JPH0197839A - Blade coated with diamond-like carbon - Google Patents

Blade coated with diamond-like carbon

Info

Publication number
JPH0197839A
JPH0197839A JP23497887A JP23497887A JPH0197839A JP H0197839 A JPH0197839 A JP H0197839A JP 23497887 A JP23497887 A JP 23497887A JP 23497887 A JP23497887 A JP 23497887A JP H0197839 A JPH0197839 A JP H0197839A
Authority
JP
Japan
Prior art keywords
diamond
blade
carbon
coated
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23497887A
Other languages
Japanese (ja)
Inventor
Morihiro Okada
守弘 岡田
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP23497887A priority Critical patent/JPH0197839A/en
Publication of JPH0197839A publication Critical patent/JPH0197839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To support the edge of a blade of a hard material with a material having adhesiveness and thereby to obtain a blade coated with diamond-like carbon and thereby made excellent in abrasion resistance and a cutting property, by coating a base with amorphous diamond-like carbon containing hydrogen prescribed in the atomic number ratio, so that the diamond-like carbon be the edge of the blade. CONSTITUTION:A base 1 of an edged tool made of steel, stainless steel, hard metal, ceramics, glass or the like is coated with amorphous diamond-like carbon 2 containing hydrogen of 0.5-20% in the atom number ratio so that the diamond-like carbon 2 be the edge of a blade. This diamond-like carbon 2 is applied on a face and a flank of the blade, or on the edge of either the face or the flank of the blade. A diamond-like carbon layer held two bases 1 between forms an edge line being the edge of the blade, and the two bases constitute the face and the flank respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硬度の高いダイヤモンド状カーボンによって
刃先が構成されている刃で、耐久性、耐腐食性、切削性
に優れ、特にプラスチック及び生態試料などの有機物を
切削するのに適した刃に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a blade whose cutting edge is made of hard diamond-like carbon, which has excellent durability, corrosion resistance, and machinability, and is particularly suitable for plastics and ecological materials. It relates to a blade suitable for cutting organic materials such as samples.

〔従来の技術〕[Conventional technology]

プラスチック及び生態試料などの有機物を切削する従来
の刃物としては、医療用刃物とミクロトーム用の刃が知
られている。
Medical knives and microtome blades are known as conventional knives for cutting organic materials such as plastics and biological samples.

メス、採皮刀、解剖刀などの医療用刃物には、鉄鋼、ス
テンレス鋼が使われていた。医療用刃物は良好な切削性
が常に維持されていなければならず、頻繁に研ぐか、−
回使用する毎に刃を廃棄し、新しい刃に付は換えなけれ
ばならないという煩雑さがあった。
Steel and stainless steel were used for medical knives such as scalpels, scalpels, and dissecting knives. Medical knives must always maintain good cutting performance and must be sharpened frequently or -
There was a complication in that the blade had to be discarded and replaced with a new one every time it was used.

ミクロトーム用の刃には、光学顕微鏡観察用切片を数μ
園厚さで切り出す鉄鋼製の刃と、電子顕微鏡観察用超薄
切片を100〜200人の厚さで切り出す天然ダイヤモ
ンド刃及びガラス刃とがあった。ミクロトーム用鉄鋼製
の刃は刃先が摩耗しやすいので、繰り返し使用する場合
は、その都度皮砥で研ぐ必要があるうえに、錆によって
刃先がいたみやすいという欠点があった。一方、ミクロ
トーム用天然ダイヤモンド刃とガラス刃は電子顕微鏡観
察に支障をきたす程度を越えるメスきずを有してはなら
ない。ところが天然ダイヤモンド刃の製造には特別な熟
練とノウハウを必要とし、刃渡りが高々3鶴程度のもの
しかなく、しかも非常に高価である。ガラスの刃は材料
は安いがその性能に問題があり、製作して切ってみない
とその良否が確認できない上に、良くできていても数回
の切り出しで性能が低下してしまうので、切片の観察者
自身が、切片切り出し観察の都度製作しなければならな
い。更に最近では特開昭62−2133号公報にミクロ
トーム用ダイヤモジトコ−ティング刃が開示されている
。その実施例によれば、これは炭化水素ガスを原料とし
加熱されたサファイヤ基体上に50〜500人のダイヤ
モンド膜をマイクロ波CVD法により被着した後、加熱
処理により膜中の水素を取り除くものである。従来品と
比べ耐久性が有るものの、ダイヤモンド膜の製造方法が
、被覆と加熱処理の2段階の工程を必要としている。
The microtome blade holds several microscopic sections for optical microscopy.
There was a steel blade that cuts out 100-200mm thick sections, and a natural diamond blade and glass blade that cut out ultra-thin sections for electron microscopic observation at 100 to 200mm thick. The edge of the steel blade for microtome wears easily, so if it is used repeatedly, it must be sharpened with a scalpel each time, and the edge is easily damaged by rust. On the other hand, the natural diamond blade and glass blade for a microtome must not have any flaws that exceed the extent that would interfere with electron microscopy observation. However, manufacturing natural diamond blades requires special skill and know-how, the blade length is only about 3 cranes long, and they are extremely expensive. Glass blades are made of cheap materials, but their performance is problematic.You cannot check whether the blade is good or not unless you make it and cut it.Even if it is well made, its performance deteriorates after cutting it several times. The observer himself/herself must make one each time he or she cuts out a section and observes it. More recently, Japanese Patent Application Laid-Open No. 62-2133 discloses a diamond coated blade for a microtome. According to the example, this is a method in which a 50 to 500 diamond film is deposited on a heated sapphire substrate using hydrocarbon gas as a raw material by microwave CVD, and then the hydrogen in the film is removed by heat treatment. It is. Although it is more durable than conventional products, the manufacturing method for diamond film requires two steps: coating and heat treatment.

刃の切削性は刃の硬さと刃先の形状とに支配されている
。ところがガラスやダイヤモンドのような硬度の高い材
料でできた刃は、使用中に摩耗しにくいものの、脆くて
欠は易いという欠点がある。
The cutting performance of a blade is controlled by the hardness of the blade and the shape of the cutting edge. However, blades made of hard materials such as glass or diamond are less likely to wear out during use, but they have the drawback of being brittle and easily chipping.

電子顕微鏡観察用超薄切片切削には、硬度が高く摩耗し
にくいという刃の性質が優先され、光学顕微鏡観察用切
片切削及び医療用の刃物には、厚い試料を切っても欠け
にくいという刃の性質が優先されてきた。
For cutting ultra-thin sections for electron microscopy, priority is given to blades with high hardness and resistance to wear, while for cutting sections for optical microscopy and medical knives, blades that are resistant to chipping even when cutting thick samples are prioritized. Character has been prioritized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、摩耗しにくくかつ欠けにくいという2つの条
件を満たす刃とその製造方法を提供するものである。
The present invention provides a blade that satisfies the two conditions of being hard to wear and hard to chip, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基体上に原子数比で0.5〜20%の水素を
含有する非晶質のダイヤモンド状カーボンを被覆し、前
記ダイヤモンド状カーボンを刃先とする刃に関するもの
である。
The present invention relates to a blade in which a substrate is coated with amorphous diamond-like carbon containing 0.5 to 20% hydrogen in terms of atomic ratio, and the diamond-like carbon serves as a cutting edge.

本発明でいうダイヤモンド状カーボンとは次のようなも
のである。天然ダイヤモンドに準する硬度を持ち、非晶
質で電子線回折像はハローパターンを示す。またラマン
スペクトルでも1580(J−’付近と1360cm−
’付近に非晶質特有のブロードなピークを示す。元素の
構成は主体がカーボンで、0.5〜20atom%の水
素を含むものである。本発明のダイヤモンド状カーボン
膜は二次イオン質量分析法で測定した結果水素の存在が
確認され、溶融分析法と”N共鳴核反応法とで定量した
ところ、水素が0.5〜20atom%含まれているこ
とが確認された。またVickers硬度は20001
1v〜900011vである。
The diamond-like carbon referred to in the present invention is as follows. It has a hardness similar to that of natural diamond, is amorphous, and its electron diffraction image shows a halo pattern. Also, in the Raman spectrum, 1580 (near J-' and 1360 cm-
It shows a broad peak characteristic of amorphous materials near '. The elemental composition is mainly carbon and contains 0.5 to 20 atom% hydrogen. The presence of hydrogen was confirmed in the diamond-like carbon film of the present invention by secondary ion mass spectrometry, and quantification by melt analysis and N resonance nuclear reaction revealed that it contained 0.5 to 20 atom% of hydrogen. It was confirmed that the Vickers hardness was 20001.
1v to 900011v.

ダイヤモンド状カーボンは、アモルファスシリコンと同
様に非晶質で、かつ水素が炭素原子のダングリングボン
ドと結合していると考えられる。
Diamond-like carbon is considered to be amorphous like amorphous silicon, and hydrogen is bonded to dangling bonds of carbon atoms.

適量の水素が存在することで、ダイヤモンド状カーボン
は天然ダイヤモンドに準する高い硬度を示すものと推測
される。ダイヤモンド状カーボン膜中の水素が多過ぎる
と軟らかい有機質の膜になり、水素が少な過ぎると黒鉛
となる。そのため水素の割合は膜中に0.5〜20a 
tom%、好ましくは2〜8a toI11%とするこ
とがよい。
It is presumed that due to the presence of an appropriate amount of hydrogen, diamond-like carbon exhibits high hardness comparable to that of natural diamond. If there is too much hydrogen in the diamond-like carbon film, it will become a soft organic film, and if there is too little hydrogen, it will become graphite. Therefore, the proportion of hydrogen in the film is 0.5 to 20a.
tom%, preferably 2 to 8a to I11%.

本発明に用いるダイヤモンド状カーボン膜の製造方法と
しては、皮膜の基体への密着性、膜質の均一性、膜表面
の平滑性、生産性という点から、イオン化蒸着法(特開
昭59−174507号及び特開昭59−174508
号公報)が好ましい。
The method for manufacturing the diamond-like carbon film used in the present invention is the ionization vapor deposition method (Japanese Patent Application Laid-Open No. 59-174507), from the viewpoints of adhesion of the film to the substrate, uniformity of film quality, smoothness of the film surface, and productivity. and Japanese Patent Publication No. 59-174508
No. 2) is preferred.

第2図にイオン化蒸着装置の原理図を示す。真空中に原
料となる炭化水素ガスを導入し、これをグロー放電と赤
熱フィラメント10によりイオン化させ、電磁石11の
広がり磁場でこのイオンを引き出す。電磁石で覆われた
この部分をイオン源という。引き出されたイオンは負の
バイアス電圧がかけられた基体13に向かって加速され
、基体に衝突、析出する。原料ガスとしては、メタン、
エタン、アセチレン、ベンゼン等容易に気体として導入
できる炭化水素を用いれば良いが、中でもメタンが好ま
しい。水素ガスを以上の原料ガスの希釈ガスとして用い
てもさしつかえない。ただし、イオン化蒸着法では膜中
の水素含有量は基体のバイアス電圧に依存し、原料ガス
中の水素ガスの割合には顕著には依存しない。容器内の
圧力はlo−4〜10 ” ’Torrでよいが、10
−”Torr程度が望ましい。基体温度としては室温(
25℃程度)〜600℃とすると良好な薄膜が形成され
る。その範囲内でも特に室温(25℃程度)〜300℃
が好ましい範囲である。基体温度が600℃よりも高く
なると作成される膜はグラファイトライクになりやすく
、たとえダイヤモンド状カーボンができても室温に戻す
と、基体と膜との間の歪みが大きくなり、使用中に膜が
剥離し易くなる。
FIG. 2 shows a diagram of the principle of the ionization vapor deposition apparatus. Hydrocarbon gas as a raw material is introduced into a vacuum, ionized by a glow discharge and a red-hot filament 10, and extracted by the expanding magnetic field of an electromagnet 11. This part covered with electromagnets is called the ion source. The extracted ions are accelerated toward the substrate 13 to which a negative bias voltage is applied, collide with the substrate, and are deposited. As raw material gas, methane,
Hydrocarbons that can be easily introduced as a gas such as ethane, acetylene, and benzene may be used, but methane is particularly preferred. Hydrogen gas may be used as a diluent gas for the above raw material gases. However, in the ionization vapor deposition method, the hydrogen content in the film depends on the bias voltage of the substrate and does not significantly depend on the proportion of hydrogen gas in the source gas. The pressure inside the container may be between lo-4 and 10'' Torr, but 10
-" Torr is desirable. The substrate temperature is room temperature (
A good thin film is formed when the temperature is between 25°C and 600°C. Within that range, especially room temperature (about 25℃) to 300℃
is the preferred range. When the substrate temperature is higher than 600°C, the film that is created tends to become graphite-like, and even if diamond-like carbon is formed, when the temperature is returned to room temperature, the strain between the substrate and the film becomes large, and the film may deteriorate during use. It becomes easy to peel off.

基体バイアス電圧は一50V〜−1500Vとし、中で
も一500V〜−100αVが好ましい範囲である。炭
化水素イオンがバイアス電圧により加速されて基体に衝
突すると、衝突エネルギーにより衝突したイオンのC−
H結合が切れて、水素原子は弾き出されてしまう。この
水素原子が弾き出される割合は、衝突するイオンの運動
エネルギー即ちバイアス電圧に従っており、バイアス電
圧が小さ過ぎると炭化水素系イオンが基体表面で充分に
分解せずに、水素が多い有機的な軟らかい膜になりやす
く、バイアス電圧が高過ぎるとグラファイトライクの膜
になり、さらには膜のスパッタリングが生ずる。イオン
源での磁束密度は1000〜l000Gの範囲にするが
、300G〜500Gが好ましい範囲である。細かい製
造条件は、装置内のガス導入口の配置、イオン源の大き
さ、基体の位置などによって変化するので適宜最適条件
を設定することが望ましい。
The substrate bias voltage is set at -50V to -1500V, with a preferable range of -1500V to -100[alpha]V. When a hydrocarbon ion is accelerated by a bias voltage and collides with a substrate, the collision energy causes the C-
The H-bond is broken and the hydrogen atom is ejected. The rate at which these hydrogen atoms are ejected depends on the kinetic energy of the colliding ions, that is, the bias voltage; if the bias voltage is too small, the hydrocarbon ions will not be sufficiently decomposed on the substrate surface, resulting in a soft organic film with a large amount of hydrogen. If the bias voltage is too high, the film becomes graphite-like, and furthermore, sputtering of the film occurs. The magnetic flux density in the ion source is set in the range of 1000 to 1000G, with a preferable range of 300G to 500G. Since detailed manufacturing conditions vary depending on the arrangement of the gas inlet in the apparatus, the size of the ion source, the position of the substrate, etc., it is desirable to set optimal conditions as appropriate.

本発明の刃物の基体は従来公知の物で良く、鉄鋼、ステ
ンレス鋼、超硬合金、金属シリコン、セラミックス、ガ
ラス、サファイヤ等が用いられる。
The base of the cutlery of the present invention may be of conventionally known materials, such as steel, stainless steel, cemented carbide, metallic silicon, ceramics, glass, and sapphire.

刃先となるダイヤモンド状カーボンは基体への付着力が
充分に強いことが必要であり、本発明のダイヤモンド状
カーボン膜は金属シリコン、炭化珪素、タングステンな
どへの付着力が特に強いので、付着力の弱い基体へコー
ティングを施す場合には、基体との間に前記の材料を介
してダイヤモンド状カーボン膜を被覆すると良い。あら
かじめ刃に形成された基体刃先にダイヤモンド状カーボ
ンを被覆する場合には、刃先の鋭さをそこなわない程度
の50〜500人の膜厚にし、好ましくは50〜200
人の範囲が良い。基体にダイヤモンド状カーボンを被覆
した後、刃に加工成形する場合には、膜厚は50人〜2
0μmの間でよい。この場合ダイヤモンド状カーボンが
刃先の稜となるようにするためには、1μIIl〜10
μmの膜厚範囲が加工し易いが、比較的硬く、厚い試料
を切削するための刃を製作する場合は、50人〜500
0人の範囲の膜厚が好ましい。
The diamond-like carbon that forms the cutting edge must have sufficiently strong adhesion to the substrate, and the diamond-like carbon film of the present invention has particularly strong adhesion to metal silicon, silicon carbide, tungsten, etc. When coating a weak substrate, it is preferable to coat a diamond-like carbon film with the above-mentioned material interposed between the substrate and the substrate. When coating diamond-like carbon on the base cutting edge formed on the blade in advance, the film thickness should be 50 to 500 mm, preferably 50 to 200 mm, to the extent that the sharpness of the blade edge is not impaired.
Good range of people. If the base body is coated with diamond-like carbon and then processed and formed into a blade, the film thickness should be between 50 and 2
It may be between 0 μm. In this case, in order to make the diamond-like carbon form the ridge of the cutting edge, it is necessary to
It is easy to process a film thickness in the μm range, but when manufacturing a blade for cutting relatively hard and thick samples, 50 to 500 people are required.
A film thickness in the range of 0 is preferred.

本発明では、刃を構成している2つの面のうち試料に当
たる側の面を逃げ面と呼び、それとは反対側で切削片が
表面を滑ってゆく面をすくい面と呼ぶ。逃げ面とすくい
面とがなす角度をくさび角度と呼び、逃げ面とすくい面
とが交わる部分の稜を刃先と呼ぶ。第1図は刃の縦断面
図であり、(ア)はあらかじめ先端が鋭利な角錘状に加
工された刃先となる基体1を、ダイヤモンド状カーボン
膜2で被覆したものである。(イ)はダイヤモンド状カ
ーボン膜2が被覆された基体lを、加工したものである
。(つ)はダイヤモンド状カーボン膜2が2つの基体で
挟まれており、ダイヤモンド状カーボン層が刃先となる
ように加工されたものである。
In the present invention, of the two surfaces making up the blade, the surface that contacts the sample is called the flank surface, and the surface on the opposite side, on which the cutting piece slides, is called the rake surface. The angle formed by the flank and rake faces is called the wedge angle, and the ridge where the flank and rake faces intersect is called the cutting edge. FIG. 1 is a longitudinal cross-sectional view of the blade, and (A) shows a substrate 1, which will become the cutting edge, which has been previously processed into a sharp pyramid shape, and is coated with a diamond-like carbon film 2. (A) shows a processed substrate l coated with a diamond-like carbon film 2. In (1), a diamond-like carbon film 2 is sandwiched between two substrates, and the diamond-like carbon layer is processed to serve as a cutting edge.

〔実施例〕〔Example〕

以下の実施例では、すべてイオン化蒸着法によってダイ
ヤモンド状カーボン膜を作成した。いずれの実施例にお
いても切削試験前と後に、刃先を走査型電子顕微鏡で1
0.000倍に拡大して観察し、刃先のダイヤモンド状
カーボン層が欠けたり剥離したりしていないことを確認
した。硬度は、1゜g荷重Vickers硬度で測定し
た結果を示す。膜厚は、あらかじめ一部分マスクをして
おいて蒸着後に段差を触診性表面粗さ計で測った値であ
る。
In all of the following examples, diamond-like carbon films were created by the ionized vapor deposition method. In each example, the cutting edge was examined using a scanning electron microscope before and after the cutting test.
It was observed under magnification of 0.000 times and it was confirmed that the diamond-like carbon layer on the cutting edge was not chipped or peeled off. The hardness is measured using Vickers hardness under a load of 1°. The film thickness is a value obtained by partially masking the layer in advance and measuring the difference in level after vapor deposition using a palpable surface roughness meter.

実施例1゜ 基体となる厚さ5mmSi単結晶(100)面鏡面上に
基体温度150℃、バイアス電圧−900Vで厚さ2.
9pm、硬度840011v、水素含有fi3atom
%のダイヤモンド状カーボン膜を被覆した。この試料の
ふちにダイヤモンドのガラス切りできすをつけそこを起
点にして試料を破断させて、割れた部分の刃のくさび角
度が鋭角の部分を選び(第1図(イ))超ミクロトーム
(LKBウルトロトーム■、以下同様)に装着した。そ
の後、前記超ミクロトームにて薄切片作成用包埋樹脂を
切削したところ1.良好な切片を得ることができた。
Example 1 A substrate with a thickness of 2mm was deposited on a 5mm thick Si single crystal (100) mirror surface at a substrate temperature of 150°C and a bias voltage of -900V.
9pm, hardness 840011v, hydrogen containing fi3atom
% diamond-like carbon film was coated. Cut a diamond glass cutter at the edge of the sample, break the sample from that point, and select the part where the wedge angle of the broken part is acute (Figure 1 (a)).Ultramicrotome (LKB) It was attached to the Ultrotome ■ (hereinafter the same). After that, the embedding resin for preparing thin sections was cut using the ultramicrotome. Good sections were obtained.

実施例2゜ 実施例1と同様のSi単結晶表面に膜の密着性を良くす
るために予め直径0.03μmのアルミナ粒で研磨して
おき、これを基体として、基体温度300℃、バイアス
電圧−500vで厚さ0.5μm、硬度3100Hv、
水素含有量9atom%のダイヤモンド状カーボン膜を
被覆した。この試料を破断した断面を、くさび角度が3
0度となるように研磨した(第1図(イ))。この刃を
用いて超ミクロトームで薄切片作成用包埋樹脂を切削し
たところ、良好な切片を得ることができた。
Example 2 The same Si single crystal surface as in Example 1 was polished in advance with alumina grains with a diameter of 0.03 μm in order to improve the adhesion of the film, and this was used as a substrate at a substrate temperature of 300°C and a bias voltage. -500v, thickness 0.5μm, hardness 3100Hv,
A diamond-like carbon film with a hydrogen content of 9 atom% was coated. The cross section of this sample was cut at a wedge angle of 3.
It was polished so that the angle was 0 degrees (Figure 1 (a)). When this blade was used to cut the embedding resin for preparing thin sections with an ultramicrotome, good sections were obtained.

実施例3゜ 厚さ5鰭のSiC板(イビデン5C850)表面を直径
0.28mダイヤモンド粒で研磨しこれを基体として、
基体温度300℃、バイアス電圧−700vで厚さ2.
0μm、硬度5000Hv、水素含有量5atom%の
ダイヤモンド状カーボン膜を被覆し、この試料をくさび
角度が45度となるように切断して研磨した(第1図(
イ))。この刃を用いて超ミクロトームで薄切片作成用
包埋樹脂を切削したところ、良好な切片を得ることがで
きた。
Example 3 The surface of a 5-fin thick SiC plate (IBIDEN 5C850) was polished with diamond grains of 0.28 m in diameter, and this was used as a base.
Thickness: 2.5mm at substrate temperature of 300°C and bias voltage of -700v.
A diamond-like carbon film with a diameter of 0 μm, a hardness of 5000 Hv, and a hydrogen content of 5 atom% was coated, and the sample was cut and polished at a wedge angle of 45 degrees (see Figure 1).
stomach)). When this blade was used to cut the embedding resin for preparing thin sections with an ultramicrotome, good sections were obtained.

実施例4゜ 厚さ10mの等方性黒鉛材(共和カーボンMSG)の表
面に、厚さ7μ閑のSiC層をシランガスとメタンガス
を原料として熱CVD法で形成し、その上に基体温度1
00℃、バイアス電圧−600Vで厚さ2.2μm、硬
度5500Hv、水素含有量7 atom%のダイヤモ
ンド状カーボン膜を被覆し、この試料を破断して断面を
くさび角度が60度となるように研磨した(第1図(イ
))、この刃を用いて超ミクロトームで薄切片作成用包
埋樹脂を切削したところ、良好な切片を得ることができ
た。
Example 4 A 7 μm thick SiC layer was formed on the surface of a 10 m thick isotropic graphite material (Kyowa Carbon MSG) by thermal CVD using silane gas and methane gas as raw materials.
A diamond-like carbon film with a thickness of 2.2 μm, a hardness of 5500 Hv, and a hydrogen content of 7 atom% was coated at 00°C and a bias voltage of -600 V. The sample was broken and the cross section was polished so that the wedge angle was 60 degrees. When this blade was used to cut the embedding resin for preparing thin sections with an ultramicrotome, good sections were obtained.

実施例5゜ 厚さ511のシリコン単結晶ブロックを、刃渡り30m
、<さび角度45度の刃に加工研磨した。
Example 5 A silicon single crystal block with a thickness of 511 mm was made with a blade length of 30 m.
, Processed and polished to a blade with a rust angle of 45 degrees.

この刃に基体温度300℃、バイアス電圧−800Vで
膜厚200人、硬度2500Hv、水素含有量4a L
on+%のダイヤモンド状カーボンを被覆した(第1図
(ア))。この刃を用いて超ミクロトームで薄切片作成
用包埋樹脂を切削したところ、良好な切片を得ることが
できた。
This blade has a base temperature of 300℃, a bias voltage of -800V, a film thickness of 200 mm, a hardness of 2500 Hv, and a hydrogen content of 4a L.
on+% diamond-like carbon was coated (FIG. 1(A)). When this blade was used to cut the embedding resin for preparing thin sections with an ultramicrotome, good sections were obtained.

以下にガラス製従来品の刃と実施例1〜5の刃とで薄切
片作成用包埋樹脂を連続切削して得られた良好な切片の
数の比較を示す。
A comparison of the number of good sections obtained by continuously cutting the embedding resin for forming thin sections using the conventional glass blade and the blades of Examples 1 to 5 will be shown below.

試験結果 実施例6゜ 厚さ0.6 vsmのステンレス鋼板の表面に、ホロカ
ソード型イオンブレーティング法により、膜厚500人
、硬度2000HvのTiN膜を形成し、その上に基体
温度300℃、バイアス電圧−700vで膜厚0.5μ
s、硬度4000Hv、水素含有量5atom%のダイ
ヤモンド状カーボン膜を被覆作成した。これを刃先のく
さび角度が30度になるように加工研磨して、刃渡り5
c11.断面構造が第1図の(イ)の様な刃物にした。
Test Results Example 6 A TiN film with a thickness of 500 mm and a hardness of 2000 Hv was formed on the surface of a stainless steel plate with a thickness of 0.6 vsm by the holocathode ion blating method, and a substrate temperature of 300°C and a bias temperature of Film thickness 0.5μ at voltage -700V
A diamond-like carbon film having a hardness of 4000 Hv and a hydrogen content of 5 atom % was coated. This is processed and polished so that the wedge angle of the cutting edge is 30 degrees, and the blade length is 5.
c11. The cross-sectional structure of the knife was as shown in (a) in Figure 1.

この刃を滑走式ミクロトームに装着して鶏肉を厚さ0.
5鰭切り出したところ、良好な切片を得た。
Attach this blade to a sliding microtome and cut chicken to a thickness of 0.
When 5 fins were cut out, good sections were obtained.

実施例7゜ 厚さ0.25 mのカーボン鋼板表面に、実施例6と同
様の方法で膜厚500人、硬度2000HvのTiN膜
を形成し、その上に基体温度200℃、バイアス電圧−
800vで膜厚2.(1’m+硬度8500Hv、水素
含有i15atom%のダイヤモンド状カーボン膜を1
tmX20鶴の帯状に作成し、更にその上に2.0μm
厚のTiN膜を表面全体にコーティングした。次にこの
表面を研磨して一様に平坦にした後、この面に厚さ0.
25 **のカーボン鋼板を接着した。これをダイヤモ
ンド状カーボン膜部分が刃先となるように切断加工して
刃先のくさび角度が45度になるように研磨し、断面構
造が第1図の(つ)となるような、刃渡り20mmの刃
物にした。この刃を滑走式ミクロトームに装着して、鶏
肉を厚さ0.5鰭切り出したところ、良好な切片を得た
Example 7 A TiN film having a thickness of 500 mm and a hardness of 2000 Hv was formed on the surface of a carbon steel plate with a thickness of 0.25 m in the same manner as in Example 6, and a substrate temperature of 200° C. and a bias voltage of -
At 800v, the film thickness is 2. (1'm + hardness 8500Hv, hydrogen containing i15atom% diamond-like carbon film 1
Create a strip of tm
A thick TiN film was coated over the entire surface. Next, after polishing this surface to make it uniformly flat, this surface has a thickness of 0.
25** carbon steel plates were bonded. This is cut so that the diamond-like carbon film part becomes the cutting edge, and polished so that the wedge angle of the cutting edge is 45 degrees.A blade with a blade length of 20 mm is made with a cross-sectional structure as shown in Figure 1. I made it. When this blade was attached to a sliding microtome and the chicken was cut into 0.5 fin thickness, good sections were obtained.

以下にステンレス鋼製従来品の刃と実施例6と7の刃と
で鶏肉を連続切削して得られた良好な切片の数の比較を
示す。
Below is a comparison of the number of good sections obtained by continuous cutting of chicken meat using the stainless steel conventional blade and the blades of Examples 6 and 7.

試験結果 〔発明の効果〕 本発明により、硬い材料の刃先を粘りのある材料が支持
している、複合材料からなる刃を製造することができる
。本発明の刃はダイヤモンド並に硬くかつ鋼のように欠
けにくい刃であるため、従来品に比べ耐久性、耐摩耗性
、切削性に優れた、特にプラスチック及び生態試料など
の有機物を切削するのに適した刃である。本発明の刃に
よって、頻繁に刃を交換しなくてはならなかった精密切
削用の刃の欠点が大幅に改良される。
Test Results [Effects of the Invention] According to the present invention, it is possible to manufacture a blade made of a composite material, in which the cutting edge of a hard material is supported by a sticky material. The blade of the present invention is as hard as diamond and as hard to chip as steel, so it has superior durability, wear resistance, and cutting performance compared to conventional products, and is especially suitable for cutting organic materials such as plastics and ecological samples. This blade is suitable for The blade of the present invention significantly improves the drawbacks of precision cutting blades that require frequent blade replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のダイヤモンド状カーボン被覆刃の縦断
面図である。第゛2図はイオン化蒸着装置の原理図であ
る。 名 儀 第1図 第2図
FIG. 1 is a longitudinal sectional view of a diamond-like carbon coated blade of the present invention. FIG. 2 is a diagram showing the principle of the ionization vapor deposition apparatus. Namegi Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に、原子数比で0.5〜20%の水素を含
有する非晶質のダイヤモンド状カーボンを被覆し、前記
ダイヤモンド状カーボンを刃先とした事を特徴とするダ
イヤモンド状カーボン被覆刃。
(1) A diamond-like carbon coating characterized in that amorphous diamond-like carbon containing 0.5 to 20% hydrogen by atomic ratio is coated on a substrate, and the diamond-like carbon is used as a cutting edge. blade.
(2)刃のすくい面と逃ιデ面と刃先にダイヤモンド状
カーボンが被覆されている特許請求の範囲第1項記載の
ダイヤモンド状カーボン被覆刃。
(2) A diamond-like carbon-coated blade according to claim 1, wherein the rake face, escape face, and cutting edge of the blade are coated with diamond-like carbon.
(3)刃のすくい面またはにげ面のどちらか一方と刃先
にダイヤモンド状カーボンが被覆されている特許請求の
範囲第1項記載のダイヤモンド状カーボン被覆刃。
(3) The diamond-like carbon-coated blade according to claim 1, wherein either the rake face or the rake face of the blade and the cutting edge are coated with diamond-like carbon.
(4)2つの基体に挟まれたダイヤモンド状カーボン層
が刃先である稜線を形成し、かつ2つの基体が各々刃の
すくい面と逃げ面とを構成している特許請求の範囲第1
項記載のダイヤモンド状カーボン被覆刃。
(4) The diamond-like carbon layer sandwiched between the two substrates forms a ridgeline that is the cutting edge, and the two substrates form the rake face and flank of the blade, respectively.
Diamond-like carbon coated blade as described in section.
JP23497887A 1987-07-23 1987-09-21 Blade coated with diamond-like carbon Pending JPH0197839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23497887A JPH0197839A (en) 1987-07-23 1987-09-21 Blade coated with diamond-like carbon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18233187 1987-07-23
JP62-182331 1987-07-23
JP23497887A JPH0197839A (en) 1987-07-23 1987-09-21 Blade coated with diamond-like carbon

Publications (1)

Publication Number Publication Date
JPH0197839A true JPH0197839A (en) 1989-04-17

Family

ID=26501167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23497887A Pending JPH0197839A (en) 1987-07-23 1987-09-21 Blade coated with diamond-like carbon

Country Status (1)

Country Link
JP (1) JPH0197839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
WO1995029044A1 (en) * 1994-04-25 1995-11-02 The Gillette Company Amorphous diamond coating of blades
US6745479B2 (en) 2000-10-17 2004-06-08 Ronald S. Dirks Chromium mounted diamond particle cutting tool or wear surface and method
JP2009281995A (en) * 2008-05-26 2009-12-03 Muto Kagaku Kk Microtome replacement blade and its manufacturing method
WO2012147790A1 (en) * 2011-04-26 2012-11-01 倉敷紡績株式会社 Device for fabricating thin section sample
CN108908104A (en) * 2018-06-22 2018-11-30 大连理工大学 A kind of sapphire ball cover fishing ball processing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
WO1995029044A1 (en) * 1994-04-25 1995-11-02 The Gillette Company Amorphous diamond coating of blades
US5799549A (en) * 1994-04-25 1998-09-01 The Gillette Company Amorphous diamond coating of blades
US5940975A (en) * 1994-04-25 1999-08-24 Decker; Thomas G. Amorphous diamond coating of blades
US5992268A (en) * 1994-04-25 1999-11-30 Decker; Thomas G. Amorphous diamond coating of blades
US6289593B1 (en) 1994-04-25 2001-09-18 Thomas G. Decker Amorphous diamond coating of blades
US6745479B2 (en) 2000-10-17 2004-06-08 Ronald S. Dirks Chromium mounted diamond particle cutting tool or wear surface and method
JP2009281995A (en) * 2008-05-26 2009-12-03 Muto Kagaku Kk Microtome replacement blade and its manufacturing method
WO2012147790A1 (en) * 2011-04-26 2012-11-01 倉敷紡績株式会社 Device for fabricating thin section sample
JP2012229997A (en) * 2011-04-26 2012-11-22 Kurabo Ind Ltd Thin-sliced sample preparation device
CN108908104A (en) * 2018-06-22 2018-11-30 大连理工大学 A kind of sapphire ball cover fishing ball processing method

Similar Documents

Publication Publication Date Title
JP4918656B2 (en) Amorphous hard carbon film
CA2480590C (en) Self-sharpening cutting tool with hard coating
JP5782019B2 (en) Cutting tools
JP3995900B2 (en) Diamond-like carbon multilayer film
US8621757B2 (en) Coated cutting edge of a blade member
WO2004076710A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
KR20000005021A (en) Substrate having hard coating containing boron and nitrogzn and its manufactwring mathod
JPS622133A (en) Diamond-coated blade for microtome and manufacture thereof
JP3392115B2 (en) Hard coating tool
JP2003089004A (en) Coated machining tool
JPH0197839A (en) Blade coated with diamond-like carbon
JP3719709B2 (en) Amorphous carbon coated tool and method for manufacturing the same
WO1992017323A1 (en) Coated cutting tool
JP2008105164A (en) Surface-coated cutting tool
JP2005022073A (en) Dlc coated tool
JPH05320910A (en) Diamond coated member
Benmalek et al. Characterization and comparison of TiN layers deposited by different physical vapour deposition processes
Pogrebnjak et al. The effect of substrate treatment on the properties of TiAlSiYN/CrN nanocomposite coatings
JP3455716B2 (en) Carbon coated member and method of manufacturing the same
Singh et al. Physical and mechanical characterization of mechanically treated AlTiN coatings deposited using novel arc enhanced HIPIMS technique
JPS61270373A (en) Diamond coated sintered hard alloy
JPH08104597A (en) Diamond laminated film and member with the same
JP3260156B2 (en) Method for producing diamond-coated member
JPS5925970A (en) Coated sintered hard alloy
Richter et al. Tribological characterization of diamond-like carbon films on nonledeburitic high-speed steels