JPH0198122A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0198122A
JPH0198122A JP25603487A JP25603487A JPH0198122A JP H0198122 A JPH0198122 A JP H0198122A JP 25603487 A JP25603487 A JP 25603487A JP 25603487 A JP25603487 A JP 25603487A JP H0198122 A JPH0198122 A JP H0198122A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
magnetic layer
metal thin
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25603487A
Other languages
Japanese (ja)
Inventor
Akira Horiguchi
晃 堀口
Kuniharu Fujiki
藤木 邦晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP25603487A priority Critical patent/JPH0198122A/en
Publication of JPH0198122A publication Critical patent/JPH0198122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To easily provide an easy magnetization characteristic to the concentrical direction of a magnetic layer by passing current to the thin metallic film on a high-polymer molding substrate or metallic substrate to generate a magnetic field, thereby orienting the magnetic layer. CONSTITUTION:After the thin metallic film 12 is formed on the substrate 10 consisting of the high-polymer molding, the magnetic layer 14 is coated thereon. Uncoated parts are provided to the outside circumferential part and inside circumferential part of the substrate at this time. Electrodes 16, 18 are brought into contact with the uncoated outside circumferential part and inside circumferential part and the current is passed in the radial direction of the disk while the thin magnetic film is not dried yet. The magnetic field H is then generated in the concentrical direction and the orientation is executed. The recording medium produced by this production process has, therefore, orientability and the max. magnetic flux density, coercive force and squareness ratio, etc., are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えばコンピュータの外部メモリ用磁気ディス
クのような磁気記0媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium such as a magnetic disk for an external memory of a computer.

[従来の技術及び発明の解決すべき問題点1磁気記録媒
体はオーディオ用又はビデオ用等の長尺の磁気テープと
70ツピーデイスク又はハードディスク等の磁気ディス
クに大別され、磁気テープは一般にその磁性層においで
配向が行なわれている。ところで磁気ディスクは通常磁
気ヘッドと相対回転運動を行い、同心円方向に磁気記録
が行なわれる。従って、磁性層は同心円方向に磁気異方
性が生じている状態が最も好ましく、例えば、磁性体に
針状γ−Fe203を用いた場合、同心円方向に針状γ
−Fe20=の長袖が向いて配列されている状態が最も
効率よく磁気記録及び再生ができる。しかし、従来の磁
気ディスクにおいては同心円方向へ磁化容易性を持たせ
ることが極めて困難であったため、無配向となっていた
[Problems to be Solved by the Prior Art and Inventions 1 Magnetic recording media are broadly divided into long magnetic tapes for audio or video, and magnetic disks such as 70 disks or hard disks. Orientation takes place in the layers. By the way, a magnetic disk usually performs a relative rotational movement with a magnetic head, and magnetic recording is performed in a concentric direction. Therefore, it is most preferable for the magnetic layer to have magnetic anisotropy in the concentric direction. For example, when acicular γ-Fe203 is used as the magnetic material, the acicular γ-Fe203 is in the concentric direction.
-Fe20=Magnetic recording and reproduction can be performed most efficiently when the long sleeves are oriented. However, in conventional magnetic disks, it was extremely difficult to provide easy magnetization in the concentric direction, so the magnetic disks were non-oriented.

E問題、αを解決するための手段及び作用1本発明者ら
は、磁気ディスクの磁性体を同心円方向に配向させるべ
く鋭意検jすした結果、磁性体を有する磁気ディスクに
電流を流すことにより同心円方向に磁場を発生させ、配
向させることを見い出し本発明を完成した。
Means and Effects for Solving Problem E and α 1 As a result of the inventors' intensive investigation to orient the magnetic material of the magnetic disk in the concentric direction, the present inventors found that by passing a current through the magnetic disk having the magnetic material, The present invention was completed by discovering that a magnetic field can be generated in a concentric direction to achieve orientation.

即ち、本発明によれば、金属薄膜を設けたディスク状の
高分子成形物基体あるいはディスク状の金属基体の上に
磁性体を塗布し磁性層を形成した後、前記磁性層が未乾
燥である間に前記金属薄膜あるいは前記金属基体に電流
を流すことにより磁場を発生させ、前記磁性層内で同心
円方向の磁気配向を行う磁気記録媒体の製造方法が提供
される。
That is, according to the present invention, after a magnetic layer is formed by coating a magnetic material on a disk-shaped polymer molded substrate or a disk-shaped metal substrate provided with a metal thin film, the magnetic layer is not dried. A method of manufacturing a magnetic recording medium is provided, in which a magnetic field is generated by passing a current through the metal thin film or the metal substrate between the magnetic layers, and magnetic orientation is performed in a concentric direction within the magnetic layer.

本発明は一般に電流が流れると、電流方向に対し、右ね
じの回転方向の磁場が発生するとのアンペールの法則を
応用したものである。即ち、金属でできた基体又は高分
子成形物基体上の金属薄膜に直流電流をその半径方向に
流すことにより、同心円方向の磁場を発生させ、磁性層
における配向を行わせるものである。
The present invention generally applies Ampere's law, which states that when a current flows, a magnetic field is generated in the direction of rotation of a right-handed screw relative to the direction of the current. That is, by passing a direct current in the radial direction of a metal thin film on a metal substrate or a polymer molded substrate, a concentric magnetic field is generated, thereby causing orientation in the magnetic layer.

[実施例1 以下、図面と共に本発明の磁気記録媒体の製造方法の実
施例を説明する。
[Example 1] Hereinafter, an example of the method for manufacturing a magnetic recording medium of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明するだめの斜視図であ
る。始めに高分子成形物よりなる基体10の一面に金属
(導電性)薄膜12を設けるが、その金属の材質はアル
ミニウム、銅、銀等導電性であればなんでも良く、何を
使用するかはコスト、耐久性、物理的特性等を考慮した
上で適宜決定すれば良い、金属薄膜12の作製方法は、
蒸着、スパッタリング、イオンブレーティング、無電解
メツキ等いずれの方法でも良いが、金!!4薄膜12の
厚みは、電気抵抗の厚み依存性を考慮した上で必要な厚
さに設定する。尚、基体10が導電性物質である場合に
は、上記金属薄WA12を設ける必要はない。
FIG. 1 is a perspective view for explaining one embodiment of the present invention. First, a metal (conductive) thin film 12 is provided on one surface of a substrate 10 made of a polymer molded product.The material of the metal may be aluminum, copper, silver, or any other conductive material, and the choice of material depends on the cost. The method for producing the metal thin film 12 may be determined as appropriate after considering durability, physical characteristics, etc.
Any method such as vapor deposition, sputtering, ion blating, electroless plating, etc. is fine, but gold! ! 4. The thickness of the thin film 12 is set to a necessary thickness in consideration of the thickness dependence of electrical resistance. Note that if the base body 10 is a conductive material, it is not necessary to provide the thin metal WA 12 described above.

上記金属薄!112を基体10上に作製した後、その上
に磁性層14を塗布するが、その際、ディスク状基体1
0の外周部分及び内周部分に未塗布の部分を設ける。磁
性塗膜が未乾燥の状態時に、未塗布の外周部分及び内周
部分に電極16.18を接触させ、ディスクの半径方向
に電流を流すと同心円方向に磁場Hが発生し、配向が行
なわれる。磁気ディスク全体に亘って配向を行うに際し
、磁気ディスクを回111i:させて配向させる場合、
磁気ディスクの回転数によっては磁性塗膜が流れるよう
な状態が生ずる場合には、磁気ディスクを固定し、電極
16.18を回転させれば良い。
The above metal thin! 112 on the substrate 10, the magnetic layer 14 is applied thereon. At this time, the disk-shaped substrate 1
An uncoated portion is provided at the outer circumferential portion and inner circumferential portion of 0. When the magnetic coating film is not dry, electrodes 16 and 18 are brought into contact with the uncoated outer and inner circumferential portions and a current is passed in the radial direction of the disk, a magnetic field H is generated in the concentric direction, and orientation is performed. . When performing orientation over the entire magnetic disk, when the magnetic disk is rotated 111i:,
If the magnetic coating film flows depending on the rotational speed of the magnetic disk, it is sufficient to fix the magnetic disk and rotate the electrodes 16 and 18.

電流Iによって発生する磁場Hの大きさは電流Iからの
距離に反比例するが、上記した方法による場合は、磁性
層14は金属薄膜12に接しているため比較的小さい電
流Iで大きな磁場Hが発生する。
The magnitude of the magnetic field H generated by the current I is inversely proportional to the distance from the current I, but in the case of the above method, since the magnetic layer 14 is in contact with the metal thin film 12, a large magnetic field H is generated with a relatively small current I. Occur.

次に本実施例における製造方法を比較例と共に更に詳述
する。
Next, the manufacturing method in this example will be explained in more detail together with a comparative example.

第1図に示すように厚さ70μ−のポリエステルベース
フィルム10に真空蒸着法でアルミニウム12を厚さ1
μII蒸着する。これをディスク状に打ち抜いた後、こ
の基体にγ−Fe20=と高分子バインダで構成される
磁性塗料を塗布する。この様にして塗布された磁性層l
114が未乾燥の状態の時に、第1図に示す様に基体1
0を回転させながら電ff116.18を介して電流5
^を流すことにより配向を行った。
As shown in FIG. 1, aluminum 12 is applied to a 70μ-thick polyester base film 10 to a thickness of 1 by vacuum deposition.
Deposit μII. After punching this out into a disk shape, a magnetic paint composed of γ-Fe20= and a polymeric binder is applied to this substrate. The magnetic layer l coated in this way
When the substrate 114 is in an undried state, the substrate 1 is removed as shown in FIG.
Current 5 through electric ff116.18 while rotating 0
Orientation was performed by flowing ^.

その後、研磨処理を行い、40℃で48時間放置するこ
とにより硬化反応を行い、フロッピーディスクを作製し
た。
Thereafter, a polishing treatment was performed, and a curing reaction was performed by leaving it at 40° C. for 48 hours to produce a floppy disk.

比較例 上記の場合と同様の方法、条件により、即ち、ポリエス
テルベースフィルム10にアルミニウム12をFkML
、これを円盤状に打ち抜いた後、この基体に7−Fe2
e、と高分子バインダで構成される磁性塗料を塗布し、
磁性金属14を形成させた。この後は、上記の場合と異
なり、電流を流さず、即ち、磁場配向を行わない、つい
でカレンダ処理をし、40℃で48時間放置して硬化反
応させ70ツピーデイスクを作製した。
Comparative Example Using the same method and conditions as above, that is, aluminum 12 was applied to the polyester base film 10 using FkML.
, after punching this into a disk shape, 7-Fe2 is applied to this base.
e, and a magnetic paint composed of a polymer binder is applied,
A magnetic metal 14 was formed. After this, unlike the case described above, no current was applied, that is, no magnetic field orientation was applied, and then calender treatment was performed, and the material was left to stand at 40° C. for 48 hours to allow a hardening reaction to occur, producing a 70-tupee disk.

上記実施例と比較例にて作製したフロッピーディスクの
配向特性の評価結果を表に示したが、この結果から、実
施例の方が優れた配向性を有していることがわかる。
The evaluation results of the orientation characteristics of the floppy disks produced in the above Examples and Comparative Examples are shown in the table, and it can be seen from the results that the Examples have better orientation.

fjS2図は本発明の池の実施例を説明するための斜視
図である。高分子成形物等からなる非導電性基体10上
に、第2八図に示される様に半径方向に伸長する多数の
金属薄膜12aを所定間隔をもって設け、この上に磁性
層14を塗布する。本実施例においても先の実施例の場
合と同様に磁性層14の塗布の際、金属薄膜12aの外
周及び内周部分に未塗布の部分を設ける(塗布された磁
性層14及び未塗布部分は図示せず)。尚、磁性N14
を形成する磁性塗料は、所定間隔をもって設けられた金
属薄膜12aの間のくぼみへも入りかつ塗膜表面は平滑
となる。
Figure fjS2 is a perspective view for explaining an embodiment of the pond of the present invention. As shown in FIG. 28, a large number of metal thin films 12a extending in the radial direction are provided at predetermined intervals on a non-conductive substrate 10 made of a molded polymer or the like, and a magnetic layer 14 is applied thereon. In this embodiment, as in the previous embodiment, when coating the magnetic layer 14, uncoated portions are provided on the outer and inner circumferences of the metal thin film 12a (the coated magnetic layer 14 and the uncoated portions are (not shown). In addition, magnetic N14
The magnetic paint forming the magnetic paint enters the recesses between the thin metal films 12a provided at predetermined intervals, and the surface of the paint film becomes smooth.

先の実施例では配向特性の観点から電極は一対のみ設け
ることが適当であったが、本実施例ではPt5ZB図に
示す様に電極16.18を複数対とし、これらを直列接
続したものを用いる。即ち複数の+側電極16i116
b、 16cと複数の一側電極18a、 18b。
In the previous example, it was appropriate to provide only one pair of electrodes from the viewpoint of alignment characteristics, but in this example, as shown in the Pt5ZB diagram, multiple pairs of electrodes 16 and 18 are used, and these are connected in series. . That is, a plurality of + side electrodes 16i116
b, 16c and a plurality of one side electrodes 18a, 18b.

18cが各々対として対向し基体10の同心円方向に並
べて設けられ、導#i20によって違いに隣の逆極性電
極と接続され、全体として直列電極を形成している。か
かる構成の電極を用いて所定間隔をもって設けられた半
径方向に伸長する複数の金属薄膜12&に電流Iを印加
すると、磁場■]の発生範囲が広くなるので、配向の効
率が上がる。
18c are arranged in pairs, facing each other in the concentric direction of the base 10, and are connected to adjacent opposite electrodes by conductors #i20, forming a series electrode as a whole. When a current I is applied to a plurality of radially extending metal thin films 12 & provided at predetermined intervals using electrodes having such a configuration, the range in which the magnetic field (1) is generated becomes wider, thereby increasing the orientation efficiency.

[発明の効果] 以上の説明から明らかなように本発明における磁気記録
媒体の製造方法では、高分子成形物基体上の金属薄膜も
しくは金属基体に電流を流すことにより磁場を発生させ
て配向させることが可能となる。従って本発明の製造方
法で製造された記録媒体は配向性を有しており、最大磁
束密度(Bm)、保磁力(He)及び角形比(Rs)等
が向上するという優れた特長を有するので、本発明の産
業上の利用性は極めて大きいものである。
[Effects of the Invention] As is clear from the above description, in the method for manufacturing a magnetic recording medium according to the present invention, a magnetic field is generated by passing a current through a metal thin film on a polymer molded substrate or a metal substrate for orientation. becomes possible. Therefore, the recording medium manufactured by the manufacturing method of the present invention has an orientation, and has excellent features such as improved maximum magnetic flux density (Bm), coercive force (He), squareness ratio (Rs), etc. , the industrial applicability of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための斜視図であ
り、第2八図及び第2B図は本発明の他の実施例を示す
ものであり、第2八図はこの実施例の製造方法を説明す
るための部分的斜視図であり、第2B図はこの実施例に
用いる複数の電極の配置を示す平面図である。 10・・・基体、 12.12a・・・金属薄膜、 14・・・磁性層 16.16a、 16b、 16c118.18a、 
18b、18 c−電極20・・・導線 発明者 堀  口  晃 藤  木  邦  晴
Fig. 1 is a perspective view for explaining one embodiment of the present invention, Fig. 28 and Fig. 2B show other embodiments of the present invention, and Fig. 28 shows this embodiment. FIG. 2B is a partial perspective view for explaining the manufacturing method of , and FIG. 2B is a plan view showing the arrangement of a plurality of electrodes used in this example. 10... Substrate, 12.12a... Metal thin film, 14... Magnetic layer 16.16a, 16b, 16c118.18a,
18b, 18c-electrode 20...Conducting wire inventor Horiguchi Kofuji Kuniharu Ki

Claims (3)

【特許請求の範囲】[Claims] (1)金属薄膜を設けたディスク状の高分子成形物基体
あるいはディスク状の金属基体の上に磁性体を塗布し磁
性層を形成した後、前記磁性層が未乾燥である間に前記
金属薄膜あるいは前記金属基体に電流を流すことにより
磁場を発生させ、前記磁性層内で同心円方向の磁気配向
を行う磁気記録媒体の製造方法。
(1) After coating a magnetic material on a disk-shaped polymer molded substrate or a disk-shaped metal substrate provided with a metal thin film to form a magnetic layer, the metal thin film is formed while the magnetic layer is not dried. Alternatively, a method for manufacturing a magnetic recording medium in which a magnetic field is generated by passing a current through the metal substrate, and magnetic orientation is performed in a concentric direction within the magnetic layer.
(2)前記電流を流すに際し、前記金属薄膜あるいは前
記金属基体の内周及び外周部分にそれぞれ接触する電極
を用いて直流電流を前記基体の半径方向に流しつつ、前
記基体を回転させることを特徴とする特許請求の範囲第
1項記載の磁気記録媒体の製造方法。
(2) When passing the current, the substrate is rotated while flowing a direct current in the radial direction of the substrate using electrodes that contact the inner and outer peripheries of the metal thin film or the metal substrate, respectively. A method for manufacturing a magnetic recording medium according to claim 1.
(3)前記高分子形成物基体上に、その半径方向に伸長
する多数の金属薄膜を所定間隔をもって設け、その上に
前記磁性層を塗布し、前記電極として直列に接続され同
心円方向に並べられた複数の対の電極からなり、かつ前
記所定間隔をもって設けられた金属薄膜の内周及び外周
部分に接触するものを用いて、前記基体を回転させるこ
とを特徴とする特許請求の範囲第1項記載の磁気記録媒
体の製造方法。
(3) A large number of metal thin films extending in the radial direction are provided at predetermined intervals on the polymer formed substrate, the magnetic layer is applied thereon, and the metal thin films are connected in series and arranged concentrically as the electrodes. Claim 1, wherein the base body is rotated using a plurality of pairs of electrodes that contact the inner and outer circumferential portions of the metal thin film provided at predetermined intervals. A method of manufacturing the magnetic recording medium described above.
JP25603487A 1987-10-09 1987-10-09 Production of magnetic recording medium Pending JPH0198122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25603487A JPH0198122A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25603487A JPH0198122A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0198122A true JPH0198122A (en) 1989-04-17

Family

ID=17286997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25603487A Pending JPH0198122A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0198122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625866A (en) * 1991-12-12 1997-04-29 Televerket Mobile telecommunication system having an auxiliary routing arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625866A (en) * 1991-12-12 1997-04-29 Televerket Mobile telecommunication system having an auxiliary routing arrangement

Similar Documents

Publication Publication Date Title
US4518627A (en) Apparatus and method for disorienting magnetic particles in magnetic recording media
JPS6249656B2 (en)
KR920008416B1 (en) Magnetic recording medium with vertically oriented magnetic particles
JPH0198122A (en) Production of magnetic recording medium
US4189508A (en) Process for the preparation of magnetic recording medium
JPH0281321A (en) Production of magnetic recording medium
JPH0198125A (en) Production of magnetic recording medium
JPS6329335B2 (en)
JPH0198126A (en) Production of magnetic recording medium
JPS6233337A (en) Arranging method for disc shape magnetic recording medium
JPH0113390Y2 (en)
JPS6334731A (en) Production of magnetic recording medium
JPS62212918A (en) Vertical magnetism recording medium
JPH044531B2 (en)
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH0581662A (en) Production of perpendicular magnetic recording medium
JPH0233293Y2 (en)
JPS6150217A (en) Production of magnetic recording medium
JPS59229746A (en) Production of magnetic recording medium
JPH031325A (en) Production of magnetic recording medium
JPH0370857B2 (en)
JPS59223939A (en) Orientation processing device of disc-shaped magnetic recording medium
JPS59203243A (en) Production for magnetic recording medium
JPS59139180A (en) Magnetic recording medium
JPS6020806B2 (en) magnetic recording medium