JPH0197074A - Infrared ray image pickup device - Google Patents

Infrared ray image pickup device

Info

Publication number
JPH0197074A
JPH0197074A JP62255156A JP25515687A JPH0197074A JP H0197074 A JPH0197074 A JP H0197074A JP 62255156 A JP62255156 A JP 62255156A JP 25515687 A JP25515687 A JP 25515687A JP H0197074 A JPH0197074 A JP H0197074A
Authority
JP
Japan
Prior art keywords
solid
memory
wall
temperature
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62255156A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62255156A priority Critical patent/JPH0197074A/en
Publication of JPH0197074A publication Critical patent/JPH0197074A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To remove influence due to the infrared ray radiation of the inner wall in a device by constituting the device in such a way that it detects the temperature of the inner wall in the device, obtains the signals of respective picture elements due to infrared ray radiation from the inner wall in the device and subtracts the signals from the output signals of a solid state image pickup element. CONSTITUTION:A temperature measured value which has been measured in a temperature sensor 6 and which has been converted into a digital signal in an A/D converter 7 is added to the address of a first memory 8. On the other hand, the output of an address counter 9 deciding the addresses of respective picture elements in the solid-state image pickup element detecting infrared rays is added to the address of a second memory 10. With multiplying the outputs of the first memory 8 and the outputs of the second memory 10 in a multiplier 11, the signals which are by the infrared rays radiated from the inner part of the device corresponding to respective picture elements are obtained. The signals are converted into analogue signals by a D/A converter 12. With subtracting the output signal of the D/A converter 12 from the output signals of a sample holding circuit 4 by a subtractor 13, the signal by infrared ray radiation from the inner wall 5 of the device are removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は2次元アレイの固体撮像素子を用いた赤外線
撮像装置における。装置内部からの赤外線輻射による信
号レベルの不均一の補正に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an infrared imaging device using a two-dimensional array of solid-state imaging devices. This invention relates to correction of signal level non-uniformity due to infrared radiation from inside the device.

〔従来の技術〕[Conventional technology]

第2図は固体撮像素子を用いた従来の赤外線撮像装置の
一部を示した構成図である。図において。
FIG. 2 is a block diagram showing part of a conventional infrared imaging device using a solid-state imaging device. In fig.

(1)は被写体からの赤外光を集光する赤外線レンズ。(1) is an infrared lens that focuses infrared light from the subject.

(2)は固体撮像素子を内蔵した赤外線検出器であり。(2) is an infrared detector with a built-in solid-state image sensor.

(3)は赤外線検出器(2)が十分な感度を得られるよ
うに冷却するための冷却器である。(4)は赤外線検出
器(2)の出力信号中のビデオ信号分のみを抽出するサ
ンプルホールド回路であシ、サンプルホールド回路(4
)の出力はビデオ信号として出力される。
(3) is a cooler for cooling the infrared detector (2) so that it can obtain sufficient sensitivity. (4) is a sample and hold circuit that extracts only the video signal from the output signal of the infrared detector (2).
) is output as a video signal.

第3図は前記赤外線検出器(2)の構造と、赤外光の入
射経路を示した図であシ、 (2a)は赤外線を検出す
る固体撮像素子、 (2b)は冷却器(3)によって固
体撮像素子(2a)を液体窒素温度付近まで冷却するた
めに断熱効果を得るだめの真空デユワ、 (2c)は赤
外の入射方向を制限するためのコールドシールド、 (
2a)は赤外を透過する真空デニワの窓である。
Figure 3 is a diagram showing the structure of the infrared detector (2) and the incident path of infrared light, (2a) is a solid-state image sensor that detects infrared light, (2b) is a cooler (3). (2c) is a vacuum dewar to obtain a heat insulating effect to cool the solid-state image sensor (2a) to near the temperature of liquid nitrogen; (2c) is a cold shield to limit the direction of incidence of infrared light;
2a) is a vacuum Deniwa window that transmits infrared light.

コールドシールド(2C)の開口部の寸法は、第3図に
示すように赤外線レンズ(1)を通して入射する赤外光
が固体撮像素子(2a)の受光面の端においてクランな
いような寸法に設定されている。
The dimensions of the opening of the cold shield (2C) are set so that the infrared light entering through the infrared lens (1) does not clank at the edge of the light-receiving surface of the solid-state image sensor (2a), as shown in Figure 3. has been done.

第4図は固体撮像素子(2a)の受光面の中央と端の画
素に入射する赤外線の経路を示した図であるが、固体撮
像素子(2a)の受光面寸法が大きくなると図中の破線
で示すような経路で装置内壁(5)からの赤外線の輻射
を受ける。
FIG. 4 is a diagram showing the path of infrared rays incident on pixels at the center and edge of the light-receiving surface of the solid-state image sensor (2a). The device receives infrared radiation from the inner wall (5) of the device through a path as shown in FIG.

第5図は固体撮像素子(2a)中の1画素に入射する赤
外線の経路範囲を示した図でtjシ1図中斜線を施した
面S1は固体撮像素子(2a)から距離Rの面において
、固体撮像素子(2a)中の微少面積Sdの1画素に入
射する装置内壁<51からの赤外線が通過する領域の面
積であ’)e  Soは赤外線レンズ(1)を通して被
写体から入射する赤外線が通過する領域の面積である。
Figure 5 is a diagram showing the path range of infrared rays incident on one pixel in the solid-state image sensor (2a), and the shaded surface S1 in Figure 1 is at a distance R from the solid-state image sensor (2a). , So is the area of the area through which the infrared rays from the device inner wall < 51 pass, which are incident on one pixel with a small area Sd in the solid-state image sensor (2a). This is the area of the area through which it passes.

コールドシールドは固体撮像素子(2a)と同様に液体
窒素温度付近まで冷却されるため、その赤外線放射量は
非常に小さく、装置内壁(5)の赤外線放射量に比べて
無視できる。従って。
Like the solid-state image sensor (2a), the cold shield is cooled to near the temperature of liquid nitrogen, so the amount of infrared radiation it emits is extremely small and can be ignored compared to the amount of infrared radiation from the inner wall (5) of the device. Therefore.

ある画素と面81中の微小面積asとを結んだ直線と、
固体撮像素子(2a)の受光面と垂直な方向とのなす角
をθとすると、上記画素の出力信号のうち装置内部から
輻射される赤外線による信号外v1は0)式となる。
A straight line connecting a certain pixel and a minute area as in the surface 81,
If the angle between the light-receiving surface of the solid-state image sensor (2a) and the perpendicular direction is θ, the signal v1 due to the infrared rays radiated from the inside of the device among the output signals of the pixels is expressed by equation 0).

ただし、(1)式中におけるR(λ)は固体撮像素子(
2a)中の各画素の分光感度であり、 N(λ、T)は
温度Tにおける装置内壁(5)の分光放射輝度である。
However, R(λ) in equation (1) is the solid-state image sensor (
2a) is the spectral sensitivity of each pixel in N(λ, T) is the spectral radiance of the device inner wall (5) at temperature T.

vlの値は固体撮像素子(2a)中における各画素の位
置によって異なシ、中央の画素が1番大きく端の画素は
ど小さい。
The value of vl varies depending on the position of each pixel in the solid-state image sensor (2a), with the center pixel having the largest value and the end pixels having the smallest value.

第6図は画素の位置と、各成分による信号外との関係を
表わした図である。第6図(a)は固体撮像素子の受光
面を表わし、同図(b)は同図(a)において斜線を施
した中央の1ラインの各画素の出力信号のうち、装置内
部からの赤外flA@射による信号外v1を表わした図
であり、中央の画素の信号レベルは端の画素の信号レベ
ルよりも大きい。同図(C)は赤外線レンズ(1)を通
して被写体から入射する赤外線による信号外VQである
。同図(d)は、実際の固体撮像素子(2a)の中央1
ラインの出力信号であJ’svoとvlが加算された信
号が出力される。
FIG. 6 is a diagram showing the relationship between the pixel position and the outside of the signal due to each component. Figure 6(a) shows the light-receiving surface of the solid-state image sensor, and Figure 6(b) shows the red and red signals from inside the device among the output signals of each pixel in the hatched center line in Figure 6(a). It is a diagram showing a signal outside v1 due to outside flA@ radiation, and the signal level of the center pixel is higher than the signal level of the edge pixels. (C) of the same figure shows an extra-signal VQ caused by infrared rays incident from the subject through the infrared lens (1). Figure (d) shows the center 1 of the actual solid-state image sensor (2a).
A signal obtained by adding J'svo and vl is output as a line output signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の撮像装置のビデオ信号は、上記のように被写体か
ら放射される赤外線による信号の他に。
The video signals of conventional imaging devices include, in addition to signals from infrared rays emitted from the subject as described above.

装置内部からの赤外線輻射による信号外が加算されてい
るため、均一温度の被写体を撮像しても画素の位置によ
って信号レベルが異なるうえ、装置内部の温度変化によ
って信号レベルも変化するという問題点があった。
Since the extra signal due to infrared radiation from inside the device is added, there is a problem that even if an object with a uniform temperature is imaged, the signal level differs depending on the pixel position, and the signal level also changes depending on the temperature change inside the device. there were.

この発明は、このような問題点を解決するためになされ
たもので、装置内部からの赤外線輻射の影響を自動的に
補正して、均一で、装置内部の温度に影響されないビデ
オ信号を得ることを目的とするものである。
This invention was made to solve these problems, and it is possible to automatically correct the influence of infrared radiation from inside the device to obtain a uniform video signal that is not affected by the temperature inside the device. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る撮像装置は、装置内壁の温度を検出する
温度センサと、その検出温度によって固体撮像素子の各
画素の信号中における装置内壁からの赤外線輻射による
信号外を求める手段と、固体撮像素子の出力信号から前
記装置内壁からの赤外線輻射による信号外を減算する減
算器を設けたものである。
The imaging device according to the present invention includes: a temperature sensor that detects the temperature of the inner wall of the device; a means for determining an outside signal due to infrared radiation from the inner wall of the device in a signal of each pixel of the solid-state image sensor based on the detected temperature; A subtracter is provided for subtracting an extra signal due to infrared radiation from the inner wall of the device from the output signal of the device.

〔作用〕[Effect]

この発明においては、装置内壁の温度を測定し。 In this invention, the temperature of the inner wall of the device is measured.

その温度によって固体撮像素子の各画素における装置内
壁からの赤外線輻射による信号外を求め。
Based on the temperature, the signal outside of each pixel of the solid-state image sensor due to infrared radiation from the inner wall of the device is determined.

その信号外を固体撮像素子の出力信号から減算するとと
kよシ装置内壁からの赤外線輻射の影響を除去する。
By subtracting the outside signal from the output signal of the solid-state image pickup device, the influence of infrared radiation from the inner wall of the device is removed.

〔実施例〕〔Example〕

第1図はこの発明による赤外線撮像装置の一実施例を示
す構成図であり、+IIは赤外線レンズ、(2)は赤外
線検出器、(3)は赤外線検出器を冷却する冷却器、(
4)は出力信号中のビデオ信号外のみを抽出するサンプ
ルホールド回路であシ、上記(t1〜(4)は従来装置
と同じである。(6)は装置内壁(5)の温度を検出す
るための温度センサー、(7)は温度センサー(6)の
信号をディジタル信号に変換して出力するAカ変換器、
(8)は温度を変数として前記(1)式におけるfRc
λ)・N(λ、T) dλ の値をあらかじめ記憶して
おく第1のメモリーである。(9)はアドレスカウンタ
ーで、固体撮像素子(2a)中の各画素のアドレスを決
定する。Qlは各アドレスに対応した前記(1)Sd−
co!4θ 式中におけるf8.−1−dsの値をあらかじめ記憶し
ておく第2のメモリーである。αυは第1のメモリー(
8)と第2のメモリー(1(Iの値を乗算する乗算器で
あり、0zは乗算器の出力信号をアナログ信号に変換す
るD/A変換器である。αjはサンプルホールド回路(
4)の出力信号からい変換器α2の出力信号を減算する
減算器である。
FIG. 1 is a configuration diagram showing an embodiment of an infrared imaging device according to the present invention, +II is an infrared lens, (2) is an infrared detector, (3) is a cooler for cooling the infrared detector, (
4) is a sample and hold circuit that extracts only the outside of the video signal from the output signal, and the above (t1 to (4)) are the same as the conventional device. (6) detects the temperature of the inner wall (5) of the device. (7) is an A converter that converts the signal of the temperature sensor (6) into a digital signal and outputs it.
(8) is fRc in the above equation (1) using temperature as a variable.
λ)·N(λ, T) This is the first memory in which the value of dλ is stored in advance. (9) is an address counter that determines the address of each pixel in the solid-state image sensor (2a). Ql is the above (1) Sd- corresponding to each address.
co! f8 in the 4θ formula. This is a second memory in which the value of -1-ds is stored in advance. αυ is the first memory (
8) and the second memory (1 (It is a multiplier that multiplies the value of I, 0z is a D/A converter that converts the output signal of the multiplier into an analog signal. αj is a sample and hold circuit (
This subtracter subtracts the output signal of the converter α2 from the output signal of 4).

上記のように構成された赤外線撮像装置においては、温
度センサー(6)で測定され、 A/’[)変換器(7
)においてディジタル信号に変換された温度測定値を第
1のメモリー(8)のアドレスに加えることにより第1
のメモ+) −(8)の出力として前記(!)式中にお
けるfRCλ)・N(λ、T) dλの値が得られる。
In the infrared imaging device configured as described above, the temperature is measured by the temperature sensor (6), and the temperature is measured by the A/'[) converter (7
) by adding the temperature measurement value converted into a digital signal to the address of the first memory (8).
The value of fRCλ)·N(λ, T) dλ in the above formula (!) is obtained as the output of +)−(8).

一方。on the other hand.

アドレスカウンター(9)の出力を第2のメモリー〇〇
のアドレスに加えることにより各画素に対応する従って
9乗算器αυにおいて第1のメモIJ −+81の出力
と、第2のメモリー〇〇の出力とを乗算することにより
各画素に対応した前記(1)式のvl 、つまり装置内
部から輻射される赤外線による信号分が得られる。これ
をD/A変換器αりによりアナログ信号に変換すること
により、第6図(1))と同じ信号が得られる。従って
、サンプルホールド回路(4)の出力信号からD/A変
換器(13の出力信号を減算器αjにより減算すること
によ抄、装置内壁(5)からの赤外線輻射による信号分
を除去することができる。
By adding the output of the address counter (9) to the address of the second memory 〇〇, the output of the first memory IJ - +81 and the output of the second memory 〇〇 correspond to each pixel. By multiplying by , vl of the above equation (1) corresponding to each pixel, that is, the signal component due to infrared rays radiated from inside the device is obtained. By converting this into an analog signal using a D/A converter α, the same signal as in FIG. 6(1)) can be obtained. Therefore, by subtracting the output signal of the D/A converter (13) from the output signal of the sample and hold circuit (4) using the subtractor αj, the signal due to infrared radiation from the inner wall (5) of the device can be removed. Can be done.

−〔発明の効果〕 以上のようにこの発明によれば、装置内壁の温度を検出
して装置内壁からの赤外線輻射による各画素の信号分を
求める手段を設け、その信号を固体撮像素子の出力信号
から減算するように構成したので、装置内壁の赤外線輻
射による影響を除去することができる。
- [Effects of the Invention] As described above, according to the present invention, a means is provided to detect the temperature of the inner wall of the device and obtain a signal of each pixel due to infrared radiation from the inner wall of the device, and the signal is outputted from the solid-state image sensor. Since it is configured to be subtracted from the signal, the influence of infrared radiation from the inner wall of the device can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による赤外線撮像装置の一実施例を示
す構成図、第2図は従来の赤外線撮像装置の構成図、第
3図は赤外線検出器の構成図、′第4図は固体撮像素子
に入射する赤外線の経路を示す図、第5図は固体撮像素
子の1画素に入射する赤外線の経路範囲を示した図、第
6図は各入射成分による固体撮像素子の出力信号の例を
示す図である。 図において、  (2a)は固体撮像素子、  (2c
)はコールドシールド、(3)は冷却器、(5)は装置
内壁、(6)は温度センサー、(8)は第1のメモリー
、(91はアドレスカウンター、alは第2のメモリー
、aυは乗算器、 (13は減算器である。 なお、各図中、同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing an embodiment of an infrared imaging device according to the present invention, Fig. 2 is a block diagram of a conventional infrared imaging device, Fig. 3 is a block diagram of an infrared detector, and Fig. 4 is a solid-state imaging device. Figure 5 is a diagram showing the path of infrared rays incident on the element, Figure 5 is a diagram showing the path range of infrared rays incident on one pixel of the solid-state image sensor, and Figure 6 is an example of the output signal of the solid-state image sensor due to each incident component. FIG. In the figure, (2a) is a solid-state image sensor, (2c
) is the cold shield, (3) is the cooler, (5) is the inner wall of the device, (6) is the temperature sensor, (8) is the first memory, (91 is the address counter, al is the second memory, aυ is A multiplier (13 is a subtracter. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 冷却器により低温に冷却されて赤外線を検出する固体撮
像素子と、上記固体撮像素子に入射する赤外光の経路を
制限するコールドシールドと、装置内壁の温度を検出す
る温度センサーと、装置内壁の温度を変数として上記固
体撮像素子の感度と装置内壁の放射輝度の乗算値を記憶
した第1のメモリーと、上記固体撮像素子の各画素のア
ドレスを決めるアドレスカウンターと、上記各画素が装
置内壁から受ける赤外線量の相対値を上記各画素のアド
レスに対応して記憶した第2のメモリーと、上記第1の
メモリーと第2のメモリーの出力値を乗算する乗算器と
、上記乗算器により得られる乗算値を固体撮像素子の出
力値から減算する減算器とを備えたことを特徴とする赤
外線撮像装置。
A solid-state image sensor that is cooled to a low temperature by a cooler to detect infrared rays, a cold shield that restricts the path of infrared light that enters the solid-state image sensor, a temperature sensor that detects the temperature of the inner wall of the device, and a temperature sensor that detects the temperature of the inner wall of the device. a first memory that stores the multiplication value of the sensitivity of the solid-state image sensor and the radiance of the inner wall of the apparatus using temperature as a variable; an address counter that determines the address of each pixel of the solid-state image sensor; a second memory that stores the relative value of the amount of infrared rays received corresponding to the address of each pixel; a multiplier that multiplies the output values of the first memory and the second memory; An infrared imaging device comprising: a subtracter that subtracts a multiplied value from an output value of a solid-state imaging device.
JP62255156A 1987-10-09 1987-10-09 Infrared ray image pickup device Pending JPH0197074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255156A JPH0197074A (en) 1987-10-09 1987-10-09 Infrared ray image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255156A JPH0197074A (en) 1987-10-09 1987-10-09 Infrared ray image pickup device

Publications (1)

Publication Number Publication Date
JPH0197074A true JPH0197074A (en) 1989-04-14

Family

ID=17274845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255156A Pending JPH0197074A (en) 1987-10-09 1987-10-09 Infrared ray image pickup device

Country Status (1)

Country Link
JP (1) JPH0197074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589876A (en) * 1993-09-28 1996-12-31 Nec Corporation Infrared imaging device readily removing optical system contributory component
JPH0968604A (en) * 1995-06-06 1997-03-11 Hughes Missile Syst Co Solid catadioptric lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589876A (en) * 1993-09-28 1996-12-31 Nec Corporation Infrared imaging device readily removing optical system contributory component
JPH0968604A (en) * 1995-06-06 1997-03-11 Hughes Missile Syst Co Solid catadioptric lens

Similar Documents

Publication Publication Date Title
US5249046A (en) Method and apparatus for three dimensional range resolving imaging
US7606484B1 (en) Infrared and near-infrared camera hyperframing
US20180096468A1 (en) Systems and methods for enhanced dynamic range infrared imaging
US5276319A (en) Method and device for improved IR detection with compensations for individual detector response
US6969856B1 (en) Two band imaging system
US20210250469A1 (en) Device and method for parasitic heat compensation in an infrared camera
Blommel et al. Effects of microscan operation on staring infrared sensor imagery
Malz et al. Towards passive imaging with CMOS THz cameras
JPH03246428A (en) Infrared video device
JPH0197074A (en) Infrared ray image pickup device
EP3803780A1 (en) Device and method for parasitic heat compensation in an infrared camera
JP2680879B2 (en) Infrared imaging device
JPH0732467B2 (en) Shading correction device for infrared video camera
Fraedrich Methods in calibration and error analysis for infrared imaging radiometers
JP3020931B1 (en) Video camera
JP4180869B2 (en) Infrared imaging device
GB2336051A (en) Image processing
JPH0645573A (en) Infrared ray solid-state image pick-up device
JPH03179977A (en) Image pickup device
JP2003166880A (en) Imaging device having temperature measuring means
JPS6251381A (en) Infrared ray image pickup device
JPS6040230B2 (en) infrared imaging device
JPH0629778B2 (en) Infrared optics
JPH07181084A (en) Infrared image processor
JP2766708B2 (en) Thermography equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Effective date: 20050512

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130520

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9