JPS59203243A - Production for magnetic recording medium - Google Patents

Production for magnetic recording medium

Info

Publication number
JPS59203243A
JPS59203243A JP7716483A JP7716483A JPS59203243A JP S59203243 A JPS59203243 A JP S59203243A JP 7716483 A JP7716483 A JP 7716483A JP 7716483 A JP7716483 A JP 7716483A JP S59203243 A JPS59203243 A JP S59203243A
Authority
JP
Japan
Prior art keywords
magnetic
base film
film
magnetic field
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7716483A
Other languages
Japanese (ja)
Inventor
Tomizo Taniguchi
谷口 富蔵
Taku Yamase
山瀬 卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP7716483A priority Critical patent/JPS59203243A/en
Publication of JPS59203243A publication Critical patent/JPS59203243A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium with a good electromagnetic conversion characteristic and high reliability by bringing a magnetic film attached on the base film by painting into and out between magnets facing each other in the state where a magnetic film is being undried, and orientating magnetic powder particles in a prescribed direction to dry the magnetic applied film. CONSTITUTION:Magnets 1 and 2 having yokes 11 and 21 formed with plate bodies consisting of triangular permeable materials are arranged to face each other, and a base film 4 having an undried magnetic applied film 3 is run between yokes 11 and 21. A magnetic field indicated by dotted lines acts upon the base film 4 to orientate magnetic powder particles in the applied film 3 so that their angular shapes in the breadthwise direction and the lengthwise direction are equalized approximately. When the base film is punched into a round after the film 3 is dried, a large output difference is not generated at a recording/ reproducing time in the circumferential direction of an obtained magnetic disc, and the electromagnetic conversion characteristic is improved, and thus magnetic disc with high-reliability is obtained.

Description

【発明の詳細な説明】 この発明は、磁気記録媒体の製造方法に関し、さらに詳
しくは、磁性層中の磁性粉末粒子が方向性を有せず、電
磁変換特性が良好で信頼性の高い磁気ディスクなどの磁
気記録媒体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a highly reliable magnetic disk in which magnetic powder particles in a magnetic layer have no directionality, have good electromagnetic characteristics, and are highly reliable. The present invention relates to a method of manufacturing magnetic recording media such as.

磁気記録媒体のうち、磁気テープのように長手方向に磁
気記録がなされるものは、磁性層中の針状磁性粉末を長
手方向に配向させるなどして電磁変換特性を向上させて
いる。
Among magnetic recording media, those in which magnetic recording is performed in the longitudinal direction, such as magnetic tape, have improved electromagnetic conversion characteristics by orienting acicular magnetic powder in the magnetic layer in the longitudinal direction.

これに対して、一般に、ポリエステルフィルムなどの基
体上に磁性粉末、結合剤成分、有機溶剤およびその他の
必要成分からなる磁性塗料を塗布、乾燥して磁性層を形
成した後、これを円形に打ち抜いてつくられる磁気ディ
スクは、円周方向に磁気記録がなされるため、磁気テー
プのように針状磁性粉末を基体の長手方向に配向させた
のでは良好な電磁変換特性が得られない。
In general, a magnetic paint consisting of magnetic powder, a binder component, an organic solvent, and other necessary components is applied onto a substrate such as a polyester film, dried to form a magnetic layer, and then punched out in a circular shape. Since magnetic recording is performed in the circumferential direction of magnetic disks manufactured by the magnetic disks, good electromagnetic conversion characteristics cannot be obtained if the acicular magnetic powder is oriented in the longitudinal direction of the substrate, as is the case with magnetic tapes.

このため、従来の磁気ディスクにおいては、磁性塗料を
ベースフィルム上に塗布した後、磁場配向を全く行わな
いで乾燥し、磁性層中に含まれる針状磁性粉末を無配向
にするなどして円周方向の記録再生が良好に行われるよ
うにしている。
For this reason, in conventional magnetic disks, after applying the magnetic paint onto the base film, it is dried without any magnetic field orientation, and the acicular magnetic powder contained in the magnetic layer is made unoriented. Recording and reproduction in the circumferential direction is performed satisfactorily.

ところが、磁場配向を全く行わないで乾燥する場合は、
針状磁性粉末を概ね無配向にすることはできても、磁性
塗料をベースフィルム上に塗布する際、塗料にかかる剪
断力により磁性層中の磁性粉末粒子がベースフィルムの
長平方向に僅かに配向されるのを防止することはできす
′、その結果円周方向に記録再生する際、大きな出力差
が生じるなどの難点があり、未だ電磁変換特性が充分に
良好で、信頼性の高い磁気ディスクは得られていない。
However, when drying without any magnetic field orientation,
Although it is possible to make the acicular magnetic powder almost non-oriented, when applying the magnetic paint onto the base film, the magnetic powder particles in the magnetic layer are slightly oriented in the longitudinal direction of the base film due to the shearing force applied to the paint. However, as a result, when recording and reproducing in the circumferential direction, there are drawbacks such as a large output difference.Therefore, magnetic disks with sufficiently good electromagnetic conversion characteristics and high reliability are still available. has not been obtained.

この発明者らはかかる問題を克服するため鋭意検討を行
った結果、ベースフィルム上に磁性塗料を塗着し、次い
で、これを未乾燥のまま、少なくともベースフィルムの
幅方向両側に異極を対抗させて配設した各対向磁石間に
導入出させると、このように配置されたベースフィルム
両側の各対向磁石により付与される磁界によって塗膜中
の長手方向に僅かに配向された磁性粉末粒子がベースフ
ィルムの幅方向ないしは幅方向から垂直方向に傾斜する
方向に配向方向を修正され、さらにこれらの対向磁石か
らベースフィルムの幅方向中央部に向かってベースフィ
ルム中央部寄りでは塗膜から離隔し両端部に行くに従っ
て塗膜に漸近するように各磁界発生手段を延設すると、
これらの各磁界発生手段より付与される磁界が加わって
塗膜中の磁性粉末粒子の配向方向が一段と良好に修正さ
れ、その結果磁性粉末粒子の方向性がなくなって得られ
る磁性層の幅方向と長平方向の角型がほぼ等しくなり、
円周方向での記録再生時に大きな出方差が生したりする
こともなく、電磁変換特性が良好で信頼性の高い磁気デ
ィスクが得られることを見いだし、この発明をなすに至
った。
As a result of intensive studies to overcome this problem, the inventors applied magnetic paint to the base film, and then, while it was still undried, applied different polarities on at least both sides of the base film in the width direction. When the magnetic powder particles are introduced between the opposed magnets arranged in this way, the magnetic powder particles slightly oriented in the longitudinal direction in the coating film are caused by the magnetic field applied by the opposed magnets on both sides of the base film arranged in this way. The orientation direction is corrected in the width direction of the base film or in a direction tilted perpendicularly from the width direction, and furthermore, from these opposing magnets toward the center in the width direction of the base film, the area near the center of the base film is separated from the coating film and the edges are separated from the coating film. When each magnetic field generating means is extended so that it approaches the coating film as it goes towards the end,
The magnetic field applied by each of these magnetic field generation means is applied to further improve the orientation direction of the magnetic powder particles in the coating film, and as a result, the directionality of the magnetic powder particles is eliminated, and the width direction of the resulting magnetic layer The rectangular shapes in the long plane direction are almost equal,
It was discovered that a magnetic disk with good electromagnetic conversion characteristics and high reliability can be obtained without causing a large difference in the direction of output during recording and reproduction in the circumferential direction, and this invention has been completed.

以下、この発明を図面を参考にして説明する。This invention will be explained below with reference to the drawings.

第1図および第2図は、この発明に係る磁場配向装置の
一例を示したものである。図において1および2は未乾
燥の塗膜3を有するベースフィルム4の幅方向両側に近
接する位置に異極を対向させて配設したN−3対向磁石
、11は対向磁石1から一体的に延設した透磁性材から
なるヨーク、21は対向磁石2がら一体的に延設した透
磁性材からなるヨークであり、未乾燥の磁性塗膜3を有
するベースフィルム4はこのような対向磁石工。
FIG. 1 and FIG. 2 show an example of a magnetic field orientation device according to the present invention. In the figure, 1 and 2 are N-3 facing magnets arranged with different poles facing each other in positions close to both sides in the width direction of the base film 4 having an undried coating film 3, and 11 is integrally connected from the facing magnet 1. A yoke 21 made of an extended magnetically permeable material is a yoke made of a magnetically permeable material extended integrally with the facing magnet 2, and the base film 4 having the undried magnetic coating film 3 is formed by such facing magnet work. .

2、tよびヨーク11.21間を走行する。ヨーク11
および21はいずれも三角形の透磁性材からなる板体で
構成され、ベースフィルム4の下部で、ベースフィルム
4中央部寄りでは塗膜3がら離隔し両端部に行くに従っ
て塗膜4に漸近するように三角形の板体の傾斜面がベー
スフィルム4中央部に向かって下降するように対向磁石
1および2から延設されている。しかしてこのようなヨ
ーク11および21を延設したN−3対向磁石1,2間
を走行する未乾燥の塗膜3を有するヘースフィルム4に
は点線で示されるような磁界が作用し、磁性塗料塗布時
にその剪断力によりベースフィルム4の長手方向に僅か
に配向された塗膜3中の磁性粉末粒子は、塗膜3の中央
部で幅方向に、両端部で垂直方向から幅方向に傾斜する
方向に配向方向が修正される。その結果塗膜3中の磁性
粉末粒子は無配向となり、幅方向と長平方向の角型がほ
ぼ等しくなってこれを乾燥後、円形に打ち抜いてつくら
れる磁気ディスクは円周方向での記録再生時に大きな出
力差が生じることもなく電磁変換特性が向上し、信頼性
の背い磁気ディスクが得られる。ここで、各対向磁石1
および2からヨーク11および21を延設しないで各対
向磁石1および2を配設するだけでも磁性粉末粒子の配
向方向の修正が行われて同様な効果が得られるが、この
場合はベースフィルム中央部に行くに従って磁界が弱く
なる傾向があり、ヨーク11および21を延設した場合
はこのような傾向を抑制してベースフィルム4上の塗膜
3全体にわたって良好な磁界を付与できるため、ヨーク
11および21を延設するとより好ましい結果が得られ
る。
2, runs between t and yoke 11.21. York 11
and 21 are each composed of a triangular plate made of a magnetically permeable material. At the bottom of the base film 4, near the center of the base film 4, the coating film 3 separates from the coating film 3, and as it approaches both ends, it approaches the coating film 4. The inclined surfaces of the triangular plates extend from the opposing magnets 1 and 2 so as to descend toward the center of the base film 4. However, a magnetic field as shown by the dotted line acts on the Heath film 4 having the undried coating film 3 running between the N-3 opposing magnets 1 and 2 with the yokes 11 and 21 extending therefrom. The magnetic powder particles in the coating film 3, which are slightly oriented in the longitudinal direction of the base film 4 due to the shearing force applied during application of the magnetic paint, are oriented in the width direction at the center of the coating film 3 and from the vertical direction to the width direction at both ends. The orientation direction is corrected in the direction of inclination. As a result, the magnetic powder particles in the coating film 3 become unoriented, and the rectangular shapes in the width direction and longitudinal direction are almost equal. The electromagnetic conversion characteristics are improved without causing a large output difference, and a magnetic disk with low reliability can be obtained. Here, each opposing magnet 1
The same effect can be obtained by correcting the orientation direction of the magnetic powder particles by simply arranging the opposing magnets 1 and 2 without extending the yokes 11 and 21 from the base film center. There is a tendency for the magnetic field to become weaker as the yokes 11 and 21 extend toward the base film 4. If the yokes 11 and 21 are extended, this tendency can be suppressed and a good magnetic field can be applied to the entire coating 3 on the base film 4. A more preferable result can be obtained by extending 21 and 21.

第3図はこの発明に係る磁場配向装置の他の例を示した
もので、この装置においては前記の例における装置の対
向磁石2からヨーク22が、未乾燥の塗膜3を有するベ
ースフィルム4の上部に延設され、ベースフィルム4は
これらの対向磁石1.2、ヨーク11.22間を走行す
る。この場合は各対向磁石1および2から延設されたヨ
ーク11および22が未乾燥の塗膜3を有するベースフ
ィルム4を挟んで対向しているため、塗膜3には第3図
の点線に示されるような磁界が作用し、塗膜3中の磁性
粉末粒子は垂直方向から幅方向に傾斜する方向に配向方
向が修正され、その結果前記の例の場合と同様に、塗膜
3中の磁性粉末粒子は無配向となり、幅方向と長手方向
の角型がほぼ等しくなってこれを乾燥後、円形に打ち抜
いてつくられる磁気ディスクは電磁変換特性が向上し、
信頼性も向上する。
FIG. 3 shows another example of the magnetic field orientation device according to the present invention, in which the yoke 22 from the opposing magnet 2 of the device in the above example is connected to the base film 4 having the undried coating film 3. The base film 4 runs between the opposing magnets 1.2 and the yoke 11.22. In this case, since the yokes 11 and 22 extending from the opposing magnets 1 and 2 face each other with the base film 4 having the undried coating film 3 in between, the coating film 3 is When a magnetic field as shown is applied, the orientation of the magnetic powder particles in the coating film 3 is modified from the perpendicular direction to a direction inclined in the width direction, and as a result, as in the case of the previous example, the magnetic powder particles in the coating film 3 are The magnetic powder particles are non-oriented and have approximately the same square shape in the width and length directions. After drying, the magnetic disks produced by punching out circular shapes have improved electromagnetic characteristics.
Reliability is also improved.

なお、前記の各磁場配向装置において、ヨークの形状は
三角板状のものに限定されず、ベースフィルムの中央部
寄りでは塗膜から離隔し両端部に行くに従って塗膜に漸
近するものであれば、前記のヨークの所定角度の傾斜面
が様々な形状の曲面、たとえば第4図に示すような曲面
であってもよい。また第5図および第6図に示すように
長尺な板状または棒状のヨークを、ベースフィルムの中
央部寄りでは塗膜から離隔し両端部に行くに従って塗膜
に漸近するように各対向磁石から傾斜させて延設させて
もよい。また、各対向磁石から延設する磁界発生手段は
磁界が発生できるものであれば前記のように透磁性材か
らなるヨークに限定されず、たとえば前記のヨークと同
じ形状の磁石を各対向磁石から延設してもよい。さらに
、前記の各磁場配向装置において、各対向磁石から延設
されるヨークは第7図に示すように多数延設してもよ(
、多数のヨークを延設した場合は塗膜に付与する磁界の
調整が容易になり、前記とまったく同じ効果が得られる
In each of the magnetic field orientation devices described above, the shape of the yoke is not limited to a triangular plate shape, but as long as it is separated from the coating film near the center of the base film and approaches the coating film toward both ends, The inclined surface of the yoke having a predetermined angle may be a curved surface of various shapes, for example, a curved surface as shown in FIG. 4. In addition, as shown in Figures 5 and 6, a long plate-shaped or rod-shaped yoke is attached to each opposing magnet so that it is spaced apart from the coating film near the center of the base film and asymptotically approaches the coating film toward both ends. It may also be extended and inclined from the top. Further, the magnetic field generating means extending from each opposing magnet is not limited to the yoke made of a magnetically permeable material as described above, as long as it can generate a magnetic field. It may be extended. Furthermore, in each of the magnetic field orientation devices described above, a large number of yokes extending from each opposing magnet may be provided as shown in FIG.
If a large number of yokes are installed in an extended manner, the magnetic field applied to the coating film can be easily adjusted, and exactly the same effect as described above can be obtained.

以上のような磁場配向装置を用いて、ベースフィルム4
上の未乾燥の塗膜3中の磁性粉末粒子を無配向にする際
、幅方向と長平方向の角型はその比、即ち配向比(長手
方向の角型/幅方向の角型)が0.95〜1.05の範
囲内にあってほぼ等しくなるようにすることが好ましく
、配向比がこの範囲外になると円周方向での記録再生の
際に生じる出力差が太き(なって良好な電磁変換特性が
得られない。このように幅方向と長手方向の角型がほぼ
等しくなるようにするには、磁性塗料の粘度の高低によ
って違いはあるが、20〜150エルステツドの磁界を
幅方向に付与して行うのが好ましく、20工ルステツド
未満の磁界では磁性塗料塗布時に長手方向に配向された
磁性粉末粒子の配向方向を充分に修正することができず
、150エルステツドより大きな磁界では幅方向に配向
しすぎてこの場合も円周方向での記録再生時に生じる出
力差が大きくなり良好な電磁変換特性が得られない。
Using the magnetic field orientation device as described above, the base film 4
When making the magnetic powder particles in the above undried coating film 3 non-oriented, the ratio of the square shapes in the width direction and the long direction, that is, the orientation ratio (square shape in the longitudinal direction / square shape in the width direction) is 0. It is preferable that the orientation ratio be approximately equal within the range of .95 to 1.05. If the orientation ratio is outside this range, the output difference that occurs during recording and reproduction in the circumferential direction will be large (and will not be good). In order to make the square shapes in the width direction and length direction almost equal, it is necessary to apply a magnetic field of 20 to 150 oersteds in width, depending on the viscosity of the magnetic paint. A magnetic field of less than 20 oersted cannot sufficiently correct the orientation direction of the magnetic powder particles oriented in the longitudinal direction when applying the magnetic paint, and a magnetic field greater than 150 oersted will cause the magnetic powder to be applied in the width direction. If it is too oriented in the circumferential direction, the difference in output that occurs during recording and reproduction in the circumferential direction becomes large, making it impossible to obtain good electromagnetic conversion characteristics.

第8図はこのような幅方向の磁界の強さと配向比との関
係をグラフで示したもので、グラフAは粘度が6.0ポ
イズ(温度35℃、すり速度105sec’ )の磁性
塗料をリバースロールコータ−で塗布した後、第1図に
示す磁場配向装置を用いて幅方向の磁界の強さを種々に
変えなから配向比の変化を測定してグラフに表したもの
である。また、グラフBは粘度が2.5ポイズ(温度3
5℃、すり速度105 sec” )の磁性塗料を使用
した以外はグラフAの場合と同様にして幅方向の磁界の
強さと配向比との関係をグラフで表したものであり、グ
ラフCは粘度が0.8ポイズ(温度35°C1すり速度
1055ec−’ )の磁性塗料をグラビアロールコー
タ−で塗布した以外はグラフAの場合と同様にして幅方
向の磁界の強さと配向比との関係をグラフで表したもの
である。これらのグラフから明らかなように、磁性塗料
の粘度の高低により違いはあるが、幅方向に20〜15
0エルステツドの磁界を付与すると配向比が0.95〜
1.05の範囲内となり、配向比が充分に改善されるこ
とがわかる。
Figure 8 is a graph showing the relationship between the magnetic field strength in the width direction and the orientation ratio. Graph A shows a magnetic paint with a viscosity of 6.0 poise (temperature 35°C, sliding speed 105 sec'). After coating with a reverse roll coater, changes in the orientation ratio were measured while varying the strength of the magnetic field in the width direction using the magnetic field orientation device shown in FIG. 1, and the results are shown in a graph. In addition, graph B has a viscosity of 2.5 poise (temperature 3
The graph shows the relationship between the strength of the magnetic field in the width direction and the orientation ratio in the same way as graph A, except that a magnetic paint with a sliding speed of 105 seconds (5°C and 105 seconds) was used, and graph C shows the relationship between the magnetic field strength in the width direction and the orientation ratio. The relationship between the strength of the magnetic field in the width direction and the orientation ratio was determined in the same manner as in graph A, except that a magnetic paint with a temperature of 35 °C and a sliding speed of 1055 ec-' was applied using a gravure roll coater. It is expressed as a graph.As is clear from these graphs, there are differences depending on the viscosity of the magnetic paint, but it is
When a magnetic field of 0 oersted is applied, the orientation ratio is 0.95~
It can be seen that the orientation ratio is within the range of 1.05, and the orientation ratio is sufficiently improved.

このように磁場配向装置による磁性塗料塗布時の剪断力
による磁性粉末粒子の配向方向の修正は、磁性塗料の粘
度の高低によって異なるが、このような磁性粉末粒子の
配向方向の修正は磁性塗料の粘度が温度35”C1ずり
速度105 sec’で0.8〜6.0ボイズの粘度を
有するものであるとき好ましい結果が得られ、塗膜中の
磁性粉末粒子の幅方向と長手方向の角型がほぼ等しくな
って電磁変換特性に優れかつ信頼性の良好な磁気ディス
クが得られる。
In this way, the correction of the orientation direction of magnetic powder particles due to the shearing force when applying magnetic paint using a magnetic field orientation device differs depending on the viscosity of the magnetic paint. Favorable results are obtained when the viscosity is between 0.8 and 6.0 voids at a temperature of 35" C1 and a shear rate of 105 sec', and the square shape of the magnetic powder particles in the width and length directions of the coating film is are almost equal, and a magnetic disk with excellent electromagnetic conversion characteristics and good reliability can be obtained.

また、磁性粉末としては、軸比(長軸/短軸)が3以上
の針状の磁性粉末が好ましく使用され、たとえば、針状
のT  Fe2O3粉末、Fe3O4粉末、C,o含有
r  Fe2O3粉末、Co含有Fe3O4粉末、Cr
O2粉末、Fe粉末、CO粉末、F e −N i粉末
など従来公知の磁性粉末が広く使用される。
Further, as the magnetic powder, acicular magnetic powder with an axial ratio (major axis/minor axis) of 3 or more is preferably used, such as acicular T Fe2O3 powder, Fe3O4 powder, C, o-containing r Fe2O3 powder, Co-containing Fe3O4 powder, Cr
Conventionally known magnetic powders such as O2 powder, Fe powder, CO powder, and Fe-Ni powder are widely used.

さらに結合剤樹脂としては、塩化ビニル−酢酸ビニル系
共重合体、ポリビニルブチラール樹脂、ポリウレタン系
樹脂、繊維素系樹脂、イソシアネート化合物など従来汎
用されている結合剤樹脂が広(用いられ、有機溶剤とし
ては、メチルイソブチルケトン、メチルエチルケトン、
シクロヘキサノン、トルエン、酢酸エチル、テトラヒド
ロフラン、ジメチルホルムアミドなどが単独で或いは二
種以上混合して使用される。
Furthermore, as binder resins, conventionally widely used binder resins such as vinyl chloride-vinyl acetate copolymers, polyvinyl butyral resins, polyurethane resins, cellulose resins, and isocyanate compounds are widely used. are methyl isobutyl ketone, methyl ethyl ketone,
Cyclohexanone, toluene, ethyl acetate, tetrahydrofuran, dimethylformamide, etc. are used alone or in combination of two or more.

なお、磁性塗料中には通常使用されている各種添加剤、
たとえば、分散剤、潤滑剤、研磨剤、帯電防止剤などを
任意に添加使用してもよい。
In addition, various additives commonly used in magnetic paints,
For example, dispersants, lubricants, abrasives, antistatic agents, and the like may be optionally added.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例I Co含有’r  Fe203w1性粉 270重量部末
(粒径(長軸)0.4μ、軸 比(長軸/短軸)10) VAGH(米国U、 C,C社製、   80〃塩化ビ
ニル−酢酸ビニル−ビ ニルアルコール共重合体) N1432J  (日本ゼオン社   15〃製、アク
リロニトリル−ブタ ジエン共重合体) コロネートしく日本ポリウレ   10〃タン工業社製
、三官能性低置 子量イソシアネート化合物) H3−500(旭カーボン社   34〃製、カーボン
ブランク) ct−Fe203粉末       11〃メチルイソ
ブチルケトン    420〃トルエン       
    420〃この組成物をボールミル中で48時間
混合分散して磁性塗料を調製した。磁性塗料の粘度は0
.8ポイズ(温度35℃、すり速度105sec’)で
あった。この磁性塗料を厚さ75μのポリエステルフィ
ルム両面に塗布し、第1図に示す磁場配向装置により4
0エルステツドの磁場を加えて無配向処理し、乾燥して
乾燥厚が3μの磁性層を形成した。しかる後円板状しこ
打ち抜いて磁気ディスクをつくった。
Example I Co-containing 'r Fe203w1 powder 270 parts by weight (particle size (long axis) 0.4μ, axial ratio (long axis/short axis) 10) VAGH (manufactured by U, C, C, USA, 80% chloride) (Vinyl-vinyl acetate-vinyl alcohol copolymer) N1432J (manufactured by Nippon Zeon Co., Ltd. 15, acrylonitrile-butadiene copolymer) Coronate Nippon Polyurethane 10 (manufactured by Tan Kogyo Co., Ltd., trifunctional low molecular weight isocyanate compound) H3- 500 (manufactured by Asahi Carbon Co., Ltd. 34, carbon blank) ct-Fe203 powder 11〃Methyl isobutyl ketone 420〃Toluene
420 This composition was mixed and dispersed in a ball mill for 48 hours to prepare a magnetic paint. The viscosity of magnetic paint is 0
.. The temperature was 8 poise (temperature: 35° C., rubbing speed: 105 sec'). This magnetic paint was applied to both sides of a polyester film with a thickness of 75 μm, and a magnetic field orientation device shown in FIG.
A magnetic field of 0 oersted was applied for non-orientation treatment, and the material was dried to form a magnetic layer with a dry thickness of 3 μm. After that, a disk-shaped piece was punched out to make a magnetic disk.

比較例1 実施例1において、第1図で示される磁場配向装置によ
る無配向処理を省いた以外は実施例1と同様にして磁気
ディスクをつくった。磁性塗料の粘度は0.8ポイズ(
温度35°C1ずり速度105sec’ )であった・ 実施例および比較例で得られた磁気ディスクについて、
配向比(長手方向の角型/幅方向の角型)および磁気デ
ィスクの1回転上での出力差を測定した。
Comparative Example 1 A magnetic disk was produced in the same manner as in Example 1, except that the non-orientation treatment using the magnetic field orientation apparatus shown in FIG. 1 was omitted. The viscosity of magnetic paint is 0.8 poise (
The temperature was 35° C. and the shear rate was 105 sec'. Regarding the magnetic disks obtained in the examples and comparative examples,
The orientation ratio (square in the longitudinal direction/square in the width direction) and the output difference over one revolution of the magnetic disk were measured.

下表はその結果である。The table below shows the results.

表 上表から明らかなように、実施例1で得られた磁気ディ
スクは比較例1で得られたものに比し、配向比がほぼ1
に近くて出力差が小さく、このことからこの発明の製造
方法によってえられる磁気ディスクは、電磁変換特性が
良好で信頼性が向上されていることがわかる。
As is clear from the table above, the magnetic disk obtained in Example 1 has an orientation ratio of approximately 1 compared to that obtained in Comparative Example 1.
It is found that the magnetic disk obtained by the manufacturing method of the present invention has good electromagnetic conversion characteristics and improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法で使用する磁場配向装置の
一例を示す正面図、第2図は同平面図、第3図ないし第
6図は同磁場配向装置の他の例を示す正面図、第7図は
同磁場配向装置の他の例を示す平面図、第8図はこの発
明の製造方法で磁気記録媒体を製造する際の幅方向の磁
界の強さと塗膜中の磁性粉末粒子の配向比との関係図で
ある。 1.2・・・対向磁石、11,21.22・・・ヨーク
(磁界発生手段)、3・・・塗膜、4・・・ヘースフィ
ルム 特許出願人  日立マクセル株式会社 第7図 第8図 磁界の強さくOe)
FIG. 1 is a front view showing an example of the magnetic field orientation device used in the manufacturing method of the present invention, FIG. 2 is a plan view of the same, and FIGS. 3 to 6 are front views showing other examples of the same magnetic field orientation device. , FIG. 7 is a plan view showing another example of the same magnetic field orientation device, and FIG. 8 shows the strength of the magnetic field in the width direction and the magnetic powder particles in the coating film when manufacturing a magnetic recording medium by the manufacturing method of the present invention. FIG. 1.2... Opposing magnet, 11, 21. 22... Yoke (magnetic field generating means), 3... Coating film, 4... Heath Film Patent Applicant Hitachi Maxell Ltd. Figure 7 Figure 8 Figure Magnetic field strength Oe)

Claims (1)

【特許請求の範囲】 1、ベースフィルム上に磁性塗料を塗着し、次いで、こ
れを未乾燥のまま、少なくとも走行するベースフィルム
の幅方向両側に異極を対向させて配設した各対向磁石間
に導入出させ、塗膜中の磁性粉末粒子を幅方向と長手方
向の角型がほぼ等しくなるように配向させた後、乾燥す
ることを特徴とする磁気記録媒体の製造方法 2、両側の各対向磁石から、ベースフィルムの幅方向中
央部に向かってベースフィルムの中央部まで至らない長
さの各磁界発生手段を、ベースフィルムの上面または下
面に対応してベースフィルム中央部寄りでは塗膜から離
隔し両端部に行くに従って塗膜に漸近するように延設し
、これらの磁界発生手段と両側の対向磁石間に未乾燥の
塗膜を有するベースフィルムを導入出させて塗膜中の磁
性粉末粒子を幅方向と長手方向の角型がほぼ等しくなる
ように配向させる特許請求の範囲第1項記載の磁気記録
媒体の製造方法 3、両側の各対向磁石から延設される各磁界発生手段が
、ベースフィルムのいずれか一方の片面に対応して左右
対をなし、ベースフィルムのいずれか一方の片面に対し
てベースフィルム中央部寄りでは塗膜から離隔し両端部
に行くに従って塗膜に漸近するように延設されてなる特
許請求の範囲第2項記載の磁気記録媒体の製造方法 4、両側の各対向磁石およびこれらの対向磁石から延設
した各磁界発生手段によりベースフィルム上の未乾燥の
塗膜に付与される磁界が、20〜150エルステツドで
ある特許請求の範囲第1項ないし第3項記載の磁気記録
媒体の製造方法5、両側の各対向磁石から延設した各磁
界発生手段が透磁性材からなるヨークである特許請求の
範囲第2項ないし第4項記載の磁気記録媒体の製造方法 6、ベースフィルム上に塗着する磁性塗料の粘度が、温
度35℃、すり速度105 sec’で0.8〜6.0
ボイズである特許請求の範囲第1項ないし第5項記載の
磁気記録媒体の製造方法 7、磁性塗料中の磁性粉末が針状の磁性粉末である特許
請求の範囲第1項ないし第6項記載の磁気記録媒体の製
造方法
[Scope of Claims] 1. Magnetic paint is applied onto a base film, and then, while the paint is not dried, opposing magnets are arranged at least on both sides of the running base film in the width direction, with different poles facing each other. A method for manufacturing a magnetic recording medium 2, characterized in that the magnetic powder particles in the coating film are oriented so that the square shapes in the width direction and the longitudinal direction are approximately equal, and then dried. A magnetic field generating means of a length that does not reach the center of the base film is applied from each opposing magnet toward the center in the width direction of the base film, and a coating film is applied near the center of the base film corresponding to the top or bottom surface of the base film. A base film with an undried coating film is introduced between these magnetic field generating means and opposing magnets on both sides, and the magnetic field in the coating film is removed. A method for manufacturing a magnetic recording medium according to claim 1, in which powder particles are oriented so that the square shapes in the width direction and the longitudinal direction are approximately equal, each magnetic field generating means extending from each opposing magnet on both sides. However, it forms a left and right pair corresponding to one side of the base film, and for either side of the base film, it is separated from the paint film near the center of the base film, and asymptotically approaches the paint film as it goes to both ends. A method 4 for producing a magnetic recording medium according to claim 2, in which the magnetic recording medium is produced by the opposed magnets on both sides and the magnetic field generating means extended from these opposed magnets. The magnetic field applied to the coating film is from 20 to 150 oersteds, the method 5 for producing a magnetic recording medium according to claims 1 to 3, each magnetic field generating means extending from each opposing magnet on both sides. is a yoke made of a magnetically permeable material, a method 6 for producing a magnetic recording medium according to claims 2 to 4, wherein the viscosity of the magnetic paint applied on the base film is 35° C. and a sliding speed of 105° C. 0.8 to 6.0 in sec'
A method 7 for manufacturing a magnetic recording medium according to claims 1 to 5, which is a BOYS, and claims 1 to 6, wherein the magnetic powder in the magnetic paint is an acicular magnetic powder. Method for manufacturing a magnetic recording medium
JP7716483A 1983-04-30 1983-04-30 Production for magnetic recording medium Pending JPS59203243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7716483A JPS59203243A (en) 1983-04-30 1983-04-30 Production for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7716483A JPS59203243A (en) 1983-04-30 1983-04-30 Production for magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59203243A true JPS59203243A (en) 1984-11-17

Family

ID=13626144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7716483A Pending JPS59203243A (en) 1983-04-30 1983-04-30 Production for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59203243A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215731A (en) * 1982-06-08 1983-12-15 Ricoh Co Ltd Manufacture of magnetic recording material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215731A (en) * 1982-06-08 1983-12-15 Ricoh Co Ltd Manufacture of magnetic recording material

Similar Documents

Publication Publication Date Title
JPS6249656B2 (en)
JPS58139337A (en) Magnetic recording medium
JPS59203243A (en) Production for magnetic recording medium
JPS62208415A (en) Magnetic recording medium and its production
JPH0370854B2 (en)
JPS6334731A (en) Production of magnetic recording medium
JPS63275027A (en) Magnetic recording medium
JPH0247012B2 (en)
JP2803052B2 (en) Magnetic recording media
JPS62262229A (en) Manufacture of magnetic recording medium
JPS6083224A (en) Manufacture of magnetic disk
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH0362313A (en) Magnetic recording medium and its production
JPS60111347A (en) Manufacture of magnetic recording medium
JPS59229746A (en) Production of magnetic recording medium
JPS60113329A (en) Manufacture of magnetic recording medium
JPH0746417B2 (en) Magnetic recording medium
JPS60115024A (en) Magnetic recording medium and its production
JPS6334737A (en) Production of magnetic recording medium
JPH01264630A (en) Production of magnetic recording medium
JPS61239425A (en) Production of magnetic recording medium
JPS59151342A (en) Magnetic recording medium and its manufacture
JPH03224133A (en) Production of perpendicular magnetic recording medium
JPS59167854A (en) Magnetic recording medium
JPH08106622A (en) Magnetic recording medium and its production