JPH0196622A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH0196622A
JPH0196622A JP62252411A JP25241187A JPH0196622A JP H0196622 A JPH0196622 A JP H0196622A JP 62252411 A JP62252411 A JP 62252411A JP 25241187 A JP25241187 A JP 25241187A JP H0196622 A JPH0196622 A JP H0196622A
Authority
JP
Japan
Prior art keywords
scanning
scanned
lens
deviation
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62252411A
Other languages
Japanese (ja)
Inventor
Makoto Fujimoto
誠 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62252411A priority Critical patent/JPH0196622A/en
Publication of JPH0196622A publication Critical patent/JPH0196622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the subscanning direction of a scanning beam from deviating by displacing either of a lens which collimates a light beam into parallel light and a lens which converges a light beam in the direction of subscanning on a surface to be scanned. CONSTITUTION:A beam position in a direction (subscanning direction) perpendicular to a main scanning direction on the surface 7 to be scanned nearby a position equivalent to the surface of a photosensitive drum as the surface 7 to be scanned is detected. Namely, a position sensor 8 is arranged which generates a deviation signal as the quantity D of a shift in set position, a displacement member 9 is put in operation with this deviation signal, and the collimator lens 2 is displaced on the surface 7 to be scanned in the direction where deviation in the subscanning direction is eliminated, thereby correcting the scanning deviation. Simultaneously, the signal of the position sensor 8 is used to detect the scanning start end of scanning line, thereby synchronizing an image signal. Consequently, the deviation of the scanning beam on the surface 7 to be scanned in the subscanning direction is securely corrected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザビームプリンタやレーザ複写機に適用さ
れ、レーザ光源から出射する光ビームを偏光手段で走査
する走査光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is applied to laser beam printers and laser copying machines, and relates to a scanning optical device that scans a light beam emitted from a laser light source using a polarizing means.

(従来の技術) 従来、この種の走査光学装置は例えば米国特許筒4,4
47,112号に開示されたものがあり、これは第5図
に示すように構成されている。即ち、同図において、1
01はレーザ光源で、略点光源を成しレーザ光を発散放
射する。このレーザ光をコリメータレンズ102で平行
光としてシリンドリカルレンズ103に導く、該シリン
ドリカルレンズ103は偏光手段としての回転多面鏡1
04の反射面104aに集光させる。そして、上記光ビ
ームは回転多面1ia104により反射され、X−Z平
面においては再び発散ビームとなり、トーリック面を有
するf−θレンズ群106により感光体ドラム等の被走
査面107上に結像される。したがって、X−Z平面内
において光学系は回転多面fi104の反射面104a
と被走査面107と共役関係が成立し1回転多面鏡10
4を構成する各反射面104aの倒れ及び回転多面鏡1
04を支持する軸の倒れ等に起因する被走査面107上
の焦光スポットのずれは光学的に補正される。
(Prior Art) Conventionally, this type of scanning optical device has been disclosed in, for example, US Pat.
There is one disclosed in No. 47,112, which is constructed as shown in FIG. That is, in the same figure, 1
01 is a laser light source, which forms a substantially point light source and emits laser light in a divergent manner. This laser beam is converted into parallel light by a collimator lens 102 and guided to a cylindrical lens 103. The cylindrical lens 103 is a rotating polygon mirror 1 as a polarizing means.
The light is focused on the reflective surface 104a of 04. The light beam is reflected by the rotating polygon 1ia 104, becomes a diverging beam again on the X-Z plane, and is imaged on the scanned surface 107 such as a photoreceptor drum by the f-θ lens group 106 having a toric surface. . Therefore, in the X-Z plane, the optical system
A conjugate relationship is established with the scanned surface 107, and the one-rotation polygon mirror 10
The tilting and rotation of each reflecting surface 104a constituting the polygon mirror 1
The deviation of the focal spot on the scanned surface 107 due to the inclination of the shaft supporting the 04 is optically corrected.

次に、x−y平面内のビームは平行ビームのままトーリ
ック面を含むf−θレンズ群106に入射し、被走査面
107上に焦光される0以上の焦光機能により回転多面
鏡104の回転に伴い、被走査面107上に直線上に走
査線を形成し得る(主走査)、一方、被走査面107は
第5図に示すように2方向(矢印方向)に移動するため
結果的に二次元の情報を記録することが可能となる。
Next, the beam in the x-y plane enters the f-theta lens group 106 including a toric surface as a parallel beam, and is focused onto the scanning surface 107 by the rotating polygon mirror 104 with a focusing function of 0 or more. As the scanning line rotates, a scanning line can be formed in a straight line on the scanned surface 107 (main scanning).On the other hand, since the scanned surface 107 moves in two directions (arrow directions) as shown in FIG. It becomes possible to record two-dimensional information virtually.

この際、フォトセンサー113は走査線の走査開始端を
検出して画像信号を同期させている0以上のように記録
された情報を例えば公知の電子写真プロセス等を用いて
転写紙上に前記情報を再生することが可能となる。
At this time, the photosensor 113 detects the scanning start end of the scanning line and synchronizes the image signal.The photo sensor 113 transfers the recorded information such as 0 or more onto the transfer paper using, for example, a known electrophotographic process. It becomes possible to play.

(発明が解決しようとする問題点) しかしながら、斯かる従来例にあっては、回転多面鏡の
面倒れのみを補正するため次のような問題点があった。
(Problems to be Solved by the Invention) However, in such a conventional example, since only the surface tilt of the rotating polygon mirror is corrected, there are the following problems.

即ち、第1に回転多面鏡や感光体ドラム等、走査光学装
置には、振動の発生する要素が多く、そのためトーリッ
ク面を含むf−θレンズ群106やシリンドリカルレン
ズ103、コリメータレンズ102、レーザ光源101
等の振動による被走査面107上の走査ビームの主走査
方向と垂直方向(副走査方向)のぶれを補正することが
できず、ピッチムラが生ずることとなる。また、第2に
温度、湿度の影響で、各レンズの屈折率の変化や偏心が
生じ、走査ビームの位置が所定の位置からずれてしまう
That is, firstly, the scanning optical device has many elements that generate vibrations, such as a rotating polygon mirror and a photoreceptor drum. 101
It is not possible to correct the blurring of the scanning beam on the scanned surface 107 in a direction perpendicular to the main scanning direction (sub-scanning direction) due to such vibrations, resulting in pitch unevenness. Secondly, the refractive index of each lens changes and eccentricity occurs due to the influence of temperature and humidity, causing the position of the scanning beam to deviate from a predetermined position.

そこで、本発明は従来例の上記した問題点を解決するた
めになされたもので、その目的とすると。
Therefore, the present invention has been made to solve the above-mentioned problems of the conventional example, and its purpose is to solve the above problems.

ころは、走査ビームの副走査方向のずれを確実に防止し
得る走査光学装置を提供することにある。
The object of the present invention is to provide a scanning optical device that can reliably prevent deviation of a scanning beam in the sub-scanning direction.

(問題点を解決するための手段) 上記の目的を達成するために、本発明にあっては、光ビ
ームを出射するレーザ光源と、前記光ビームを走査ビー
ムに偏光させて被走査面上を走査する偏光手段と、前記
走査ビームの変調開始時点を決定する光走査位置検出手
段とを有する走査光学装置において、前記レーザ光源と
前記偏光手段との間に配設された前記光ビームを平行光
とするレンズ又は前記光ビームを集光するためのレンズ
のいずれか一方を前記被走査面における副走査方向に変
位させる手段を備えたことにより構成されている。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a laser light source that emits a light beam, and a laser light source that polarizes the light beam into a scanning beam to scan a surface to be scanned. In a scanning optical device having a polarizing means for scanning and an optical scanning position detecting means for determining a start point of modulation of the scanning beam, the light beam disposed between the laser light source and the polarizing means is converted into a parallel beam. The apparatus includes means for displacing either a lens for condensing the light beam or a lens for condensing the light beam in the sub-scanning direction on the surface to be scanned.

(作 用) 上記の構成を有する本発明においては、光ビームを平行
光とするレンズ又は光ビームを集光するためのレンズの
いずれか一方を被走査面における副走査方向に変位させ
る手段を設けたことによって、被走査面での副走査方向
のずれをなくす方向に上記いずれかのレンズを変位させ
るようにした。
(Function) In the present invention having the above configuration, means is provided for displacing either the lens for collimating the light beam or the lens for condensing the light beam in the sub-scanning direction on the surface to be scanned. Accordingly, one of the lenses is displaced in a direction that eliminates the deviation in the sub-scanning direction on the surface to be scanned.

(実施例) 以下に本発明を図示の実施例に基づいて説明する。(Example) The present invention will be explained below based on illustrated embodiments.

第1図は本発明に係る走査光学装置の第1実施例の概略
構成を示す斜視図であり、同図において、lは情報信号
によって変調された光ビームを出射するレーザ光源とし
ての半導体レーザ、2は半導体レーザlから出射した光
ビームを平行光とするコリメータレンズ、3は偏向手段
としての回転多面鏡4の反射面4aに光ビームを集光さ
せるためのシリンドリカルレンズ、6はトーリック面を
有するf−θレンズ群、7は感光体ドラム等の被走査面
、8は主走査方向と垂直方向(副走査方向)のビーム位
置を検出し、走査ビームの変調開始時点を決定する光走
査位置検出手段としてのポジションセンサー、9はコリ
メータレンズ2を被走査面7における副走査方向に変位
させる手段としての変位部材である。また1回転多面鏡
4は光ビームを走査ビームに偏向させて被走査面7上を
走査する。
FIG. 1 is a perspective view showing a schematic configuration of a first embodiment of a scanning optical device according to the present invention, in which l is a semiconductor laser as a laser light source that emits a light beam modulated by an information signal; 2 is a collimator lens that converts the light beam emitted from the semiconductor laser l into parallel light; 3 is a cylindrical lens that focuses the light beam on the reflecting surface 4a of a rotating polygon mirror 4 serving as a deflecting means; and 6 has a toric surface. f-theta lens group, 7 is a scanned surface such as a photoreceptor drum, 8 is an optical scanning position detection device that detects the beam position in the direction perpendicular to the main scanning direction (sub-scanning direction) and determines the start point of modulation of the scanning beam. A position sensor 9 is a means for displacing the collimator lens 2 in the sub-scanning direction on the surface 7 to be scanned. Further, the one-rotation polygon mirror 4 deflects the light beam into a scanning beam and scans the surface to be scanned 7 .

変位部材9は第2図に示すようにコリメータレンズ2を
保持するレンズホルダー12と、該レンズホルダー12
と一体に設けられた永久磁石10a、10bと、永久磁
石10a、lObと所定の間隔を有して対向して取付け
られた電磁石11a、llbとから構成され、ポジショ
ンセンサー8からの偏差信号によって電磁石11a又は
flbが作動して、永久磁石10a又はlObを吸着す
る。すると、コリメータレンズ2は支軸13を中心とし
て回動して変位することとなる。
As shown in FIG. 2, the displacement member 9 includes a lens holder 12 that holds the collimator lens 2, and the lens holder 12.
It consists of permanent magnets 10a, 10b that are provided integrally with the permanent magnets 10a, 10b, and electromagnets 11a, 11b that are installed facing the permanent magnets 10a, 10b at a predetermined distance. 11a or flb operates to attract permanent magnet 10a or lOb. Then, the collimator lens 2 rotates around the support shaft 13 and is displaced.

上記の構成において、レーザ光源1から出射した光ビー
ムはコリメータレンズ2によって平行光とされ、さらに
シリンドリカルレンズ3によりレーザ光の光軸を含み回
転多面鏡4の回転軸に平行な面における回転多面鏡4の
反射面4a上に集光し、この反射光はトーリック面を有
するf−θレンズ群6により感光体ドラム等の被走査面
7上へ集光し、回転多面鏡4が回転′することにより直
線走査される。この際、回転多面鏡4の反射面4aの倒
れ及び回転多面鏡4を支持する軸の倒れに起因する被走
査面7上の焦光スポットのずれはトーリック面を有する
f−θレンズ群6による回転多面鏡4の面倒れ補正系に
より補正される。
In the above configuration, the light beam emitted from the laser light source 1 is made into parallel light by the collimator lens 2, and the cylindrical lens 3 converts the light beam into a rotating polygon mirror in a plane that includes the optical axis of the laser beam and is parallel to the rotation axis of the rotating polygon mirror 4. The reflected light is focused onto a scanning surface 7 such as a photoreceptor drum by an f-theta lens group 6 having a toric surface, and the rotating polygon mirror 4 is rotated. is scanned in a straight line. At this time, the shift of the focal spot on the scanned surface 7 due to the inclination of the reflecting surface 4a of the rotating polygon mirror 4 and the inclination of the shaft supporting the rotating polygon mirror 4 is corrected by the f-θ lens group 6 having a toric surface. This is corrected by the surface tilt correction system of the rotating polygon mirror 4.

しかし、レーザ光源l、コリメータレンズ2、シリンド
リカルレンズ3及びトーリック面を含むf−0レンズ群
6の振動に起因する被走査面7上の走査ビームの副走査
方向のずれや温度、湿度等によるコリメータレンズ2%
シリンドリカルレンズ3及びトーリック面を含むf−θ
レンズ群6の各レンズの屈折率の変化や偏心に起因する
被走査面7上の走査ビームの副走査方向のずれはトーリ
ック面を有するf−θレンズ群6による回転多面鏡4の
面倒れ補正系によって補正することができない。
However, the deviation of the scanning beam on the scanning surface 7 in the sub-scanning direction due to the vibration of the laser light source 1, the collimator lens 2, the cylindrical lens 3, and the f-0 lens group 6 including the toric surface, and the collimator due to temperature, humidity, etc. lens 2%
f-θ including cylindrical lens 3 and toric surface
The deviation in the sub-scanning direction of the scanning beam on the scanned surface 7 due to changes in the refractive index or eccentricity of each lens in the lens group 6 is corrected by the surface tilt of the rotating polygon mirror 4 by the f-theta lens group 6 having a toric surface. It cannot be corrected by the system.

そこで、本実施例では被走査面7である感光体ドラム面
と等価位置の近傍に被走査面7上における主走査方向と
垂直方向(副走査方向)のビーム位置を第3図に示すよ
うに検出する。即ち、設定位置の変化量りとして偏差信
号を発生するポジションセンサー8を配置し、この偏差
信号によって変位部材9を作動させ、被走査面7上での
副走査方向の走査ずれをなくす方向にコリメータレンズ
2を変位させ走査ずれを補正する。これと同時にポジシ
ョンセンサー8からの信号は走査線の走査開始端を検出
し画像信号を同期させる。
Therefore, in this embodiment, the beam position in the direction perpendicular to the main scanning direction (sub-scanning direction) on the surface to be scanned 7 is set near the equivalent position to the photoreceptor drum surface, which is the surface to be scanned 7, as shown in FIG. To detect. That is, a position sensor 8 that generates a deviation signal as a measure of change in the set position is arranged, and the displacement member 9 is actuated by this deviation signal, and the collimator lens is moved in a direction to eliminate scanning deviation in the sub-scanning direction on the scanned surface 7. 2 to correct the scanning deviation. At the same time, a signal from the position sensor 8 detects the scanning start end of the scanning line and synchronizes the image signals.

第4図は本発明の第2実施例を示し、前記第1実施例と
同一の部分には同一の符号を付して説明すると、この実
施例ではシリンドリカルレンズ3に変位部材9′を取付
けてあり、この変位部材9′はポジションセンサー8か
らの偏差信号によりシリンドリカルレンズ3を副走査方
向に変位させ被走査面7上での副走査方向の走査ずれを
補正する。その他の構成及び作用は前記第1実施例と同
一であるのでその説明を省略する。
FIG. 4 shows a second embodiment of the present invention, in which the same parts as in the first embodiment are given the same reference numerals. In this embodiment, a displacement member 9' is attached to the cylindrical lens 3. The displacement member 9' displaces the cylindrical lens 3 in the sub-scanning direction based on the deviation signal from the position sensor 8, and corrects the scanning deviation in the sub-scanning direction on the scanned surface 7. The other configurations and functions are the same as those of the first embodiment, so their explanation will be omitted.

(発明の効果) 本発明に係る走査光学装置は以上の構成及び作用からな
るもので、被走査面上における走査ビームの副走査方向
のずれを製造コストを上昇させずに確実に補正すること
ができる。その結果、レーザビームプリンタに適用すれ
ば、走査ずれのない正確な画像を得ることができるとい
う効果を奏する。
(Effects of the Invention) The scanning optical device according to the present invention has the above-described configuration and operation, and can reliably correct the deviation of the scanning beam in the sub-scanning direction on the surface to be scanned without increasing the manufacturing cost. can. As a result, when applied to a laser beam printer, it is possible to obtain accurate images without scanning deviation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る走査光学装置の第1実施例を示す
概略斜視図、第2図は同実施例における変位部材の正面
図、第3図は同実施例におけるポジションセンサーの正
面図、第4図は本発明の第2実施例を示す概略斜視図、
第5図は従来の走査光学装置の一例を示す概略斜視図で
ある。 符号の説明 l・・・半導体レーザ   2・・・コリメータレンズ
3・・・シリンドリカルレンズ 4・・・回転多面ta(偏向手段) 7・・・被走査面 8・・・ポジションセンサー(光走査位置検出手段)9
・・・変位部材 代理人 弁理士  奥  1) 規  之 イMi−(
: ;妥 第1図 第2図      第3図 第4図 第5図
FIG. 1 is a schematic perspective view showing a first embodiment of a scanning optical device according to the present invention, FIG. 2 is a front view of a displacement member in the same embodiment, and FIG. 3 is a front view of a position sensor in the same embodiment. FIG. 4 is a schematic perspective view showing a second embodiment of the present invention;
FIG. 5 is a schematic perspective view showing an example of a conventional scanning optical device. Explanation of symbols 1...Semiconductor laser 2...Collimator lens 3...Cylindrical lens 4...Rotating polygon ta (deflection means) 7...Scanned surface 8...Position sensor (optical scanning position detection means) 9
... Displacement member agent Patent attorney Oku 1) Ki Mi-(
: ; Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)光ビームを出射するレーザ光源と、前記光ビーム
を走査ビームに偏光させて被走査面上を走査する偏光手
段と、前記走査ビームの変調開始時点を決定する光走査
位置検出手段とを有する走査光学装置において、前記レ
ーザ光源と前記偏光手段との間に配設された前記光ビー
ムを平行光とするレンズ又は前記光ビームを集光するた
めのレンズのいずれか一方を前記被走査面における副走
査方向に変位させる手段を備えたことを特徴とする走査
光学装置。
(1) A laser light source that emits a light beam, a polarizing means that polarizes the light beam into a scanning beam and scans the surface to be scanned, and an optical scanning position detection means that determines the point at which modulation of the scanning beam starts. In the scanning optical device, either a lens for collimating the light beam or a lens for condensing the light beam, which is disposed between the laser light source and the polarizing means, is connected to the surface to be scanned. 1. A scanning optical device comprising means for displacing in the sub-scanning direction.
(2)前記変位させる手段が、前記光走査位置検出手段
から送出される偏差信号で作動することを特徴とする特
許請求の範囲第1項記載の走査光学装置。
(2) The scanning optical device according to claim 1, wherein the displacement means is operated by a deviation signal sent from the optical scanning position detection means.
JP62252411A 1987-10-08 1987-10-08 Scanning optical device Pending JPH0196622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252411A JPH0196622A (en) 1987-10-08 1987-10-08 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252411A JPH0196622A (en) 1987-10-08 1987-10-08 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH0196622A true JPH0196622A (en) 1989-04-14

Family

ID=17236970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252411A Pending JPH0196622A (en) 1987-10-08 1987-10-08 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH0196622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400133A (en) * 1994-03-04 1995-03-21 Xerox Corporation Alignment method and apparatus for optical imaging systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400133A (en) * 1994-03-04 1995-03-21 Xerox Corporation Alignment method and apparatus for optical imaging systems

Similar Documents

Publication Publication Date Title
KR100477495B1 (en) Light-scanning optical system and image-forming apparatus comprising the same
JP3073801B2 (en) Optical scanning lens and optical scanning device
JP2629281B2 (en) Laser scanning device
JPH1010445A (en) Synchronous detecting optical system
JPH08110488A (en) Optical scanning device
JPH0196622A (en) Scanning optical device
JPH04242215A (en) Optical scanner
JP2799722B2 (en) Scanning optical device and adjusting device for this device
JPH0743462B2 (en) Synchronous light detector
JP2002350753A (en) Optical scanner
JPH03131817A (en) Light beam scanning optical device
JPH01128033A (en) Image forming device
JPS6167817A (en) Semiconductor laser light scanner
JP4298091B2 (en) Method for assembling scanning optical device
JP2713195B2 (en) Scanning optical device
JPH06160746A (en) Laser scanner
JPH10197336A (en) Laser beam-measuring apparatus
JPH10161051A (en) Optical scanning device
JP2986814B2 (en) Photodetector
JPH10206766A (en) Optical scanning device
JP2570176B2 (en) Electrophotographic recording device
JP3092155B2 (en) Optical scanning optical system
JPH05289008A (en) Synchronous detector
JPS63202713A (en) Light beam scanning device
JPH11218715A (en) Optical scanner