JPH0198126A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0198126A
JPH0198126A JP25603587A JP25603587A JPH0198126A JP H0198126 A JPH0198126 A JP H0198126A JP 25603587 A JP25603587 A JP 25603587A JP 25603587 A JP25603587 A JP 25603587A JP H0198126 A JPH0198126 A JP H0198126A
Authority
JP
Japan
Prior art keywords
thin film
film
recording medium
films
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25603587A
Other languages
Japanese (ja)
Inventor
Akira Horiguchi
晃 堀口
Kuniharu Fujiki
藤木 邦晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP25603587A priority Critical patent/JPH0198126A/en
Publication of JPH0198126A publication Critical patent/JPH0198126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain good orientational property without requiring a special orienting device by passing current to striped thin metallic films provided on a magnetic recording medium to generate a magnetic field in the longitudinal direction, thereby orienting the films. CONSTITUTION:The many striped thin metallic films 12 extending in the short side direction of a base film 10 which is a high-polymer molding are longitudinally arranged at prescribed intervals. A thin nonconductive film 14 is then applied on the films 12 to smooth the surface; thereafter, a thin ferromagnetic film 16 is formed thereon. A pair of electrodes 18, 20 are brought into contact with the surfaces of both exposed ends of the films 12. While the recording medium formed by forming the films 12 and the film 14 on the film 10 under generation of the evaporated electrons from an evaporation source is run in the longitudinal direction thereof, the current is passed through the electrodes 28, 20. The current flows only to the films 12 and the magnetic field H is generated in the longitudinal direction of the film 10. A film 16 is, therefore formed while the evaporated atoms to be deposited by evaporation are immediately oriented on the film 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオーディオ用又はビデオ用等の磁気テープの如
き磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic recording medium such as a magnetic tape for audio or video use.

〔従来の技術〕[Conventional technology]

従来から高分子成形物からなる基板上に、強磁性蒸着薄
膜を形成して磁気記録媒体を製造する方法において、強
磁性薄膜の長手方向の保磁力(Hc)を向上させる、即
ち磁気異方性を得る手段として、斜方蒸着法、磁場中蒸
着法等が知られている。
Conventionally, in the method of manufacturing a magnetic recording medium by forming a ferromagnetic vapor-deposited thin film on a substrate made of a polymer molded product, the coercive force (Hc) in the longitudinal direction of the ferromagnetic thin film is improved, that is, magnetic anisotropy is improved. As means for obtaining this, oblique evaporation, magnetic field evaporation, and the like are known.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

磁場中蒸着法は、−船釣に永久磁石あるいは電磁石を用
いるが、磁場を発生する部分を、磁場をかけたい部分に
触れさせることが困難であり、両者間の距離をある程度
以上短かくすることができない。従って永久磁石の場合
には相当強力なものを必要とし、また電磁石を用いる場
合には強い電流を流さなければならないため大がかりな
装置を必要とするので、上記磁場中蒸着法は一般には行
なわれていない。一方斜方蒸着法は、このような磁場発
生装置を必要とせず比較的良好な磁気異方性が得られる
ために一般的に行なわれているが、磁場中蒸着と比較す
ると蒸着効率が低いという問題があった。
The magnetic field deposition method uses permanent magnets or electromagnets for boat fishing, but it is difficult to make the part that generates the magnetic field touch the part where you want to apply the magnetic field, so the distance between the two must be shortened to a certain extent. I can't. Therefore, if a permanent magnet is used, it needs to be quite strong, and if an electromagnet is used, a strong current must be passed, which requires a large-scale device, so the above-mentioned deposition method in a magnetic field is not generally used. do not have. On the other hand, the oblique evaporation method is commonly used because it does not require such a magnetic field generator and can obtain relatively good magnetic anisotropy, but it is said to have lower deposition efficiency than evaporation in a magnetic field. There was a problem.

〔問題点を解決するための手段及び作用〕本発明者らは
、磁気記録媒体の高分子成形物基板上に設けられた強磁
性薄膜の長手方向への保磁力を向上させるべく鋭意検討
した結果、上記磁気記録媒体に設けられたストライプ状
金属薄膜に電流を流すことにより長手方向に磁場を発生
させ、配向させるという、磁気記録媒体自体に配向器の
役割を持たせることにより、長手方向への保磁力を向上
させることを可能とし本発明を完成した。
[Means and effects for solving the problem] The present inventors have made extensive studies to improve the coercive force in the longitudinal direction of a ferromagnetic thin film provided on a polymer molded substrate of a magnetic recording medium. , by passing a current through the striped metal thin film provided on the magnetic recording medium, a magnetic field is generated in the longitudinal direction and the magnetic recording medium itself is given the role of an orientator. The present invention has been completed by making it possible to improve the coercive force.

即ち、本発明によれば、高分子成形物基体に磁性層を設
け、前記磁性層における配向を行なう磁気記録媒体の製
造方法において、前記高分子成形物基体上にその短手方
向に伸長する多数の金属薄膜を所定間隔をもって設け、
その上に非導電性薄膜を設けた後、前記非導電性薄膜上
に強磁性薄膜を形成する際、前記金属薄膜に電流を流す
ことにより前記高分子成形物基体の長手方向に磁場を発
生させ、前記配向を行なうことを特徴とする磁気記録媒
体の製造方法が提供される。
That is, according to the present invention, in a method for manufacturing a magnetic recording medium, in which a magnetic layer is provided on a polymer molded substrate and orientation is performed in the magnetic layer, a large number of magnetic recording media extending in the transverse direction on the polymer molded substrate are provided. metal thin films are provided at predetermined intervals,
After providing a non-conductive thin film thereon, when forming a ferromagnetic thin film on the non-conductive thin film, a magnetic field is generated in the longitudinal direction of the polymer molded substrate by passing an electric current through the metal thin film. , there is provided a method for manufacturing a magnetic recording medium, characterized in that the above orientation is performed.

本発明は一般に電流が流れると、電流方向に対し、右ね
じの回転方向の磁場が発生するとのアンペールの法則を
応用したものである。即ち磁気記録媒体上の金属薄膜に
直流電流を金属薄膜の短手方向に流すことにより、長手
方向の磁場を発生させ、磁性層を形成させつつ、同時に
磁性層における配向を行なわせるものである。
The present invention generally applies Ampere's law, which states that when a current flows, a magnetic field is generated in the direction of rotation of a right-handed screw relative to the direction of the current. That is, by passing a direct current through a metal thin film on a magnetic recording medium in the lateral direction of the metal thin film, a longitudinal magnetic field is generated, forming a magnetic layer and simultaneously causing orientation in the magnetic layer.

〔実施例〕〔Example〕

以下図面と共に本発明の磁気記録媒体の製造方法の実施
例を説明する。
Embodiments of the method for manufacturing a magnetic recording medium of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を説明するための斜視図であ
る。はじめに高分子成形物基体であるベースフィルム1
0の一面に金属(導電性)薄膜を不連続に設ける。即ち
、ベースフィルム10の短手方向に伸長するストライブ
状金属薄膜12を所定間隔を以って多数長手方向に配列
する。ここでこのストライプ状金属薄膜12の材質はア
ルミニウム、銅、銀等導電性であれば何でも良く、何を
使用するかはコスト、耐久性、物理的特性等を考慮した
上で適宜決定すれば良い。金属薄膜12の作製方法は蒸
着、スパッタリング、イオンブレーティング、無電解メ
ツキ等いずれの方法でも良い。
FIG. 1 is a perspective view for explaining one embodiment of the present invention. Introduction: Base film 1, which is the base of the polymer molded product.
A metal (conductive) thin film is provided discontinuously on one surface of the wire. That is, a large number of striped metal thin films 12 extending in the transverse direction of the base film 10 are arranged in the longitudinal direction at predetermined intervals. The striped metal thin film 12 may be made of any conductive material such as aluminum, copper, silver, etc. The material to be used may be determined as appropriate after considering cost, durability, physical characteristics, etc. . The metal thin film 12 may be formed by any method such as vapor deposition, sputtering, ion blating, and electroless plating.

ストライブ状金属薄膜12を形成する方法は、例えば、
蒸着形成線近傍にスリットをベースの走行速度と同期さ
せて走行させる方法、シャッターの開閉により形成する
方法等が考えられる。但し、金属薄膜12の厚みは電気
抵抗の厚み依存性を考慮した上で必要な厚さに設定する
The method for forming the striped metal thin film 12 is, for example,
Possible methods include a method in which the slit is made to travel near the vapor deposition formation line in synchronization with the travel speed of the base, a method in which the slit is formed by opening and closing a shutter, and the like. However, the thickness of the metal thin film 12 is set to a necessary thickness in consideration of the thickness dependence of electrical resistance.

次いで、ストライブ状金属薄膜12の上に強磁性薄膜1
6を形成するに際し、ストライプ状金属薄膜12の上に
直接強磁性薄膜16が形成されると、ストライブ状金属
薄膜12の形状を維持したまま強磁性薄膜16が形成さ
れるため実用上問題となるし、更に強磁性薄膜16自体
が導電性を持っていると、導電性の連続薄膜が形成され
るため後の工程でストライプ状金属薄膜12に電流を流
すことを考慮すると、各部分での放電や接触を抑える必
要があるため現実的な実用性はない。そのため、ストラ
イプ状金属薄膜12と強磁性薄膜16との間に、非導電
性薄膜14を設ける。この非導電性薄膜14のコーティ
ングは、ストライブ状金属薄膜12と強磁性薄膜16を
互いに接触させない効果を有するだけでなく、コーティ
ング表面が平滑になる利点を有している。上記非導電性
物質としては、磁気テープに使用されるバインダーで良
く、例えて挙げると、塩化ビニル−酢酸ビニル共重合体
、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−
アクリロニトリル共重合体、ポリアミド樹脂、ポリエス
テル樹脂、エポキシ樹脂、フェノール樹脂、ポリウレタ
ン樹脂等がある。
Next, a ferromagnetic thin film 1 is formed on the striped metal thin film 12.
6, if the ferromagnetic thin film 16 is formed directly on the striped metal thin film 12, the ferromagnetic thin film 16 is formed while maintaining the shape of the striped metal thin film 12, which poses a practical problem. Moreover, if the ferromagnetic thin film 16 itself has conductivity, a continuous conductive thin film will be formed, and considering that a current will be passed through the striped metal thin film 12 in a later process, the It is not practical because it is necessary to suppress discharge and contact. Therefore, a non-conductive thin film 14 is provided between the striped metal thin film 12 and the ferromagnetic thin film 16. This coating with the non-conductive thin film 14 not only has the effect of preventing the striped metal thin film 12 and the ferromagnetic thin film 16 from coming into contact with each other, but also has the advantage that the coating surface becomes smooth. The above-mentioned non-conductive substance may be a binder used in magnetic tapes, for example, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride copolymer, etc.
Examples include acrylonitrile copolymers, polyamide resins, polyester resins, epoxy resins, phenolic resins, and polyurethane resins.

上記非導電性薄膜14をコーティングし、表面を平滑に
した後に、その上に強磁性薄膜16を形成するに際して
、ストライプ状金属薄膜12の露出している両端部上に
一対の電極18.20を接触させる。次に蒸発源から、
蒸発原子を発生させながら、ベースフィルム10上にス
トライプ状金属薄膜12及び非導電性薄膜14を形成さ
せたものを、その長手方向に走行せしめつつ、電極18
゜20を介して直流電流Iを流す。この電流Iは電極1
8.20に接触しているストライプ状金属薄膜12のみ
に流れ、ベースフィルム10上にストライプ状金属薄膜
12及び非導電性薄膜14を形成させたものには、その
長手方向の磁場Hが生じ、従って蒸発した蒸着原子は非
導電性薄膜14上でただちに配向が行なわれつつ強磁性
薄膜16が形成される。電流Iによって発生する磁場H
は電流Iからの距離に反比例するが、この距離は非導電
性薄膜14の厚さに依存し、この厚さは数μmと非常に
薄いため比較的小さな電流で大きな磁場を発生させるこ
とが可能である。
After coating the non-conductive thin film 14 and smoothing the surface, a pair of electrodes 18 and 20 are placed on both exposed ends of the striped metal thin film 12 when forming the ferromagnetic thin film 16 thereon. bring into contact. Next, from the evaporation source,
The striped metal thin film 12 and the non-conductive thin film 14 formed on the base film 10 are moved in the longitudinal direction while generating evaporated atoms, and the electrode 18
A direct current I is passed through the terminal. This current I is the electrode 1
8.20, a magnetic field H is generated in the longitudinal direction of the striped metal thin film 12 and the non-conductive thin film 14 formed on the base film 10. Therefore, the evaporated atoms are immediately oriented on the non-conductive thin film 14, forming the ferromagnetic thin film 16. Magnetic field H generated by current I
is inversely proportional to the distance from the current I, but this distance depends on the thickness of the non-conductive thin film 14, which is very thin at a few μm, so it is possible to generate a large magnetic field with a relatively small current. It is.

又、上記強磁性薄膜16の形成方法は蒸着、スパッタリ
ング、イオンブレーティング、低’tL 気相成長法等
いずれでもよい。本明細書ではこれらの手法をまとめて
蒸着という。
Further, the method for forming the ferromagnetic thin film 16 may be any one of vapor deposition, sputtering, ion blasting, low'tL vapor phase growth, and the like. In this specification, these methods are collectively referred to as vapor deposition.

尚、上記強磁性薄膜16の形成の際、強磁性薄膜16は
非導電性薄膜14の図における上側に形成されたストラ
イプ状金属薄膜12の両端の露出した部分に蒸着、形成
されないように一対の遮蔽板(図示せず)によって遮蔽
する必要がある。即ち、遮蔽しないと強磁性薄膜16は
電極18.20及びストライプ状金属薄膜12をも覆う
形で形成されてしまい、上記したように各部分での放電
や接触を抑える必要が生じ実用性はない。更に、ストラ
イプ状金属薄膜12を用いずに、長手方向に連続した金
属薄膜を用いても電極18.20以外の部分が電気的に
浮いていればストライプ状金属薄膜12を用いた時と同
様の効果が期待できるが、各部分での放電を抑える必要
があるため実用性はない。
Incidentally, during the formation of the ferromagnetic thin film 16, the ferromagnetic thin film 16 is deposited on the exposed portions of both ends of the striped metal thin film 12 formed on the upper side of the non-conductive thin film 14 in the figure, and a pair of ferromagnetic thin film 16 are deposited to prevent the ferromagnetic thin film 16 from being formed. It is necessary to shield with a shielding plate (not shown). That is, if it is not shielded, the ferromagnetic thin film 16 will be formed to cover the electrodes 18, 20 and the striped metal thin film 12, and as mentioned above, it will be necessary to suppress discharge and contact at each part, which is impractical. . Furthermore, even if a continuous metal thin film is used in the longitudinal direction without using the striped metal thin film 12, if the parts other than the electrodes 18 and 20 are electrically floating, the same result as when the striped metal thin film 12 is used. Although it is expected to be effective, it is not practical because it is necessary to suppress electrical discharge in each part.

上記実施例を比較例と共に更に詳述すると、第1図に示
すように真空度I X 10−’Torrの真空槽(図
示せず)内で強磁性薄膜16の連続蒸着を行ない長尺フ
ィルムを得る。なおストライプ状金属薄膜12は、ポリ
エステルベースフィルム10の上に、厚み1μmのアル
ミニウムにより形成し、その上に非導電性薄膜14を形
成したが、非導電性物質としては塩化ビニル−酢酸ビニ
ル共重合体を使用し、厚さを2μmとした。また強磁性
薄膜16用金属としては、Co−Ni (Ni20wt
%)合金を使用し、厚み2000人とした。この際一対
の電極18.20がストライプ状金属薄膜12の両端に
置かれ、直流電流IAを流し磁場を発生させ、強磁性薄
膜16の形成を行なった。
To explain the above embodiment in more detail together with comparative examples, as shown in FIG. obtain. The striped metal thin film 12 was formed of aluminum with a thickness of 1 μm on the polyester base film 10, and the non-conductive thin film 14 was formed thereon, but the non-conductive material was vinyl chloride-vinyl acetate copolymer. The thickness was set to 2 μm. Further, as the metal for the ferromagnetic thin film 16, Co-Ni (Ni20wt
%) alloy was used, and the thickness was 2000 mm. At this time, a pair of electrodes 18 and 20 were placed at both ends of the striped metal thin film 12, and a direct current IA was applied to generate a magnetic field to form the ferromagnetic thin film 16.

本方法においては、蒸着と配向が長尺フィルム全長にわ
たって行なわれた段階で完成し、スリットすることによ
りそのまま使用に供せる。
In this method, the film is completed when vapor deposition and orientation have been performed over the entire length of the long film, and it can be used as is by slitting it.

比較例 上記の強磁性薄膜16の連続蒸着の際ストライプ状金属
薄膜12に電流Iを流さずに行ない、蒸着終了後に電流
Iを流して配向を行ない、他は上記の場合と同様の材料
を用い、同様の処理により長尺フィルムを得た。
Comparative Example The continuous deposition of the ferromagnetic thin film 16 described above was carried out without applying the current I to the striped metal thin film 12, and after the completion of the deposition, the current I was applied to effect orientation, but the same materials as in the above case were used. A long film was obtained by the same treatment.

上記実施例で得られた磁気テープと比較例の関係から、
比較例の長尺方向のHcが1000eであったのに対し
、上記実施例による場合はHcが4500eであり、本
発明の製造方法により作られた磁気記録媒体が優れた磁
気的性質を有することが明らかである。
From the relationship between the magnetic tape obtained in the above example and the comparative example,
While the Hc in the longitudinal direction of the comparative example was 1000e, the Hc of the above example was 4500e, indicating that the magnetic recording medium produced by the manufacturing method of the present invention has excellent magnetic properties. is clear.

第3図は本発明の他の実施例を説明する平面図である。FIG. 3 is a plan view illustrating another embodiment of the present invention.

この実施例では電極の数を複数対とし、これらを直列接
続したものを用いる。即ち、複数の+側電極18a、1
8b、18c、18dと複数の一側電極20a、20b
、20c、20dが各々対として対抗しベースフィルム
10の長手方向に並べて設けられ、導線22によって互
いに隣の逆極性電極と接続され、全体として直列電極を
形成している。かかる構成の電極を用いて第1図のスト
ライプ状金属薄膜12に電流を印加すると、磁場Hの発
生範囲が広くなるので、配向の効率が上がる。
In this embodiment, a plurality of pairs of electrodes are used, which are connected in series. That is, the plurality of + side electrodes 18a, 1
8b, 18c, 18d and a plurality of one side electrodes 20a, 20b
, 20c, and 20d are arranged in pairs in the longitudinal direction of the base film 10, and are connected to adjacent electrodes of opposite polarity by conductive wires 22, forming a series electrode as a whole. When an electric current is applied to the striped metal thin film 12 shown in FIG. 1 using an electrode having such a configuration, the range in which the magnetic field H is generated becomes wider, so that the orientation efficiency increases.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明における記録媒
体の製造方法では、基板上のストライプ状金属薄膜に電
流を流すことにより磁場を発生させて配向させるので、
記録媒体自体に配向器の働きをもたせることが可能とな
り、従って特別な配向器を必要としない。また、製造さ
れた金属媒体は配向性が良いので、長手方向の保磁力(
Hc)が向上するという優れた特長を有するので本発明
の産業上の利用性は極めて大きいものである。
As is clear from the above description, in the method for manufacturing a recording medium according to the present invention, a magnetic field is generated and oriented by passing a current through a striped metal thin film on a substrate.
It becomes possible for the recording medium itself to function as an orientator, and therefore no special orientator is required. In addition, since the manufactured metal media have good orientation, the coercive force in the longitudinal direction (
Since the present invention has an excellent feature of improving Hc), the industrial applicability of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための斜視図であ
り、第2図は第1図の線■−■によって切取られた断面
図であり、第3図は本発明の他の実施例を示す平面図で
ある。 10・・・ベースフィルム、12・・・金m、FI!、
14・・・非導電性薄膜、16・・・強磁性薄膜、18
、 18a、  18b、  18c、  18d、 
 20゜20a、20b、20c、20d・・・電極、
22 ・・・導線。 発明者 堀 口  晃 藷  本  邦  晴 出 願 人  日本ビクター株式会社
FIG. 1 is a perspective view for explaining one embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. FIG. 2 is a plan view showing an example. 10...Base film, 12...Gold m, FI! ,
14... Non-conductive thin film, 16... Ferromagnetic thin film, 18
, 18a, 18b, 18c, 18d,
20° 20a, 20b, 20c, 20d...electrodes,
22...Conducting wire. Inventor: Koi Horiguchi, Kuni Moto, Haruide, applicant: Victor Japan Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)高分子成形物基体に磁性層を設け、前記磁性層に
おける配向を行なう磁気記録媒体の製造方法において、
前記高分子成形物基体上にその短手方向に伸長する多数
の金属薄膜を所定間隔をもって設け、その上に非導電性
薄膜を設けた後、前記非導電性薄膜上に強磁性薄膜を形
成する際、前記金属薄膜に電流を流すことにより前記高
分子成形物基体の長手方向に磁場を発生させ、前記配向
を行なうことを特徴とする磁気記録媒体の製造方法。
(1) A method for manufacturing a magnetic recording medium in which a magnetic layer is provided on a polymer molded substrate and orientation is performed in the magnetic layer,
A large number of metal thin films extending in the transverse direction are provided on the polymer molded substrate at predetermined intervals, a non-conductive thin film is provided thereon, and then a ferromagnetic thin film is formed on the non-conductive thin film. A method for producing a magnetic recording medium, characterized in that the orientation is performed by generating a magnetic field in the longitudinal direction of the polymer molded substrate by passing a current through the metal thin film.
(2)前記強磁性薄膜が蒸着により形成されることを特
徴とする特許請求の範囲第1項記載の磁気記録媒体の製
造方法。
(2) The method of manufacturing a magnetic recording medium according to claim 1, wherein the ferromagnetic thin film is formed by vapor deposition.
(3)前記電流を流すに際し、前記金属薄膜の前記高分
子成形物基体の短手方向における両端にそれぞれ接触す
る電極を用いて直流電流を前記短手方向に流しつつ、前
記高分子成形物基体を前記長手方向に移動せしめること
を特徴とする特許請求の範囲第1項記載の磁気記録媒体
の製造方法。
(3) When passing the current, a direct current is passed in the transverse direction using electrodes that are in contact with both ends in the transverse direction of the polymer molded substrate of the metal thin film, and the polymer molded substrate is 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is moved in the longitudinal direction.
(4)前記電極として直列に接続され前記長手方向に並
べられた複数の対の電極からなるものを用いることを特
徴とする特許請求の範囲第1項記載の磁気記録媒体の製
造方法。
(4) The method for manufacturing a magnetic recording medium according to claim 1, characterized in that the electrodes include a plurality of pairs of electrodes connected in series and arranged in the longitudinal direction.
(5)前記電流を流す前記金属薄膜が互いに平行に配さ
れたストライプ状であることを特徴とする特許請求の範
囲第1項記載の磁気記録媒体の製造方法。
(5) The method for manufacturing a magnetic recording medium according to claim 1, wherein the metal thin film through which the current flows is striped in parallel to each other.
JP25603587A 1987-10-09 1987-10-09 Production of magnetic recording medium Pending JPH0198126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25603587A JPH0198126A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25603587A JPH0198126A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0198126A true JPH0198126A (en) 1989-04-17

Family

ID=17287011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25603587A Pending JPH0198126A (en) 1987-10-09 1987-10-09 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0198126A (en)

Similar Documents

Publication Publication Date Title
US4219854A (en) Thin film magnetic head assembly
US3150939A (en) High density record carrier
US4190872A (en) Thin film inductive transducer
Romankiw et al. Batch-fabricated thin-film magnetic recording heads
JPS5816599A (en) Method of electromagnetically shielding
US3480522A (en) Method of making magnetic thin film device
JPH0916908A (en) Thin-film magnetic core coil assembly
JPS6048113B2 (en) bistable magnetic switch device
US3881191A (en) Three-gap magnetic recording head having a single flux sensing means
US3142047A (en) Memory plane
US3330631A (en) Magnetic data storage devices
JPH0198126A (en) Production of magnetic recording medium
US3393982A (en) Ferromagnetic storage devices having uniaxial anisotropy
US3227635A (en) Method of producing magnetic films
US3276000A (en) Memory device and method
JPS5447606A (en) Production of magnetic recording media
US3556954A (en) Method for obtaining circumferential orientation of magnetic films electroplated on wires
US4991046A (en) Self aligned lapping guide for inductive record heads
US3239374A (en) Thin film circuitry
JPH0198125A (en) Production of magnetic recording medium
JPH0198122A (en) Production of magnetic recording medium
US3583065A (en) Coaxial cable linear delay line process
US3471836A (en) Rotational mode magnetic film memory
JPS573213A (en) Manufacture of magnetic pickup
Shadrov et al. A study of magnetic interaction in electrodeposited films of the Co-P alloys