JPH0198289A - Connecting method for electrolytic capacitor with power source - Google Patents

Connecting method for electrolytic capacitor with power source

Info

Publication number
JPH0198289A
JPH0198289A JP25678487A JP25678487A JPH0198289A JP H0198289 A JPH0198289 A JP H0198289A JP 25678487 A JP25678487 A JP 25678487A JP 25678487 A JP25678487 A JP 25678487A JP H0198289 A JPH0198289 A JP H0198289A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
wirings
capacitor
printed wiring
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25678487A
Other languages
Japanese (ja)
Inventor
Takahiro Miyazaki
貴裕 宮崎
Yoichi Ueki
洋一 植木
Toshifumi Washio
敏文 鷲尾
Mamoru Shinjo
新城 護
Hidenao Nakajima
中▲じま▼ 秀直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25678487A priority Critical patent/JPH0198289A/en
Publication of JPH0198289A publication Critical patent/JPH0198289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Abstract

PURPOSE:To reduce the available temperature of an electrolytic capacitor and to enhance the reliability and life of a power source by forming printed wirings near the terminal position of the capacitor in a meshlike pattern, and connecting the terminals of the capacitor to the ends of conduction wirings provided by branching it from the wirings. CONSTITUTION:A main circuit is formed as printed wirings 2 with broad width on a printed circuit substrate 1, the vicinity of the position of the terminal 4 of an electrolytic capacitor 3 is formed in a meshlike pattern 5 by forming, for example, holes each having 3mm of sides at an interval of 6mm, and the area of the pattern 5 covers at least the mounting area of the capacitor 3. Further, the terminal 4 of the capacitor 3 is connected to the end of conduction wirings 6 branched from the wirings 3 of the main circuit. In this case, the mounting area of the capacitor 3 is so separated as not to be superposed on the wirings 2, and a heat conduction from the wirings 3 can be reduced.

Description

【発明の詳細な説明】 〔)既  要〕 プリント配線からの伝熱を抑えて、温度上昇を極力抑制
させる、電源装置使用の電解コンデンサの接続方法に関
し、 従来の方法以外の効果的な方法は無いのかに着目して、
新解決策の創案を目的とし、 プリント配線板を用いた電源装置において、プリント配
線と電解コンデンサの端子とを接続するのに、端子の近
傍のプリント配線を網目状パターンとしたり、主回路の
プリント配線から分岐させた導通配線を設けて行う、等
の熱伝導が小さくなる手段を用いて接続させる構成とす
る。
[Detailed Description of the Invention] [) Already Required] Regarding the method of connecting electrolytic capacitors used in power supply devices, which suppresses heat transfer from printed wiring and suppresses temperature rise as much as possible, there is an effective method other than the conventional method. Focusing on whether there is one,
With the aim of creating new solutions, in power supplies using printed wiring boards, the printed wiring near the terminals is made into a mesh pattern to connect the printed wiring and the terminals of the electrolytic capacitor, and the printed wiring of the main circuit is The connection is made using a means that reduces heat conduction, such as by providing a conductive wiring branched from the wiring.

〔産業上の利用分野〕[Industrial application field]

本発明は、電解コンデンサとプリント配線との接続方法
に係り、配線からの伝熱を抑えて、温度上昇を極力抑制
させる、電源装置使用の電解コンデンサの接続方法に関
す。
The present invention relates to a method of connecting an electrolytic capacitor to printed wiring, and more particularly, to a method of connecting an electrolytic capacitor using a power supply device, which suppresses heat transfer from the wiring and suppresses temperature rise as much as possible.

半導体ICを使用した電子装置では、その電源電圧は複
数種を用い、しかも低電圧であり、且つ装置は小形化、
高密度実装されており、装置光たりの供給電流は大電流
となり、全装画分をυ2めで供給することは、容量的、
質的、信頼度的に困難となり、室内供給は一種類の比較
的高圧の高信頼電源とし、各装置はこれを受電して、装
置内の回路機能ブロック毎に、ユニット形の電源装置を
分散配設させて、最終電圧に変換、供給させている。
Electronic devices using semiconductor ICs use multiple types of power supply voltages, and are low voltage, and devices are becoming smaller and smaller.
Due to the high-density packaging, the supply current for each device light is large, and supplying the entire packaging fraction at υ2 is capacitively
This became difficult in terms of quality and reliability, so the indoor supply was made using one type of relatively high-voltage, highly reliable power source, and each device received power from this, and unit-type power supplies were distributed for each circuit function block within the device. It is installed, converted and supplied to the final voltage.

この電源装置は、主回路ユニッI・と同実装構造となる
が、取扱電力、発熱量が大きいので、放熱冷却に十分の
注意を払い、特に、内部の実装部品の温度上昇を抑制さ
せることが、高信頼、長寿命化のために強く要望されて
いる。
This power supply has the same mounting structure as the main circuit unit I, but since it handles a large amount of power and generates a large amount of heat, it is necessary to pay sufficient attention to heat dissipation and cooling, especially to suppress the temperature rise of the internal mounted components. , high reliability, and long service life are strongly desired.

〔従来の技術〕[Conventional technology]

第3図にスイッチングレギュレータ電源回路例を示す。 FIG. 3 shows an example of a switching regulator power supply circuit.

各装置内に分散実装される電源装置は、直流−直流変換
電源にスイッチングレギュレータ回路を用いた装置が、
大半を占めており、交流入力に対しては、前記の電源装
置の入力部に交流−直流変換部を付加したもの用いてい
る。
The power supply device distributed in each device uses a switching regulator circuit as a DC-DC conversion power source.
In most cases, for AC input, an AC-DC converter is added to the input section of the power supply device described above.

かようなスイッチングレギュレータ電源の回路例は、第
3図に示す如くであり、大容ff1(C1〜C6)、高
耐圧(C1〜C3)のコンデンサが不可決であり、電解
コンデンサが使用される。
An example of a circuit for such a switching regulator power supply is shown in Fig. 3, in which capacitors with large capacity ff1 (C1 to C6) and high voltage resistance (C1 to C3) are not required, and electrolytic capacitors are used. .

ここで、この電源の信頼性(寿命)を考えてみると、そ
れは電解コンデンサ(一般にアルミ箔湿式電解コンデン
サが用いられる)によって決定されると言っても過言で
はない。
When considering the reliability (life span) of this power supply, it is no exaggeration to say that it is determined by the electrolytic capacitor (generally an aluminum foil wet electrolytic capacitor is used).

現況では、この種電解コンデンサの寿命が、使用温度に
より大きく左右され、一般的に105°Cで1000〜
2000時間と、他の回路部品に比べると桁違いに短い
ためであり、更に、一般的に目安として、10°C上昇
により寿命は半減すると推定されている。
Currently, the lifespan of this type of electrolytic capacitor is greatly affected by the operating temperature, and is generally 1000 to 1000m at 105°C.
This is because the lifespan is 2,000 hours, which is an order of magnitude shorter than other circuit components, and as a general guideline, it is estimated that a rise in temperature of 10°C will cut the lifespan in half.

従って、電解コンデンサの使用温度が、電源装置の寿命
を支配しており、この使用温度の低減を図るためには、 (1)電解コンデンサは発熱部品より遠ざけて実装。
Therefore, the operating temperature of the electrolytic capacitor governs the lifespan of the power supply, and in order to reduce this operating temperature, (1) Mount the electrolytic capacitor away from heat-generating components.

(2)部品の実装密度を下げた実装を行う。(2) Perform mounting with lower mounting density of components.

(3)強制冷却を行う。(3) Perform forced cooling.

(4)電源回路の効率を上げ発熱を抑える。(4) Increase the efficiency of the power supply circuit and suppress heat generation.

等の方法があり、実行されていた。There are methods such as this, and they have been implemented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしなめtら、 (1)  上記の第1,2項は、部品間の輻射熱伝達を
下げる方法で、構造の大形化を来す。
However, Name et al. (1) Items 1 and 2 above are methods of reducing radiant heat transfer between parts, resulting in an increase in the size of the structure.

(2)上記の第3項の強制冷却は、空冷或いは液冷の設
備と、見合った実装構造とが必要で、複雑となり信頼性
の低下を来す。
(2) The forced cooling described in item 3 above requires air-cooling or liquid-cooling equipment and a corresponding mounting structure, making it complicated and reducing reliability.

(3)上記の第4項の回路の効率化は、最も望ましい方
法であるが、現状が最高であり、即座に改良できること
ではない。
(3) Improving the efficiency of the circuit described in item 4 above is the most desirable method, but the current situation is the best and cannot be improved immediately.

等の問題点がある。There are other problems.

本発明は、上記の解決策以外の効果的な方法は無いのか
に着目して、新解決策の創案を目的としたものである。
The present invention aims to create a new solution by focusing on whether there are any effective methods other than the above solutions.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、第1図、第2図に示す如(、プリント配
線板1を用いた電源装置において、プリント配線2と電
解コンデンサ3の端子4とを接続するのに、熱伝導が小
さくなる手段、(1)電解コンデンサ3の端子4位置近
傍のプリント配線2を、網目状パターン(5)とさせる
The above problem is as shown in FIGS. 1 and 2 (in a power supply device using a printed wiring board 1, heat conduction is small when connecting the printed wiring 2 and the terminal 4 of the electrolytic capacitor 3). Means: (1) The printed wiring 2 near the terminal 4 position of the electrolytic capacitor 3 is formed into a mesh pattern (5).

(2)主回路のプリント配線2から分岐して導通配線6
を設け、先端に電解コンデンサ3の端子4を接続させる
(2) Continuous wiring 6 branched from the main circuit printed wiring 2
is provided, and the terminal 4 of the electrolytic capacitor 3 is connected to the tip.

ことにより行う、本発明の電源装置使用の電解コンデン
サの接続方法により解決される。
This problem is solved by the method of connecting an electrolytic capacitor for use in a power supply device according to the present invention.

〔作 用〕 即ち、従来の考慮外のプリント配線からの熱伝導が抑え
られるので、目的が達成される。
[Function] That is, the purpose is achieved because heat conduction from the printed wiring, which is not considered in the conventional method, is suppressed.

先づ、熱伝導の基本を考えると、簡略的には、対向する
2個の物体間の伝熱は、 Q=λS(θ1−θ2)t//2 Q:伝熱屋、 S:対向面積、t:時間、λ:熱伝導率
、θ:湯温度  l:対向距離、であり、伝熱IQを小
さくさせるには、(a)  対向面積Sを小さくする。
First, considering the basics of heat conduction, simply speaking, heat transfer between two opposing objects is as follows: Q = λS (θ1 - θ2) t//2 Q: Heat transfer area, S: Opposing area , t: time, λ: thermal conductivity, θ: hot water temperature, l: opposing distance. To reduce the heat transfer IQ, (a) reduce the opposing area S.

(b)  対向距離2を大ぎくする。(b) Increase the facing distance 2.

(C)  熱伝導率λの低い物質を間に入れる。(C) Inserting a substance with low thermal conductivity λ.

となる。becomes.

しかし、実際の電源装置では、前述第今図の回路図の如
く、発熱部品(トランジスタQl、変圧器T1、ダイオ
ードDI、02 、寒流線輪Ll)は、電解コンデンサ
01〜C6と繋がっており、且つ大電流が流れるため、
プリント配線2は線幅を出来るだけ広げた配線パターン
としており、これに電解コンデンサ3の端子4が接続さ
れている。
However, in an actual power supply device, as shown in the circuit diagram in Figure 1 above, the heat-generating components (transistor Ql, transformer T1, diodes DI, 02, cold coil Ll) are connected to electrolytic capacitors 01 to C6. In addition, because a large current flows,
The printed wiring 2 has a wiring pattern with a line width as wide as possible, and the terminal 4 of the electrolytic capacitor 3 is connected to this wiring pattern.

銅箔の熱伝導率は高く、線幅を広めたプリント配線2は
、更に、熱伝導を高め、発熱部品の発熱も良く伝熱させ
、電解コンデンサ3にも伝わってしまう。
Copper foil has a high thermal conductivity, and the printed wiring 2 with a wide line width further increases heat conduction, allowing the heat generated by the heat-generating components to be transferred well, and is also transmitted to the electrolytic capacitor 3.

そこで、第1図および第2図に示す如く、(a)  主
回路の線幅の広いプリント配線2の接続部分を網目状パ
ターン5として、伝熱面積を小さくさせる、 等の、熱伝導を小さくさせる手段を用いて、電解コンデ
ンサ3を接続させることにより、電解コンリント配線2
の全面に実施させることはせず、電解コンデンサ3の端
子4位置近傍のみとする。
Therefore, as shown in FIGS. 1 and 2, (a) the connection part of the printed wiring 2 with a wide line width of the main circuit is formed into a mesh pattern 5 to reduce the heat transfer area, etc., to reduce the heat conduction. By connecting the electrolytic capacitor 3 using a means to
It is not carried out over the entire surface of the electrolytic capacitor 3, but only near the terminal 4 position of the electrolytic capacitor 3.

若し、全面に行えば、熱的には好ましいが、電気的抵抗
が増大して影響を与える恐れがあるので、部分的にのみ
施して影響を抑えている。
If it were applied to the entire surface, it would be thermally favorable, but the electrical resistance would increase and there is a risk that it would have an adverse effect, so it is applied only partially to suppress the effect.

〔実施例〕〔Example〕

以下図面に示す実施例によって本発明を具体的に説明す
る。
The present invention will be specifically described below with reference to embodiments shown in the drawings.

第1図に本発明の第一実施例、第2図に本発明の第二実
施例を示す。
FIG. 1 shows a first embodiment of the invention, and FIG. 2 shows a second embodiment of the invention.

直流−直流変換電源として、前述の第3図の如き、スイ
ッチングレギュレータ回路用い、プリント配線板実装構
造の電源装置について、実施したものである。
The experiment was carried out on a power supply device using a switching regulator circuit and having a printed wiring board mounting structure, as shown in FIG. 3, as a DC-DC conversion power supply.

第一実施例は、第1図に示す如く、プリント配線板1に
主回路を線幅の広いプリント配線2とし、電解コンデン
サ3の端子4の位置近傍は、3胴角穴を6fflIT1
間隔に設けて網目状パターン5とさせており、網目状パ
ターン5の面積は、最低、接続電解コンデンサ3の実装
面積を覆うものとしている。
In the first embodiment, as shown in FIG. 1, the main circuit is printed wiring 2 with a wide line width on a printed wiring board 1, and the vicinity of the terminal 4 of the electrolytic capacitor 3 has a 3-body square hole 6fflIT1.
A mesh pattern 5 is formed at intervals, and the area of the mesh pattern 5 is such that it covers at least the mounting area of the connected electrolytic capacitor 3.

第二実施例は、第2図に示す如く、主回路の線幅の広い
プリント配線2から分岐させた導通配線6を設け、その
先端に電解コンデンサ3の端子4を接続させたもので、
この場合、電解コンデンサ3の実装面積と、プリント配
線2とは重ならない様に遠ざけることが肝要である。
In the second embodiment, as shown in FIG. 2, a conductive wiring 6 is provided branching from a wide printed wiring 2 of the main circuit, and a terminal 4 of an electrolytic capacitor 3 is connected to the tip of the conductive wiring 6.
In this case, it is important to keep the mounting area of the electrolytic capacitor 3 and the printed wiring 2 apart so that they do not overlap.

か(の如くして、従来装置と、外形、冷却構造を変えず
に本発明を実施したもので、電解コンデンサの温度を約
5°C低下させることができた。
In this way, by implementing the present invention without changing the external shape or cooling structure from the conventional device, the temperature of the electrolytic capacitor could be lowered by about 5°C.

上記実施例は一例を示し、網目状パターン5の形状、寸
法、導通配線6の寸法は、上記のものに限定するもので
はなく、また、両実施例の混用や、更に、プリント配線
2からの熱伝導を小さくさセる、他の有効手段によって
もよい。
The above embodiment shows one example, and the shape and dimensions of the mesh pattern 5 and the dimensions of the conductive wiring 6 are not limited to those described above. Other effective means for reducing heat conduction may also be used.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明により、従来の方法以外の有効な新
方法が創案され、電解コンデンサの使用温度を同実装条
件でも、更に、低減させることができ、コストアップも
なく、電源装置の高信頼化、長寿命化が図れ、その効果
は大なるものがある。
As described above, according to the present invention, an effective new method other than the conventional method has been created, which makes it possible to further reduce the operating temperature of electrolytic capacitors under the same mounting conditions, without increasing costs, and increasing the reliability of power supply devices. The effects of this are significant, as they can be made more durable and have a longer lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例、 第2図は本発明の第二実施例を示す。 第3図はスイッチングレギュレータ電源回路例である。 図において、 1はプリント配線板、2はプリント配線、3は電解コン
デンサ、4は端子、 ホも明の不興Eゼ例 秀 (2 苅\iB月2頂し・・ダミゑグク月 峯  2  悶 Zイッナ〉ズ(/ギユし−2とJE)名側声 32
FIG. 1 shows a first embodiment of the invention, and FIG. 2 shows a second embodiment of the invention. FIG. 3 is an example of a switching regulator power supply circuit. In the diagram, 1 is a printed wiring board, 2 is a printed wiring, 3 is an electrolytic capacitor, 4 is a terminal, Agony Zinnazu (/Giyushi-2 and JE) famous side voice 32

Claims (3)

【特許請求の範囲】[Claims] (1)プリント配線板(1)を用いた電源装置において
、プリント配線(2)と電解コンデンサ(3)の端子(
4)とを、熱伝導が小さくなる手段を用いて接続させる
ことを特徴とする電源装置使用の電解コンデンサの接続
方法。
(1) In a power supply device using a printed wiring board (1), the printed wiring (2) and the terminals of the electrolytic capacitor (3) (
4) A method for connecting an electrolytic capacitor for use in a power supply device, characterized in that the connection is made using a means that reduces heat conduction.
(2)熱伝導が小さくなる手段として、該電解コンデン
サ(3)の端子(4)位置近傍のプリント配線(2)を
、網目状パターン(5)とさせることを特徴とする、特
許請求の範囲第1項記載の電源装置使用の電解コンデン
サの接続方法。
(2) As a means for reducing heat conduction, the printed wiring (2) near the terminal (4) position of the electrolytic capacitor (3) is formed into a mesh pattern (5). A method for connecting an electrolytic capacitor for use in the power supply device according to item 1.
(3)熱伝導の小さくなる手段として、主回路のプリン
ト配線(2)から分岐して導通配線(6)を設け、先端
に該電解コンデンサ(3)の端子(4)を接続させるこ
とを特徴とする、特許請求の範囲第1項記載の電源装置
使用の電解コンデンサの接続方法。
(3) As a means to reduce heat conduction, a conductive wiring (6) is provided branching off from the printed wiring (2) of the main circuit, and the terminal (4) of the electrolytic capacitor (3) is connected to the tip. A method for connecting an electrolytic capacitor for use in a power supply device according to claim 1.
JP25678487A 1987-10-12 1987-10-12 Connecting method for electrolytic capacitor with power source Pending JPH0198289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25678487A JPH0198289A (en) 1987-10-12 1987-10-12 Connecting method for electrolytic capacitor with power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25678487A JPH0198289A (en) 1987-10-12 1987-10-12 Connecting method for electrolytic capacitor with power source

Publications (1)

Publication Number Publication Date
JPH0198289A true JPH0198289A (en) 1989-04-17

Family

ID=17297400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25678487A Pending JPH0198289A (en) 1987-10-12 1987-10-12 Connecting method for electrolytic capacitor with power source

Country Status (1)

Country Link
JP (1) JPH0198289A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858379B2 (en) * 1975-07-14 1983-12-24 旭化成株式会社 Flame retardant polyester composition
JPS6179294A (en) * 1985-04-05 1986-04-22 アイワ株式会社 Method of mounting part
JPS6146766B2 (en) * 1981-12-28 1986-10-16 Komatsu Mfg Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858379B2 (en) * 1975-07-14 1983-12-24 旭化成株式会社 Flame retardant polyester composition
JPS6146766B2 (en) * 1981-12-28 1986-10-16 Komatsu Mfg Co Ltd
JPS6179294A (en) * 1985-04-05 1986-04-22 アイワ株式会社 Method of mounting part

Similar Documents

Publication Publication Date Title
US11172597B2 (en) Mounting apparatus, for mounting at least one heat dissipating electrical device, optionally including a heat sink body for solid, gas and fluid heat exchange, and circuit board assembly providing interface between circuits
CN102159054B (en) Electronic package structure
US9552918B2 (en) Magnetic device
US6982876B1 (en) Printed circuit board assembly
US10842043B1 (en) Fabricating coolant-cooled heat sinks with internal thermally-conductive fins
US8724337B2 (en) Compact server power supply having high power density
US20190245433A1 (en) Water-cooling power supply module
JP6158051B2 (en) Power converter
JP2000091884A (en) Electronic circuit device
CN110996491B (en) Circuit board device and electronic equipment
CN207219146U (en) Heat abstractor for heat dissipation for circuit board
US20230337405A1 (en) Power supply system for supplying power to network device
JP2009283840A (en) Electronic circuit module
CN111064344B (en) Power module with bottom metal heat dissipation substrate
JPH0198289A (en) Connecting method for electrolytic capacitor with power source
JPH08279592A (en) Assembly structure of switching power source rectifier
US20220192052A1 (en) Choke structure with water cooling
JP6503650B2 (en) Power converter cooling structure
US20060002092A1 (en) Board mounted heat sink using edge plating
US20190029104A1 (en) Cooling assemblies for electronic devices
US11910517B2 (en) Point of load module and heatsink therefor
CN211959896U (en) Heat dissipation structure for switching power supply power device and switch
CN216357923U (en) High-efficient radiating electronic equipment casing
CN207835339U (en) A kind of radiator structure of Switching Power Supply
US11343942B2 (en) Power conversion device including cooling components