowing through a hot metal trough, a considerable amount of decarburization reaction occurs in addition to the desiliconization reaction. This was discovered as a result of research by the present inventors. The relationship between decarburization efficiency and desiliconization efficiency in the conventional method is shown in area ``A'' in Figure 5.In the conventional method, the amount of available oxygen W (the amount of oxygen that can contribute to the reaction) contained in the desiliconization agent is 25% to 35% of this is involved in the decarburization reaction.In order to improve the desiliconization efficiency, the reaction should proceed in the directions (1) to (4) in Figure 5.However, the desiliconization reaction efficiency of the agent (
= desiliconization efficiency + decarburization efficiency) is constant at approximately 80%, as can be seen from the shape of region ``A''. This is 80
% or more, the viscosity of the desiliconizing slag becomes extremely high and almost no reaction occurs.For this reason, as long as the same desiliconizing agent is used, (1) to (1) in Figure 5.
It is impossible to move the area in the direction (3).

そこで(4)の方向への反応を制御すべく試験を行った
結果、ガス量を減少させることが効果的であることがわ
かった。しかしながら、ガス量を減少させずぎると脱珪
剤5のノズル2先端速度がおそくなり、脱珪剤が気泡に
トラップされ気泡7.をつき破って溶銑8中に深く進入
できなくなり、反応効率の低下をきたしたことが判明し
た(第、6図参照)。
Therefore, as a result of conducting tests to control the reaction in the direction (4), it was found that reducing the amount of gas is effective. However, if the gas amount is not reduced too much, the speed at the tip of the nozzle 2 of the desiliconizing agent 5 becomes slow, and the desiliconizing agent is trapped in air bubbles, resulting in air bubbles 7. It was found that the hot metal could not penetrate deeply into the hot metal 8, resulting in a decrease in reaction efficiency (see Figure 6).

そこで力のつり合いから求まる脱珪剤が溶銑中に侵入す
る脱珪剤進入限界速度、その脱珪剤進入限界速度を得る
ためのガス流量、ノズル長さなどの関係を用いて、浸漬
ランスを設計し、操業条件を決定すればよいとの知見を
えて本発明を完成するに至った。
Therefore, an immersion lance is designed using the relationship between the critical speed of the desiliconizing agent entering the hot metal, the gas flow rate and nozzle length to obtain the critical speed of desiliconizing agent entering the hot metal, which is determined from the balance of forces. However, the present invention was completed based on the knowledge that it was only necessary to determine the operating conditions.

本発明では、脱珪操業条件にもとづいて脱珪剤の進入限
界速度を得ることができるノズル長さ、ノズル径をもっ
た浸漬ランスを゛使用するようにしたので、迅速に脱珪
操業条件変更に対応することができ、またガス量を減少
させても脱珪剤は気泡を突ぎ破って溶銑中に深く進入で
き脱珪率を向上させることができる。
In the present invention, an immersion lance is used that has a nozzle length and nozzle diameter that allow the desiliconizing agent to reach the limit speed based on the desiliconizing operating conditions, so that desiliconizing operating conditions can be changed quickly. Furthermore, even if the amount of gas is reduced, the desiliconizing agent can break through the bubbles and penetrate deeply into the hot metal, improving the desiliconization rate.

〈実施例〉 脱珪剤(粒径100μm、密度3300kg/rrf)
が各ガス流速にさらされた場合の加速距離(ノズル長さ
) ffi (m++I)と脱珪剤のノズル先端速度V
r(m/S)との関係を第1・図に示した。Vr≧13
(m/S)で脱珪剤は溶銑中へ進入することができる。
<Example> Desiliconizing agent (particle size 100 μm, density 3300 kg/rrf)
Acceleration distance (nozzle length) ffi (m++I) and desiliconizing agent nozzle tip speed V when exposed to each gas flow rate
The relationship with r(m/S) is shown in Figure 1. Vr≧13
(m/S), the desiliconizing agent can enter into the hot metal.

■r′≧13となるのはガス流速50.60.70.8
0 (m/S)の場合、加速距離(ノズル長さ)!がそ
れぞれ120..80.65.55+nn+以上である
。漫漬ランスの設計に際しては、ノズル先端の溶損を考
慮してこの長さに10〜20mm程度加えた長さとす方
が良い。
■When r'≧13, the gas flow rate is 50.60.70.8
If 0 (m/S), acceleration distance (nozzle length)! are 120. each. .. 80.65.55+nn+ or more. When designing a dipping lance, it is better to add about 10 to 20 mm to this length in consideration of melting damage at the tip of the nozzle.

ノズル径が同じであれば、ガス流量を減少さゼるにはノ
ズル先端でのガス流速(m/s)は小さい方が良いが、
第1図からも明らかなように、小さければ加速距離(ノ
ズル長さ)が長くなり、浸漬ランスが大型化し、取扱い
ずらくなるので設備とのかね合いて適当なガス流速を選
択すればよい。
If the nozzle diameter is the same, it is better to reduce the gas flow velocity (m/s) at the nozzle tip in order to reduce the gas flow rate.
As is clear from FIG. 1, if the velocity is small, the acceleration distance (nozzle length) will be long, the immersion lance will be large, and it will be difficult to handle. Therefore, an appropriate gas flow velocity should be selected in consideration of the equipment.

第2図に20ランスの場合の各ノズル部分での所定のガ
ス流速を得るためのノズル径d (m)とガス流量G 
(Nrrf/min )の関係を示した。例えば第1図
からガス流速60m/sを選択したとし、ノズル部分で
のガス流速を60m/sとするためのノズル径、ガス流
量の組合わせ(d、G)で表わすと(0,02m、  
2.5Nn(/min )、  (0,015m。
Figure 2 shows the nozzle diameter d (m) and gas flow rate G to obtain the specified gas flow velocity at each nozzle portion in the case of 20 lances.
(Nrrf/min). For example, assuming that a gas flow velocity of 60 m/s is selected from Fig. 1, the combination (d, G) of the nozzle diameter and gas flow rate to make the gas flow velocity at the nozzle part 60 m/s is (0.02 m,
2.5Nn (/min), (0,015m.

1.4 N f / min )が得られる。このよう
にしてノズル径、ガス流量を決定すれば良い。
1.4 N f /min) is obtained. The nozzle diameter and gas flow rate may be determined in this way.

第5図において(4)の方向に反応を進め脱珪率を上げ
るためには、ガス流量Gを減少させる必要があるので、
本例では(0,02,2,5)→(0,015,1,4
)の方向に改善すれば良い。すなわち第3図(a)に示
した浸漬ランスを第3図(b)に示した浸漬ランスに変
更すれば良いことになる。
In Fig. 5, in order to advance the reaction in the direction of (4) and increase the silicon removal rate, it is necessary to reduce the gas flow rate G.
In this example, (0,02,2,5)→(0,015,1,4
) should be improved in this direction. That is, the immersion lance shown in FIG. 3(a) may be changed to the immersion lance shown in FIG. 3(b).

本発明の特徴は、操業条件である脱珪剤の粒径。The feature of the present invention is the particle size of the desiliconizing agent, which is an operating condition.

ガス量、ノズル径等を変更する時にあらかじめ変更する
条件に応じた第1図、第2図のような線図を作成してお
くことによって、迅速に最適操業条件に移行できる点に
ある。
When changing the gas amount, nozzle diameter, etc., by preparing diagrams such as those shown in FIGS. 1 and 2 in advance according to the conditions to be changed, it is possible to quickly shift to the optimum operating conditions.

本発明の具体的実施例を以下に説明する。Specific embodiments of the present invention will be described below.

第4図(b)に脱珪剤変更時(粒径: 100 tnn
 −30pm 。
Figure 4(b) shows when the desiliconizing agent is changed (particle size: 100 tnn
-30pm.

密度: 3300kg/ nf )の従来方法による脱
珪効率の推移を示した。従来は脱珪剤の変更後に、浸漬
ランスのノズル径、ガス量を試行錯誤的に変更、改善し
ていたため、最適操業条件を得るために約2ケ月の期間
を要した。第4図(a)に脱珪剤変更時にガス量を低減
した( 2.5NITf/min →1.4 Nni/
m1n)本発明方法による脱珪効率の推移を示した。
The graph shows the change in desiliconization efficiency according to the conventional method at a density of 3300 kg/nf. Conventionally, after changing the desiliconizing agent, the nozzle diameter and gas amount of the immersion lance were changed and improved through trial and error, and it took about two months to obtain the optimal operating conditions. Figure 4(a) shows that the gas amount was reduced when changing the desiliconizing agent (2.5 NITf/min → 1.4 Nni/min).
m1n) The transition of desiliconization efficiency by the method of the present invention is shown.

この場合は、第1図、第2図の線図をあらかじめ用意し
、最適操業条件を求めておいたので、最適条イ′1にす
るためにわずか半月しかかからなかった。
In this case, since the diagrams shown in FIGS. 1 and 2 were prepared in advance and the optimum operating conditions were determined, it took only half a month to obtain the optimum strip A'1.

この時の脱珪効率と脱炭効率との関係を第5図中の領域
IT B I+に示した。この時の操業条件は、ノズル
径:0.015m 、加速距離:0.1m、ガス流量:
1.4Nnf/min 、脱珪剤吹込速度:50kg/
minであり、脱珪効率60〜65%を得ることができ
た。尚、変更前は、ノズル径0.02m、加速距離0.
1m、ガス流量2.5N rrf /min、脱珪剤吹
込速度60kg/minで脱珪効率は49〜55%であ
った。
The relationship between the desiliconization efficiency and the decarburization efficiency at this time is shown in the area ITBI+ in FIG. The operating conditions at this time were: nozzle diameter: 0.015 m, acceleration distance: 0.1 m, gas flow rate:
1.4Nnf/min, desiliconizing agent blowing speed: 50kg/
It was possible to obtain a desiliconization efficiency of 60 to 65%. Before the change, the nozzle diameter was 0.02m and the acceleration distance was 0.02m.
1 m, a gas flow rate of 2.5 N rrf /min, and a desiliconizing agent blowing rate of 60 kg/min, the desiliconization efficiency was 49 to 55%.

以上から明らかなように、本発明によると脱珪操業条件
を変更時に迅速に最適な操業条件に移行でき、さらにガ
ス流量を減少させた場合にも脱珪効率を向上できた。
As is clear from the above, according to the present invention, when the desiliconization operating conditions were changed, it was possible to quickly shift to the optimum operating conditions, and furthermore, even when the gas flow rate was reduced, the desiliconization efficiency was improved.

以」二脱珪操業について本発明の詳細な説明したが、こ
れは何も脱珪操業だけに限ったことではなく、同様な方
法によって行う溶銑予備処理(脱隣、脱硫)にも本発明
を適用することが□可能である。
Hereinafter, the present invention has been described in detail regarding the second desiliconization operation, but this is not limited to only the desiliconization operation, and the present invention can also be applied to hot metal pretreatment (desiliconization, desulfurization) performed by a similar method. It is possible to apply.

また、浸漬ランスは20ランスの実施例を示したが、3
0.40などの多口ランスあるいは単口ランスの場合に
も本発明を適用することができる。
In addition, an example of 20 immersion lances was shown, but 3 lances were used.
The present invention can also be applied to a multi-mouth lance such as 0.40 or a single-mouth lance.

〈発明の効果〉 本発明により、脱珪操業条件変更時に迅速に最適な操業
条件に移行するきとができた。また、ガス流量を減少さ
ゼた場合にも脱珪剤を十分加速して吹き込むことが可能
となり、脱珪効率を向上させることができた。
<Effects of the Invention> According to the present invention, it has become possible to quickly shift to optimal operating conditions when changing desiliconization operating conditions. Furthermore, even when the gas flow rate was reduced, it became possible to inject the desiliconizing agent at sufficient speed, thereby improving the desiliconizing efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のランス設計の根拠となる各ガス流速
での脱珪剤のノズル先端速度Vrとノズル長さ2との関
係を示した特性図、第2図は、各ガス流速を得るガス流
量Gとノズル径dの関係を示した特性図、第3図は改善
前後の浸漬ランス形状を示した概略断面図、第4図は、
従来方法(b)及び本発明方法(a)による脱珪効率の
推移を示した特性図、第5図は、脱炭効率と脱珪効率と
の関係を示した特性図、第6図は、脱珪剤が吹き込まれ
る状況を示した模式図である。 l・・・浸漬ランス、     2・・・ノズル、3・
・・脱珪剤輸送管、   4・・・耐火物、5・・・脱
珪剤、 6・・・気泡にトラップされた脱珪剤、7・・・気 泡、 8・・・溶 銑、 9・・・溶銑m。
Figure 1 is a characteristic diagram showing the relationship between the nozzle tip speed Vr of the desiliconizing agent and the nozzle length 2 at each gas flow rate, which is the basis for the lance design of the present invention, and Figure 2 is a characteristic diagram showing the relationship between the nozzle length 2 and the nozzle tip speed Vr of the desiliconizer at each gas flow rate, which is the basis for the lance design of the present invention. A characteristic diagram showing the relationship between the obtained gas flow rate G and the nozzle diameter d, Figure 3 is a schematic sectional view showing the immersion lance shape before and after improvement, and Figure 4 is
A characteristic diagram showing the transition of desiliconization efficiency according to the conventional method (b) and the method (a) of the present invention, FIG. 5 is a characteristic diagram showing the relationship between decarburization efficiency and desiliconization efficiency, and FIG. FIG. 2 is a schematic diagram showing a situation in which a desiliconizing agent is blown into the structure. l... Immersion lance, 2... Nozzle, 3...
... desiliconizing agent transport pipe, 4... refractory, 5... desiliconizing agent, 6... desiliconizing agent trapped in air bubbles, 7... air bubbles, 8... hot metal, 9. ...Hot metal m.

Claims (1)

【特許請求の範囲】 1、溶銑樋を流れる溶銑中に浸漬ランスの先端から横向
きに脱珪剤をキャリアーガスと共に吹込む脱珪方法にお
いて、脱珪操業条件にもとづいて脱珪剤の粒径と密度ご
とに予め作成したノズル長さとノズル先端での脱珪剤速
度との関係をノズル先端でのキャリアーガス流速別に図
示し、かつ脱珪剤進入限界速度を付記した特性図と、ノ
ズル径とキャリアーガス流量との関係をノズル先端での
キャリアーガス流速別に図示した特性図とを使用して、
ノズル先端での脱珪剤速度が脱珪剤進入限界速度を超え
るようになるノズル長さ、ノズル径を満足する浸漬ラン
スを用いることを特徴とする鋳床における脱珪方法。 2、請求項1において、満足するノズル径が複数ある場
合には、キャリアーガス流量が少ないノズル径を有する
浸漬ランスを用いることを特徴とする鋳床における脱珪
方法。
[Scope of Claims] 1. In a desiliconization method in which a desiliconizing agent is injected sideways from the tip of an immersion lance together with a carrier gas into hot metal flowing through a hot metal trough, the particle size of the desiliconizing agent and The relationship between the nozzle length and the desiliconizing agent speed at the nozzle tip prepared in advance for each density is illustrated for each carrier gas flow rate at the nozzle tip, and the characteristic diagram with the desiliconizing agent entry limit speed added, as well as the nozzle diameter and carrier Using a characteristic diagram showing the relationship with gas flow rate for each carrier gas flow velocity at the nozzle tip,
A method for desiliconization in a casthouse, characterized by using an immersion lance that satisfies the nozzle length and nozzle diameter such that the desiliconization agent speed at the nozzle tip exceeds the desiliconization agent entry limit speed. 2. A method for desiliconization in a cast bed according to claim 1, characterized in that, when there are a plurality of nozzle diameters that satisfy the requirements, an immersion lance having a nozzle diameter with a small carrier gas flow rate is used.
JP25378688A 1988-10-11 1988-10-11 Desiliconization method in casting floor Expired - Lifetime JPH066730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25378688A JPH066730B2 (en) 1988-10-11 1988-10-11 Desiliconization method in casting floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25378688A JPH066730B2 (en) 1988-10-11 1988-10-11 Desiliconization method in casting floor

Publications (2)

Publication Number Publication Date
JPH02101106A true JPH02101106A (en) 1990-04-12
JPH066730B2 JPH066730B2 (en) 1994-01-26

Family

ID=17256130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25378688A Expired - Lifetime JPH066730B2 (en) 1988-10-11 1988-10-11 Desiliconization method in casting floor

Country Status (1)

Country Link
JP (1) JPH066730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024185A (en) * 2005-07-15 2007-02-01 Kikuchiseisakusho Co Ltd Actuator, parallel link mechanism using the same, and long-sized material bending device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024185A (en) * 2005-07-15 2007-02-01 Kikuchiseisakusho Co Ltd Actuator, parallel link mechanism using the same, and long-sized material bending device

Also Published As

Publication number Publication date
JPH066730B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
GB2041410A (en) Use of inert gas in the basic oxygen process to control slopping
JPH02101106A (en) Desiliconizing method on casting floor
JP3786056B2 (en) Hot metal pretreatment method
JP3412269B2 (en) Manufacturing method of extremely low sulfur steel
JP2596470B2 (en) Sloping suppression method
JP3290050B2 (en) Hot metal desulfurization method
JPS61235506A (en) Heating up method for molten steel in ladle
JP3733013B2 (en) Hot metal dephosphorization method
JP3225747B2 (en) Vacuum degassing of molten steel
RU1319561C (en) Method for blasting low-manganese iron in converter
JP3297765B2 (en) Desulfurization method of molten steel
JP2005146335A (en) Method for dephosphorizing molten pig iron
JPH01100216A (en) Ladle refining method for molten steel
RU2152441C1 (en) Apparatus for bottom blowing of steel in ladle
JPS6396210A (en) Pre-deoxidizing method in converter interior
JPS61149417A (en) Method for subduing slag foaming
JP2005248218A (en) Molten iron pretreatment method
JPS62205221A (en) Method for degassing and dephosphorizing molten steel
JPH03162513A (en) Method for refining molten metal
JPH10102134A (en) Method for desulfurizing molten steel
JP3680385B2 (en) Demanganese process for hot metal
JP2005139504A (en) Method for pre-treating molten pig iron
JP3769060B2 (en) Method of blowing gas into molten metal
JP2533815B2 (en) Operating method of bottom blown converter
JP3619338B2 (en) Method of injecting gas into molten metal