JPH0645573A - Infrared ray solid-state image pick-up device - Google Patents
Infrared ray solid-state image pick-up deviceInfo
- Publication number
- JPH0645573A JPH0645573A JP4216573A JP21657392A JPH0645573A JP H0645573 A JPH0645573 A JP H0645573A JP 4216573 A JP4216573 A JP 4216573A JP 21657392 A JP21657392 A JP 21657392A JP H0645573 A JPH0645573 A JP H0645573A
- Authority
- JP
- Japan
- Prior art keywords
- reference pixel
- picture element
- infrared
- pixel
- reference picture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、赤外線光量が零の場合
や所定の赤外線光量に対応する基準値を簡便に得ること
ができ、温度計測等に好適に用いられる赤外線固体撮像
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared solid-state image pickup device which can easily obtain a reference value corresponding to a predetermined infrared light amount when the infrared light amount is zero, and which is preferably used for temperature measurement and the like. is there.
【0002】[0002]
【従来の技術】従来から知られている赤外線固体撮像装
置は、2次元に配列されたPtSiなどからなる光電変
換部と、この光電変換部で光電変換された信号電荷を読
み出すための電荷転送部とを有し、電荷転送部の電極に
トランスファーパルスを印加することによって信号電荷
が順次読み出される。即ち、従来の赤外線固体撮像装置
では、すべての画素がそれぞれの画素に入射した赤外線
の光量に応じた信号を出力する構成となっていた。尚、
本明細書では、説明の便宜上、電荷転送部を含まない個
々の光電変換部に相当する領域を「画素」として表現す
る。2. Description of the Related Art A conventionally known infrared solid-state image pickup device includes a photoelectric conversion section which is two-dimensionally arranged and is made of PtSi or the like, and a charge transfer section for reading out signal charges photoelectrically converted by the photoelectric conversion section. The signal charges are sequentially read by applying a transfer pulse to the electrodes of the charge transfer unit. That is, in the conventional infrared solid-state imaging device, all the pixels are configured to output a signal according to the amount of infrared light incident on each pixel. still,
In this specification, for convenience of description, a region corresponding to each photoelectric conversion unit that does not include a charge transfer unit is expressed as a “pixel”.
【0003】[0003]
【発明が解決しようとする課題】上記のような従来の赤
外線固体撮像装置においては、以下のような問題点があ
った。即ち、従来の赤外線固体撮像装置を温度計測等に
用いる場合、予め基準となる黒体を撮像し、そのときの
出力信号を基準として温度計測を行っている。このた
め、温度計測の度に基準温度の黒体炉などを準備しなけ
ればならず、非常に不便であった。又、黒体炉では極低
温を作ることは難しく、温度の絶対基準である零KやP
tSiを用いた赤外線固体撮像装置の冷却温度である7
7K等での基準出力を得ることはできなかった。The conventional infrared solid-state image pickup device as described above has the following problems. That is, when the conventional infrared solid-state imaging device is used for temperature measurement or the like, a black body serving as a reference is imaged in advance, and the temperature is measured based on the output signal at that time. For this reason, it is very inconvenient to prepare a black body furnace or the like having a reference temperature every time the temperature is measured. Also, it is difficult to make a cryogenic temperature in a blackbody furnace, and the absolute standard of the temperature is zero K or P.
The cooling temperature of the infrared solid-state imaging device using tSi is 7
It was not possible to obtain the reference output at 7K or the like.
【0004】本発明は係る点に鑑みてなされたものであ
り、黒体炉などを必要とせずに、基準出力を得ることが
でき、正確な温度測定やコントラストの高い画像を得る
ことが容易にできる赤外線固体撮像装置を提供すること
を目的とするものである。The present invention has been made in view of the above point, and it is possible to obtain a reference output without the need for a black body furnace, etc., and it is easy to obtain an accurate temperature measurement and an image with high contrast. It is an object of the present invention to provide an infrared solid-state imaging device that can be used.
【0005】[0005]
【課題を解決するための手段】請求項1の赤外線固体撮
像装置は、赤外線を光電変換する光電変換部を有する複
数の画素と、該画素から電気信号を読み出すための出力
手段とを備えた赤外線固体撮像装置において、上記の目
的を達成するために、前記赤外線の光量によらず一定の
電気信号を出力する少なくとも一つの基準画素を備えた
ものである。An infrared solid-state image pickup device according to claim 1, wherein the infrared solid-state image pickup device comprises a plurality of pixels each having a photoelectric conversion portion for photoelectrically converting infrared rays, and an output means for reading an electric signal from the pixels. In order to achieve the above object, the solid-state imaging device includes at least one reference pixel that outputs a constant electric signal regardless of the amount of infrared light.
【0006】請求項2の赤外線固体撮像装置における前
記基準画素は、前記光電変換部がない画素である。請求
項3の赤外線固体撮像装置における前記基準画素は、該
基準画素の電圧を制御する手段を備えるものである。請
求項4の赤外線撮像装置における前記基準画素は、外部
から前記基準画素に入射する前記赤外線を遮光するとと
もに、前記基準画素に対して一定の光量の赤外線を放射
する遮光部材を備えたものである。The reference pixel in the infrared solid-state image pickup device according to claim 2 is a pixel without the photoelectric conversion unit. The reference pixel in the infrared solid-state imaging device according to claim 3 comprises means for controlling the voltage of the reference pixel. The reference pixel in the infrared imaging device according to claim 4, is provided with a light blocking member that blocks the infrared light incident on the reference pixel from the outside and also radiates a predetermined amount of infrared light to the reference pixel. .
【0007】[0007]
【作用】請求項2による赤外線固体撮像装置では、基準
画素の光電変換部がないので、基準画素からは光電変換
以外の主としてリーク電流による電気信号が出力され
る。従って、この基準画素からの出力をダークレベル
(赤外線の光量が零)の基準値とすることができる。In the infrared solid-state image pickup device according to the second aspect, since the photoelectric conversion portion of the reference pixel is not provided, the reference pixel outputs an electric signal mainly due to the leak current other than the photoelectric conversion. Therefore, the output from this reference pixel can be used as the reference value of the dark level (the amount of infrared light is zero).
【0008】請求項3の赤外線固体撮像装置において、
基準画素以外の通常の画素における光電流をi、露光時
間をt、プリチャージ電圧をVP 、画素の容量をCとす
ると、発生電荷Qは Q=it …(1) となり、画素の電圧Vは V=VP −(Q/C) …(2) となる。In the infrared solid-state image pickup device of claim 3,
When the photocurrent in a normal pixel other than the reference pixel is i, the exposure time is t, the precharge voltage is V P , and the capacitance of the pixel is C, the generated charge Q is Q = it (1), and the pixel voltage V is V = V P - the (Q / C) ... (2 ).
【0009】よって、画素の出力を読み出すタイミング
に合わせて基準画素の電圧をVに下げれば、基準画素か
ら光電流iと対応する出力が得られる。即ち、電気的な
制御によって、赤外線の入射光量がある所定量のときの
グレーレベルの基準値が得られる。Therefore, if the voltage of the reference pixel is lowered to V at the timing of reading the output of the pixel, the output corresponding to the photocurrent i can be obtained from the reference pixel. That is, by electrical control, a gray level reference value is obtained when the amount of incident infrared light is a predetermined amount.
【0010】基準画素の電圧をVに下げる方法として
は、基準画素の電荷を読み出すための転送電極に電圧源
を接続して電圧を制御する方法と、転送電極に電流源を
接続して光電流と等しい電流iを流す方法とがある。As a method of lowering the voltage of the reference pixel to V, a voltage source is connected to the transfer electrode for reading the electric charge of the reference pixel and the voltage is controlled, and a photocurrent is connected to the transfer electrode by connecting a current source. There is a method of passing a current i equal to
【0011】請求項4の赤外線固体撮像装置において、
遮光部材として銅やアルミニウムなどを用いた場合、入
射する赤外線はほぼすべて反射され、かつ遮光部材の赤
外線の放射はほとんどないため、基準画素からはダーク
レベル(赤外線光量が零)の基準値が出力される。In the infrared solid-state image pickup device according to claim 4,
When copper or aluminum is used as the light blocking member, almost all of the incident infrared rays are reflected and the infrared radiation of the light blocking member is almost nonexistent, so the reference value of the dark level (zero infrared light amount) is output from the reference pixel. To be done.
【0012】又、遮光部材として炭素等の放射率が1に
近い物質を用いれば入射した赤外線はほぼすべて吸収さ
れ透過しない。そして、この遮光部材を光電変換部に接
するように配置してある温度Tに制御すれば、基準画素
からは温度Tの黒体を撮像しているに相当する出力が得
られる。Further, if a substance such as carbon having an emissivity close to 1 is used as the light shielding member, almost all the incident infrared rays are absorbed and do not pass through. Then, when the light shielding member is controlled to the temperature T which is arranged so as to be in contact with the photoelectric conversion unit, an output corresponding to the image of the black body having the temperature T is obtained from the reference pixel.
【0013】又、遮光部材を半導体基板の裏面に設けた
場合には、基準画素からは基板(固体撮像装置)の温度
に対応する出力が得られる。例えば、光電変換部にPt
Siを用いる場合には、暗電流を低減するために固体撮
像装置自体を77K程度に冷却するので、77Kの出
力、即ちダークレベルに近い基準出力が得られる。When the light shielding member is provided on the back surface of the semiconductor substrate, an output corresponding to the temperature of the substrate (solid-state image pickup device) can be obtained from the reference pixel. For example, in the photoelectric conversion unit Pt
When Si is used, the solid-state imaging device itself is cooled to about 77K in order to reduce the dark current, so that an output of 77K, that is, a reference output close to a dark level can be obtained.
【0014】[0014]
【実施例】第1図は本発明実施例による赤外線固体撮像
装置の模式的な平面図である。尚、この第1図は以下に
述べる第1〜3実施例に共通である。図において、基準
画素Bは、2次元に配列された通常の画素Pを囲むよう
に配置されている。又、各画素列の間にはCCDで構成
された垂直転送部3が設けられており、各垂直転送部3
は同じくCCDで構成された水平転送部4に接続されて
いる。上記の各画素からの電気信号は、通常の画素Pも
基準画素Bも垂直転送部3、水平転送部4、出力回路5
を通って、端子6から出力される。1 is a schematic plan view of an infrared solid-state image pickup device according to an embodiment of the present invention. Incidentally, this FIG. 1 is common to the first to third embodiments described below. In the figure, the reference pixel B is arranged so as to surround the normal pixels P arranged two-dimensionally. Further, a vertical transfer unit 3 composed of a CCD is provided between each pixel column, and each vertical transfer unit 3 is provided.
Is connected to the horizontal transfer unit 4 which is also composed of a CCD. The electrical signals from the above-mentioned pixels are applied to the vertical transfer section 3, the horizontal transfer section 4, the output circuit 5 for both the normal pixel P and the reference pixel B.
And is output from the terminal 6.
【0015】次に、図2は本発明第1実施例による赤外
線固体撮像装置の断面図である。図において、P- 半導
体基板17表面の通常の画素Pの部分にはガードリング
12に囲まれた光電変換部11が形成され、この光電変
換部11の隣には垂直転送部3を構成するN- 拡散層1
4、転送電極15が設けれている。そして、対をなす光
電変換部11と電荷転送部(N- 拡散層14)とを囲む
ように素子分離領域16が設けられており、素子分離領
域16下にはP+ 拡散層13が設けられてる。ここまで
の構成は、従来のものと同様であるが、本実施例の赤外
線固体撮像装置は、基準画素として光電変換部11がな
い基準画素Bを設けている点で従来のものと異なる。Next, FIG. 2 is a sectional view of an infrared solid-state image pickup device according to the first embodiment of the present invention. In the figure, a photoelectric conversion unit 11 surrounded by a guard ring 12 is formed in a portion of a normal pixel P on the surface of a P − semiconductor substrate 17, and N which constitutes a vertical transfer unit 3 is adjacent to the photoelectric conversion unit 11. - diffusion layer 1
4, transfer electrodes 15 are provided. An element isolation region 16 is provided so as to surround the photoelectric conversion portion 11 and the charge transfer portion (N − diffusion layer 14) forming a pair, and a P + diffusion layer 13 is provided below the element isolation region 16. It's The configuration up to this point is the same as the conventional one, but the infrared solid-state imaging device of the present embodiment is different from the conventional one in that the reference pixel B without the photoelectric conversion unit 11 is provided as the reference pixel.
【0016】上記の通常の画素Pでは、基板17の裏面
から入射した赤外線は光電変換部11で光電変換され、
発生した電荷は転送電極15にトランスファーパルスを
印加することにより、垂直転送部(CCD拡散層14)
に転送される。このとき、ガードリング12と光電変換
部11で構成されるダイオードはプリチャージ電圧VP
になる。In the ordinary pixel P described above, the infrared rays incident from the back surface of the substrate 17 are photoelectrically converted by the photoelectric conversion section 11,
By applying a transfer pulse to the transfer electrode 15, the generated charge is transferred to the vertical transfer unit (CCD diffusion layer 14).
Transferred to. At this time, the diode formed by the guard ring 12 and the photoelectric conversion unit 11 is connected to the precharge voltage V P.
become.
【0017】一方、基準画素Bには前述のごとく光電変
換部11がないので、ガードリング12の電圧はプリチ
ャージ電圧VP のままとなる。よって、垂直電荷転送部
(CCD拡散層14)にはほとんど電荷が転送されな
い。従って基準画素Bからはダークレベルに対応する出
力が得られる。On the other hand, since the reference pixel B does not have the photoelectric conversion section 11 as described above, the voltage of the guard ring 12 remains the precharge voltage V P. Therefore, almost no charges are transferred to the vertical charge transfer unit (CCD diffusion layer 14). Therefore, the output corresponding to the dark level is obtained from the reference pixel B.
【0018】次に、第3図は本発明の第2実施例による
赤外線固体撮像装置の断面図である。尚、図3の撮像装
置は基準画素Bの構成以外は図2の撮像装置と同様であ
るので、重複する説明は避ける。図において、基準画素
Bはガードリング12と同時に形成されたN+ 拡散層1
12aと、この拡散層12a上に設けられた電極19と
を備える。この電極19には外部端子が設けられてお
り、通常は電圧VP に設定されている。Next, FIG. 3 is a sectional view of an infrared solid-state image pickup device according to a second embodiment of the present invention. The image pickup apparatus shown in FIG. 3 is the same as the image pickup apparatus shown in FIG. 2 except for the configuration of the reference pixel B, and a duplicate description will be omitted. In the figure, the reference pixel B is an N + diffusion layer 1 formed simultaneously with the guard ring 12.
12a and an electrode 19 provided on the diffusion layer 12a. The electrode 19 is provided with an external terminal and is normally set to the voltage V P.
【0019】このような構成において、転送電極15に
トランスファーパルスが印加されて垂直転送部に電荷が
転送されるときに、電極19の電圧をVに下げれば、基
準画素Bの出力としてグレーレベルの基準出力が得られ
る。又、電極19を定電流源に接続して、一定電流iを
流せば、式(1)で示す電荷Qが基準出力として得られ
る。In such a structure, when the transfer pulse is applied to the transfer electrode 15 and the charges are transferred to the vertical transfer portion, if the voltage of the electrode 19 is lowered to V, the output of the reference pixel B is gray level. The reference output is obtained. If the electrode 19 is connected to a constant current source and a constant current i is passed, the charge Q shown in the equation (1) can be obtained as a reference output.
【0020】次に、第4図は本発明の第3実施例による
赤外線固体撮像装置の断面図である。尚、この図4の撮
像装置も基準画素の構成以外は図2のものと同様である
ので重複する説明は避ける。本実施例における基準画素
Bは、通常の画素Pと同様に光電変換部11が形成され
ているが、基準画素B及び隣接する電荷転送部の領域に
は半導体基板17裏面に遮光部材20が設けられてい
る。この遮光部材20をアルミニウム、銅、あるいは金
等の金属で形成すれば、裏面から入射してくる赤外線1
8は遮光部材20でほぼ完全に反射され、かつ、金属は
放射率が小さいため基準画素Bには赤外線がほとんど入
射しない。従って、基準画素Bからは主として暗電流に
よる信号のみが出力されることになり、ダークレベルの
基準出力が得られる。Next, FIG. 4 is a sectional view of an infrared solid-state image pickup device according to a third embodiment of the present invention. The image pickup apparatus shown in FIG. 4 is similar to that shown in FIG. 2 except for the configuration of the reference pixel, and therefore, a duplicate description will be omitted. In the reference pixel B in this embodiment, the photoelectric conversion unit 11 is formed similarly to the normal pixel P, but the light shielding member 20 is provided on the back surface of the semiconductor substrate 17 in the region of the reference pixel B and the adjacent charge transfer unit. Has been. If the light blocking member 20 is made of a metal such as aluminum, copper, or gold, the infrared rays 1 coming from the back surface are incident.
8 is almost completely reflected by the light shielding member 20, and since the metal has a small emissivity, almost no infrared rays enter the reference pixel B. Therefore, only the signal due to the dark current is output from the reference pixel B, and the dark level reference output is obtained.
【0021】又、遮光部材20を炭素等の放射率が1に
近い物質で形成すれば、外部から入射する赤外線は遮光
部材20でほとんど吸収される。従って、焦電型の光電
変換部をもつ撮像装置のように室温で使用するものの場
合には、遮光部材20から基準画素Bに対して室温に対
応する赤外線が放射されるので、基準画素Bからは室温
に対応するグレーレベルの基準出力が得られる。If the light shielding member 20 is made of a material such as carbon having an emissivity close to 1, infrared rays incident from the outside are almost absorbed by the light shielding member 20. Therefore, in the case of an image pickup device having a pyroelectric type photoelectric conversion unit which is used at room temperature, infrared rays corresponding to room temperature are emitted from the light shielding member 20 to the reference pixel B, and therefore the reference pixel B Gives a gray level reference output corresponding to room temperature.
【0022】又、PtSiを光電変換部に用いた撮像装
置のように77K程度の低温に冷却して使用する場合に
は、遮光部材20が77Kとなり、遮光部材20からは
ほとんど赤外線が放射されない。従って、基準画素Bか
らはダークレベルの出力が得られる。When the PtSi is used after being cooled to a low temperature of about 77K as in an image pickup device using a photoelectric conversion unit, the light shielding member 20 has a temperature of 77K, and the light shielding member 20 emits almost no infrared rays. Therefore, the dark level output is obtained from the reference pixel B.
【0023】さてここで、図1に戻って、端子6から出
力される画像信号について説明する。図1のように基準
画素Bが配置されている場合、1水平走査線の最初と最
後で基準出力が得られることになる。この基準出力が例
えばダークレベルを示すものである時、その水平走査線
の通常の画素の出力から基準出力を差し引けば、通常の
画素の真の出力を求めることができ、正確な温度計測が
可能となる。又、基準画素Bから所望のグレーレベルの
基準出力が出力される場合には、通常の画素Pの出力か
ら基準画素Bの出力を差し引くことで背景光を除去する
ことができ、コントラストの高い画像が得られる。Now, returning to FIG. 1, the image signal output from the terminal 6 will be described. When the reference pixel B is arranged as shown in FIG. 1, the reference output is obtained at the beginning and end of one horizontal scanning line. When the reference output indicates a dark level, for example, the true output of the normal pixel can be obtained by subtracting the reference output from the output of the normal pixel of the horizontal scanning line, and accurate temperature measurement can be performed. It will be possible. When the reference output of the desired gray level is output from the reference pixel B, the background light can be removed by subtracting the output of the reference pixel B from the output of the normal pixel P, and an image with high contrast can be obtained. Is obtained.
【0024】尚、基準画素Bの配置は図1に示されもの
に限定されるものではなく、少なくとも1箇所に配置さ
れていれば良いものであるが、基準画素Bからの出力に
よって通常の画素Pの出力を補正する場合、少なくとも
1水平走査線に1つの基準画素Bが配置されていること
が好ましい。又、各画素からの信号電荷を読み出す方式
は特に限定されるものではないが、正確な補正がを行う
ためには、基準画素Bと通常の画素Pは図1のところで
述べたように同じ経路で信号を読み出すことが望まし
い。The arrangement of the reference pixels B is not limited to that shown in FIG. 1, and it is sufficient if the reference pixels B are arranged at at least one location. When correcting the output of P, it is preferable that one reference pixel B is arranged on at least one horizontal scanning line. The method of reading the signal charge from each pixel is not particularly limited, but in order to perform accurate correction, the reference pixel B and the normal pixel P have the same path as described in FIG. It is desirable to read the signal at.
【0025】[0025]
【発明の効果】以上にように、本発明では赤外線の光量
によらず一定の信号を出力する基準画素を設けているの
で、黒体炉を用いなくともダークレベルの基準出力を得
ることができる。従って、通常の画素の出力からダーク
レベルを差し引くことでその画素の真の出力を得ること
ができ、正確な温度測定が可能である。又、所望のグレ
ーレベルの基準値を得ることができるので、通常の画素
の出力からグレーレベルを差し引くことによって背景光
を除去することができ、コントラストの高い画像が得ら
れる。しかも、基準画素は通所の画素と共に配置されて
おり、通常の画素の信号と同様に読み出されるので、撮
像対象物や周囲の環境によらず、正確に通常の画素の出
力を補正することができる。As described above, in the present invention, since the reference pixel that outputs a constant signal regardless of the amount of infrared light is provided, it is possible to obtain a dark level reference output without using a black body furnace. . Therefore, the true output of the pixel can be obtained by subtracting the dark level from the output of the normal pixel, and accurate temperature measurement can be performed. Further, since a desired gray level reference value can be obtained, background light can be removed by subtracting the gray level from the output of a normal pixel, and an image with high contrast can be obtained. Moreover, since the reference pixel is arranged together with the regular pixel and is read out in the same manner as the signal of the normal pixel, it is possible to accurately correct the output of the normal pixel regardless of the object to be imaged and the surrounding environment. .
【図1】本発明実施例による赤外線固体撮像装置の模式
的な平面図である。FIG. 1 is a schematic plan view of an infrared solid-state imaging device according to an embodiment of the present invention.
【図2】本発明第1実施例による赤外線固体撮像装置の
断面図である。FIG. 2 is a sectional view of an infrared solid-state imaging device according to the first embodiment of the present invention.
【図3】本発明第2実施例による赤外線固体撮像装置の
断面図である。FIG. 3 is a sectional view of an infrared solid-state imaging device according to a second embodiment of the present invention.
【図4】本発明第3実施例による赤外線固体撮像装置の
断面図である。FIG. 4 is a sectional view of an infrared solid-state imaging device according to a third embodiment of the present invention.
P…通常画素、B…基準画素、3…垂直転送部、4…水
平転送部、5…出力回路、6…端子、11…光電変換
部、12…ガードリング、12a…N+ 拡散層、14…
N- 拡散層、15,19…電極、17…半導体基板、1
8…赤外線。P ... Normal pixel, B ... Reference pixel, 3 ... Vertical transfer unit, 4 ... Horizontal transfer unit, 5 ... Output circuit, 6 ... Terminal, 11 ... Photoelectric conversion unit, 12 ... Guard ring, 12a ... N + diffusion layer, 14 …
N - diffusion layer, 15, 19 ... Electrode, 17 ... Semiconductor substrate, 1
8 ... Infrared.
Claims (4)
る複数の画素と、該画素から電気信号を読み出すための
出力手段とを備えた赤外線固体撮像装置において、 前記赤外線の光量によらず一定の電気信号を出力する少
なくとも一つの基準画素を備えたことを特徴とする赤外
線固体撮像装置。1. An infrared solid-state imaging device comprising: a plurality of pixels each having a photoelectric conversion unit for photoelectrically converting infrared rays; and an output unit for reading an electric signal from the pixels. An infrared solid-state imaging device comprising at least one reference pixel for outputting an electric signal.
画素であることを特徴とする請求項1の赤外線固体撮像
装置。2. The infrared solid-state imaging device according to claim 1, wherein the reference pixel is a pixel without the photoelectric conversion unit.
御する手段を備えたことを特徴とする請求項1の赤外線
固体撮像装置。3. The infrared solid-state image pickup device according to claim 1, wherein the reference pixel includes means for controlling a voltage of the reference pixel.
に入射する前記赤外線を遮光するとともに、前記基準画
素に対して一定の光量の赤外線を放射する遮光部材を備
えたことを特徴とする請求項1の赤外線固体撮像装置。4. The reference pixel includes a light-shielding member that shields the infrared light incident on the reference pixel from the outside and emits a fixed amount of infrared light to the reference pixel. Item 1. The infrared solid-state imaging device according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4216573A JPH0645573A (en) | 1992-07-23 | 1992-07-23 | Infrared ray solid-state image pick-up device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4216573A JPH0645573A (en) | 1992-07-23 | 1992-07-23 | Infrared ray solid-state image pick-up device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0645573A true JPH0645573A (en) | 1994-02-18 |
Family
ID=16690542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4216573A Pending JPH0645573A (en) | 1992-07-23 | 1992-07-23 | Infrared ray solid-state image pick-up device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0645573A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004031452A (en) * | 2002-06-21 | 2004-01-29 | Mitsubishi Electric Corp | Rear face incident type imaging device |
KR100440775B1 (en) * | 2001-06-28 | 2004-07-21 | 주식회사 하이닉스반도체 | Image sensor and fabricating method of the same |
KR100470821B1 (en) * | 2001-12-29 | 2005-03-08 | 매그나칩 반도체 유한회사 | Cmos image sensor and method of manufacturing the same |
JP2007049224A (en) * | 2005-08-05 | 2007-02-22 | Toppan Printing Co Ltd | Imaging element |
US10538487B2 (en) | 2015-02-16 | 2020-01-21 | The University Of Queensland | Sulfonylureas and related compounds and use of same |
-
1992
- 1992-07-23 JP JP4216573A patent/JPH0645573A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100440775B1 (en) * | 2001-06-28 | 2004-07-21 | 주식회사 하이닉스반도체 | Image sensor and fabricating method of the same |
KR100470821B1 (en) * | 2001-12-29 | 2005-03-08 | 매그나칩 반도체 유한회사 | Cmos image sensor and method of manufacturing the same |
JP2004031452A (en) * | 2002-06-21 | 2004-01-29 | Mitsubishi Electric Corp | Rear face incident type imaging device |
JP2007049224A (en) * | 2005-08-05 | 2007-02-22 | Toppan Printing Co Ltd | Imaging element |
US10538487B2 (en) | 2015-02-16 | 2020-01-21 | The University Of Queensland | Sulfonylureas and related compounds and use of same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0534769B1 (en) | Readout system and process for IR detector arrays | |
US5196703A (en) | Readout system and process for IR detector arrays | |
CN104065894B (en) | Solid state image pickup device, the driving method and electronic equipment of solid state image pickup device | |
JP3571924B2 (en) | Solid-state imaging device | |
TW200814746A (en) | Image sensor with built-in thermometer for global black level calibration and temperature-dependent color correction | |
JPS6086980A (en) | Correcting method for picture defect of solid-state image pickup device | |
EP1397653B1 (en) | Method and apparatus for readout of compound microbolometer arrays | |
JPH0645573A (en) | Infrared ray solid-state image pick-up device | |
Gilblom et al. | Real-time color imaging with a CMOS sensor having stacked photodiodes | |
JP2004532977A (en) | Method and apparatus for reading a bolometer array using a plurality of bias pulses | |
US20190356875A1 (en) | Rolling subframe pulsed bias microbolometer integration | |
JP2755150B2 (en) | Infrared imaging device | |
Solhusvik et al. | Recent experimental results from a CMOS active pixel image sensor with photodiode and photogate pixels | |
JP2836299B2 (en) | Infrared solid-state imaging device | |
JP2871760B2 (en) | Solid-state imaging device | |
TW432872B (en) | Imaging circuit and method of spatial compensation | |
Saint-Pe et al. | High-performance monolithic CMOS detectors for space applications | |
Hou et al. | Real-time implementation of two-point nonuniformity correction for IR-CCD imagery | |
Erhardt et al. | A television compatible portable IR-CCD camera system | |
Shepherd et al. | Platinum silicide staring sensor evaluation | |
JP2701523B2 (en) | Infrared solid-state imaging device | |
JPH05285128A (en) | X ray image pickup device | |
JPS6251381A (en) | Infrared ray image pickup device | |
JP3998599B2 (en) | Thermal infrared solid-state imaging device | |
JPH06268917A (en) | Infrared ray solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19991207 |