JPH02100242A - Electron tube - Google Patents
Electron tubeInfo
- Publication number
- JPH02100242A JPH02100242A JP63254004A JP25400488A JPH02100242A JP H02100242 A JPH02100242 A JP H02100242A JP 63254004 A JP63254004 A JP 63254004A JP 25400488 A JP25400488 A JP 25400488A JP H02100242 A JPH02100242 A JP H02100242A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- gate electrode
- electron tube
- electron
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims 2
- 238000009429 electrical wiring Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 239000011149 active material Substances 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 239000011148 porous material Substances 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- 238000010894 electron beam technology Methods 0.000 description 8
- 239000013543 active substance Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Cold Cathode And The Manufacture (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電子管の内部で発生するガスを吸着するゲッタ
ーを備えた電子管に間するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electron tube equipped with a getter that adsorbs gas generated inside the electron tube.
従来の技術
従来、画像表示装置に用いることができる平板状電子源
として、線状熱陰極を多数本配列し、等価的に平板状電
子源とするもの(例えば蛍光表示管)、またプラズマ空
間より電子源を取り出すプラズマ陰極の大面積か等が考
案開発されているが、平板状電子源として工業的に実用
化の可能性の大きいものの一つとして、1 cm2あた
り1000万チツプにもおよぶ密度でミクロンサイズの
フィールドエミッター(電界放射陰極)を配列し、実用
的に平板状電子源とするS l) i n d tのフ
ィールドエミッションカソードがある(JAPAN
DISPLAY’ 86予稿p512にて発表)。その
構造を第4図(a)、 (b)に示す。これはガラス
などの基板41、コンタクト電極42、モリブデン、タ
ングステンなどの高融点金属からなるコーン状のマイク
ロチップ43.5i02などからなる絶縁層44、及び
マイクロチップ43に対応する位置に開孔45を有する
ゲート電極46で構成され、マイクロチップ43とゲー
ト電極46との間に電圧を印加し、マイクロチップ43
より電子を放射させるものであり、各マイクロチップ4
3一つ一つがフィールドエミッターとなる。またマイク
ロチップのピッチは約10ミクロン程度であり、その面
密度は1000万チツプ/cII2にも及び、実質的に
平板状電子源とみなすことができる。Conventional technology Conventionally, as a flat electron source that can be used in an image display device, there are those in which a large number of linear hot cathodes are arranged to form an equivalent flat electron source (for example, a fluorescent display tube), and those in which a large number of linear hot cathodes are arranged to form an equivalent flat electron source (for example, a fluorescent display tube). Large-area plasma cathodes for extracting electron sources have been devised and developed, but one planar electron source with a high density of 10 million chips per 1 cm2 is one of the most likely to be commercialized industrially. There is a S l) i n d t field emission cathode in which micron-sized field emitters (field emission cathodes) are arranged to form a practical flat electron source (JAPAN).
(Published in DISPLAY' 86 Proceedings p512). Its structure is shown in FIGS. 4(a) and 4(b). This includes a substrate 41 made of glass, a contact electrode 42, an insulating layer 44 made of a cone-shaped microchip 43.5i02 made of a high melting point metal such as molybdenum or tungsten, and an opening 45 at a position corresponding to the microchip 43. A voltage is applied between the microchip 43 and the gate electrode 46, and the microchip 43
It emits more electrons, and each microchip 4
Each of the three becomes a field emitter. Further, the pitch of the microchips is about 10 microns, and the areal density is as high as 10 million chips/cII2, so that they can be regarded as essentially a flat electron source.
次に上記電子源を用いた画像表示装置について説明する
。コンタクト電極42、ゲート電極46は各々Xおよび
X方向に分割されており、マトリクスを形成している。Next, an image display device using the above electron source will be explained. The contact electrode 42 and the gate electrode 46 are each divided in the X and X directions, forming a matrix.
コンタクト電極層42をX方向、ゲート電極45をX方
向に分割しても同様の効果を得ることができる。このマ
トリクスにより、電子ビーム放出のスイッチング、ビー
ム電流密度のコントロールを行う。47は電子ビームの
衝突により発光する蛍光体48を有するアノードであり
、該アノード47に、高電圧を印加し、電子ビームを加
速し、アノード47上に照射することにより、画像表示
を行う。A similar effect can be obtained by dividing the contact electrode layer 42 in the X direction and the gate electrode 45 in the X direction. This matrix controls the switching of electron beam emission and the beam current density. Reference numeral 47 denotes an anode having a phosphor 48 that emits light upon collision with an electron beam. Image display is performed by applying a high voltage to the anode 47 to accelerate the electron beam and irradiating it onto the anode 47.
発明が解決しようとする課題
上記画像表示装置において、面電子源とアノードのギャ
ップは1〜4Illllである。Problems to be Solved by the Invention In the above-mentioned image display device, the gap between the surface electron source and the anode is 1 to 4 Illll.
またマイクロチップ43が安定に電子ビームを放射する
にはI X 10−’Torrの真空度が必要であり、
’ 10−’Torrでは、H2O,H2,02など
の影響を受ける。CRTをはじめとする電子管内部の部
材及び駆動中に発生する放出ガスの吸着にはバリウムゲ
ッターを使用している。しかしコンタクト電極42、ゲ
ート電極45がマトリクス上に多数設けられているため
、バリウムゲッターを使用すると電極間でショートが発
生する。また、表示画面以外の周辺部にバルクゲッター
(例えば5AES社製St、101.5t171など)
を設けたとしても、大画面の場合、狭いギャップのため
画面中央部で発生するガスを吸着できず、圧力勾配が発
生し、マイクロチップ43の電子放射特性劣化するとい
う問題点を有していた。Further, in order for the microchip 43 to stably emit an electron beam, a degree of vacuum of I x 10-'Torr is required.
'10-'Torr is affected by H2O, H2, 02, etc. A barium getter is used to adsorb the internal components of electron tubes such as CRTs and the gas released during operation. However, since a large number of contact electrodes 42 and gate electrodes 45 are provided on the matrix, short circuits occur between the electrodes when a barium getter is used. In addition, a bulk getter (for example, 5AES St, 101.5t171, etc.) is installed in the peripheral area other than the display screen.
Even if a large screen is provided, gas generated in the center of the screen cannot be adsorbed due to the narrow gap, resulting in a pressure gradient and deterioration of the electron emission characteristics of the microchip 43. .
本発明は上記従来の電子管の課題に鑑み、狭い空間にお
いても放出されたガスを速やかに吸着し、管内に圧力勾
配を発生させることなく超高真空に保ち、長寿命の電子
管を提供するものである。In view of the above-mentioned problems with conventional electron tubes, the present invention provides an electron tube that quickly adsorbs emitted gas even in a narrow space, maintains an ultra-high vacuum without creating a pressure gradient within the tube, and has a long life. be.
課題を解決するための手段
本発明は、アノードに対向する面に化学的に活性な物質
を設け、アノードより低い電圧を印加し、アノードから
発生したガスのイオン化したものを、活性物質に衝突さ
せ清浄な表面を得、そこで発生ガスを吸着させる。Means for Solving the Problems The present invention provides a chemically active substance on the surface facing the anode, applies a lower voltage than the anode, and causes ionized gas generated from the anode to collide with the active substance. Obtain a clean surface on which to adsorb evolved gases.
作用
電子衝撃により発生したガスは、電子ビームと衝突して
正イオンになり、低い電圧の部分に向かい加速される。The gas generated by the action electron bombardment collides with the electron beam and becomes positive ions, which are accelerated toward the area of low voltage.
化学的に活性な物質に低電圧を印加しておけば正イオン
がこの表面に衝突する。この衝突により活性な物質はス
パッターされ清浄表面が発生し、この表面で放出された
ガスを吸着し、高真空を維持する。When a low voltage is applied to a chemically active substance, positive ions collide with the surface. This collision sputters active substances and creates a clean surface that adsorbs the released gas and maintains a high vacuum.
実施例
以下、本発明の実施例について図面を参照しながら説明
する。EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.
第1図は、本発明にかかる電子管の1実施例の断面斜視
図である。構造は従来例で説明したSp i nd を
型面電子源を用いた表示管と同様であり、ガラスなどの
基板l、コンタクト電極2、及びその上に直接設けであ
るWs Moなどの高融点金属からなるマイクロチップ
3.5i02などからなる絶縁層4、マイクロチップ3
に対応する位置に開孔5を有するゲート電極6及び7ノ
ード7から構成されている。コンタクト電極2、ゲート
電極6は、従来Niにより形成されていたが、本実施例
において、アノード7どじかに対向するゲート電極6は
、Ti、Zrあるいは少なくとも一方を含む合金(例え
ば、Z r −A I、Zr−V−Fe、Zr−At−
Ti、Zr−V−Fe−Ti等の合金)により形成して
いる。形成法としては、真空蒸着、スパッタリング、イ
オンブレーティング、CVD等の薄膜プロセス、スクリ
ーン印刷、圧着などがある。FIG. 1 is a cross-sectional perspective view of one embodiment of an electron tube according to the present invention. The structure is similar to the display tube using the Spin type surface electron source described in the conventional example, and consists of a substrate 1 such as glass, a contact electrode 2, and a high melting point metal such as WsMo directly provided thereon. Insulating layer 4 made of microchip 3.5i02 etc., microchip 3
It is composed of a gate electrode 6 and seven nodes 7 having openings 5 at positions corresponding to the gate electrodes 6 and 7, respectively. The contact electrode 2 and the gate electrode 6 have conventionally been made of Ni, but in this embodiment, the gate electrode 6 facing the anode 7 is made of Ti, Zr, or an alloy containing at least one of them (for example, Zr-A I, Zr-V-Fe, Zr-At-
Ti, an alloy such as Zr-V-Fe-Ti). Formation methods include vacuum evaporation, sputtering, ion blating, thin film processes such as CVD, screen printing, and pressure bonding.
上記実施例のガス吸着の原理を第2図を参照して説明す
る。アノード7に印加する電圧は1〜101c V、ゲ
ート電極6に印加する信号電圧は100■以下であるか
ら、アノード7とゲート電極6間にはkVオーダーの電
位差が生じる。マイクロチップ3から放射された電子ビ
ーム9はアノード7に衝突し発光するが、この時にアノ
ード7からガス10が放出される。放出したガス10は
電子ビーム9aと衝突しイオン化する。正イオン11は
、数kVの電位差の中をゲート電極6に向かって加速さ
れ、衝突する。そのときゲート電極6の表面はスパッタ
ーされ、衝突した点を中心に清浄表面12が現れる。化
学的に活性な物質の清浄表面であるから、ゲッター作用
によって、残留ガス13を吸着する。The principle of gas adsorption in the above embodiment will be explained with reference to FIG. Since the voltage applied to the anode 7 is 1 to 101 cV and the signal voltage applied to the gate electrode 6 is 100 cm or less, a potential difference on the order of kV occurs between the anode 7 and the gate electrode 6. The electron beam 9 emitted from the microchip 3 collides with the anode 7 and emits light, and at this time, a gas 10 is released from the anode 7. The emitted gas 10 collides with the electron beam 9a and is ionized. The positive ions 11 are accelerated toward the gate electrode 6 through a potential difference of several kV and collide with each other. At this time, the surface of the gate electrode 6 is sputtered, and a clean surface 12 appears around the point of collision. Since it is a clean surface of a chemically active substance, residual gas 13 is adsorbed by getter action.
上記した物質によりゲート電極を構成することにより、
表示管内を高真空に保持が可能になり、良好な電子放射
特性を有する平板表示管を得ることが可能になった。By configuring the gate electrode with the above-mentioned materials,
It has become possible to maintain a high vacuum inside the display tube, and it has become possible to obtain a flat panel display tube with good electron emission characteristics.
なお、本実施例では電極に化学的に活性名物質を用いて
ガスを吸着させたが、第3図に示すようにアノード7に
対向する面であれば、新たにガス吸着体13を設け、電
圧を印加すれば、同様な効果を得られることは言うまで
もなく、形成法として、第1の実施例で述べた方法の他
、板状、棒状のものを架張しても同様な効果が得られる
。印加する電圧はDCS ACを問わない。In this example, a chemically active substance was used to adsorb gas on the electrode, but if the surface faces the anode 7 as shown in FIG. It goes without saying that a similar effect can be obtained by applying a voltage, and in addition to the method described in the first embodiment, the same effect can also be obtained by stretching a plate-shaped or rod-shaped object. It will be done. The voltage to be applied does not matter whether it is DCS or AC.
なお、本発明は、ガス吸着層に電圧を印加して電位差を
利用してスパッターを発生させ、常に清浄表面を得ると
ころに特徴があり、単にガス源付近にゲッターを設ける
ことと本質的に異なる。The present invention is characterized in that a voltage is applied to the gas adsorption layer and the potential difference is used to generate sputtering, thereby constantly obtaining a clean surface, which is essentially different from simply providing a getter near the gas source. .
発明の詳細
な説明したように、本発明によれば、陽極に対向する面
に化学的に活性な物質を設け陽極より低い電圧を印加す
ることにより、駆動中の管内を高真空に保ち、長寿命の
電子管を提供することができる。As described in detail, according to the present invention, by providing a chemically active substance on the surface facing the anode and applying a voltage lower than that of the anode, the inside of the tube is maintained at a high vacuum during operation, and the tube can be maintained for a long time. It can provide a lifetime of electron tube.
第1図は本発明の実施例にかかる電子管の斜視図、第2
図は本発明の原理を示す電子管の断面図、第3図は本発
明の第2の実施例を示す電子管の斜視図、第4図は従来
の平板画像表示管の斜視図である。
1141・・・基板、2.42・・・コンタクト電極、
3.43・・・マイクロチップ、4.44・・・絶縁層
、5.45・・・開孔、6.46・・・ゲートメタル、
7.37・・・アノード、8.48・・・蛍光体、9・
・・電子ビーム、10・・・ガス分子、11・・・正イ
オン、12・・・清浄表面、13・・・ガス吸着体
代理人の氏名 弁理士 粟野重孝 他1名第1図
(a)
第
図
Vl〈V2
第
図
(a)FIG. 1 is a perspective view of an electron tube according to an embodiment of the present invention, and FIG.
3 is a sectional view of an electron tube showing the principle of the present invention, FIG. 3 is a perspective view of an electron tube showing a second embodiment of the invention, and FIG. 4 is a perspective view of a conventional flat image display tube. 1141...Substrate, 2.42...Contact electrode,
3.43... Microchip, 4.44... Insulating layer, 5.45... Opening, 6.46... Gate metal,
7.37... Anode, 8.48... Phosphor, 9.
...Electron beam, 10...Gas molecules, 11...Positive ions, 12...Clean surface, 13...Name of gas adsorbent agent Patent attorney Shigetaka Awano and 1 other person Figure 1 (a) Figure Vl〈V2 Figure (a)
Claims (2)
、TiまたはZr、あるいは前記Ti、Zrの少なくと
も一方を含む合金あるいは化合物を設け前記陽極より低
い電圧を印加することを特徴とする電子管。(1) An electron source and an anode are provided, and a portion facing the anode is provided with Ti or Zr, or an alloy or compound containing at least one of Ti and Zr, and a voltage lower than that of the anode is applied. electron tube.
方を含む合金、あるいは化合物を電気配線あるいは電極
として用いることを特徴とする請求項1記載の電子管。(2) The electron tube according to claim 1, wherein Ti, Zr, or an alloy or compound containing at least one of Ti and Zr is used as the electrical wiring or electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63254004A JPH02100242A (en) | 1988-10-07 | 1988-10-07 | Electron tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63254004A JPH02100242A (en) | 1988-10-07 | 1988-10-07 | Electron tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02100242A true JPH02100242A (en) | 1990-04-12 |
Family
ID=17258924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63254004A Pending JPH02100242A (en) | 1988-10-07 | 1988-10-07 | Electron tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02100242A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455162A2 (en) * | 1990-04-28 | 1991-11-06 | Sony Corporation | Flat display |
EP0467572A2 (en) * | 1990-07-16 | 1992-01-22 | Hughes Aircraft Company | Field emitter structure and fabrication process providing passageways for venting of outgassed materials from active electronic area |
US5934964A (en) * | 1994-02-28 | 1999-08-10 | Saes Getters S.P.A. | Field emitter flat display containing a getter and process for obtaining it |
JP2001210225A (en) * | 1999-11-12 | 2001-08-03 | Sony Corp | Getter, flat display and method for manufacturing the flat display |
WO2003107386A1 (en) * | 2002-05-21 | 2003-12-24 | 浜松ホトニクス株式会社 | Semiconductor photoelectric surface and its manufacturing method, and photodetecting tube using semiconductor photoelectric surface |
US10007301B2 (en) | 2013-12-25 | 2018-06-26 | Panasonic Intellectual Property Management Co., Ltd. | Electronic device |
-
1988
- 1988-10-07 JP JP63254004A patent/JPH02100242A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455162A2 (en) * | 1990-04-28 | 1991-11-06 | Sony Corporation | Flat display |
EP0455162A3 (en) * | 1990-04-28 | 1992-01-15 | Sony Corporation | Flat display |
US5223766A (en) * | 1990-04-28 | 1993-06-29 | Sony Corporation | Image display device with cathode panel and gas absorbing getters |
EP0467572A2 (en) * | 1990-07-16 | 1992-01-22 | Hughes Aircraft Company | Field emitter structure and fabrication process providing passageways for venting of outgassed materials from active electronic area |
US5934964A (en) * | 1994-02-28 | 1999-08-10 | Saes Getters S.P.A. | Field emitter flat display containing a getter and process for obtaining it |
JP2001210225A (en) * | 1999-11-12 | 2001-08-03 | Sony Corp | Getter, flat display and method for manufacturing the flat display |
WO2003107386A1 (en) * | 2002-05-21 | 2003-12-24 | 浜松ホトニクス株式会社 | Semiconductor photoelectric surface and its manufacturing method, and photodetecting tube using semiconductor photoelectric surface |
US10007301B2 (en) | 2013-12-25 | 2018-06-26 | Panasonic Intellectual Property Management Co., Ltd. | Electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3745844B2 (en) | Electron tube | |
US6008576A (en) | Flat display and process for producing cathode plate for use in flat display | |
US5578900A (en) | Built in ion pump for field emission display | |
US3735186A (en) | Field emission cathode | |
US5684356A (en) | Hydrogen-rich, low dielectric constant gate insulator for field emission device | |
US6236156B1 (en) | Micro vacuum pump for maintaining high degree of vacuum and apparatus including the same | |
JP2917898B2 (en) | Field emission cold cathode device and method of using the same | |
JPH02100242A (en) | Electron tube | |
US6670753B1 (en) | Flat panel display with gettering material having potential of base, gate or focus plate | |
WO2002071437A2 (en) | Slim cathode ray tube and method of fabricating the same | |
JPH0412436A (en) | Image display device | |
US6383050B1 (en) | Process for forming non-evaporative getter and method of producing image forming apparatus | |
JPH04289640A (en) | Image display element | |
JP2606406Y2 (en) | Vacuum sealing device and display device | |
JP2002520770A (en) | Field emission element | |
US10734180B2 (en) | Field emission cathode structure for a field emission arrangement | |
JPH0729520A (en) | Getter device and fluorescent character display tube having getter device | |
JP2992901B2 (en) | Method of manufacturing image display device | |
JPWO2002023578A1 (en) | Display device | |
JP2002100311A (en) | Picture display device and its manufacturing method | |
JP2969780B2 (en) | Image display device | |
JPH02270250A (en) | Manufacture of electronic tube | |
JP3666976B2 (en) | Image display device | |
JP2004349021A (en) | Spatter ion pump and manufacturing method therefor, and image displaying device having spatter ion pump | |
KR100287117B1 (en) | Field emission display device and manufacturing method thereof |