JPH0195117A - Solid polyelectrolyte - Google Patents

Solid polyelectrolyte

Info

Publication number
JPH0195117A
JPH0195117A JP62251612A JP25161287A JPH0195117A JP H0195117 A JPH0195117 A JP H0195117A JP 62251612 A JP62251612 A JP 62251612A JP 25161287 A JP25161287 A JP 25161287A JP H0195117 A JPH0195117 A JP H0195117A
Authority
JP
Japan
Prior art keywords
polymer
solid
energy ray
matrix
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62251612A
Other languages
Japanese (ja)
Other versions
JPH0753785B2 (en
Inventor
Sachiko Yoneyama
米山 祥子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62251612A priority Critical patent/JPH0753785B2/en
Publication of JPH0195117A publication Critical patent/JPH0195117A/en
Publication of JPH0753785B2 publication Critical patent/JPH0753785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide the title polyelectrolyte having high ion conductivity at room temp. and excellent moldability, by crosslinking a polymer having ionizable groups and groups reactive with an energy ray by irradiating with an energy ray and using it as a matrix. CONSTITUTION:A crosslinked polymer is prepd. by irradiating a polymer having ionizable groups and groups reactive with an energy ray is its main chain or side chains (e.g., cinnamoylated polyethylene oxide, or polyethylene oxide acrylate) with an energy ray (e.g., electron beam). A solid polyelectrolyte is constituted of the crosslinked polymer thus obtd. as a matrix and an electrolyte salt (e.g., LiClO4) as a carrier. The solid polyelectrolyte thus obtd. is useful for an org. solid secondary battery, an electrochromic element, a wholly solid capacitor, etc.

Description

【発明の詳細な説明】 [技術分野] 本発明は、高分子固体電解質に関する。[Detailed description of the invention] [Technical field] The present invention relates to solid polymer electrolytes.

[従来技術] ポリエチレンオキシド(PEO)とある種のアルカリ金
属塩が結晶性の錯体を形成して、高いイオン伝導性を示
すことが報告されて以来、(”Fast  Ion T
ransport in 5olld ”  、P。
[Prior Art] Since it was reported that polyethylene oxide (PEO) and certain alkali metal salts form a crystalline complex and exhibit high ionic conductivity ("Fast Ion T
``Transport in 5old'', P.

Vanishlsta、et、al、Eds、P 13
1(1979) Northllolland Pub
lishlng、Co1.)P E O−アルカリ金属
塩複合体を中心に高分子固体電解質の研究が活発になさ
れてきた。
Vanishlsta, et, al, Eds, P 13
1 (1979) Northlolland Pub
lishlng, Co1. ) Polymer solid electrolytes have been actively researched, centering on P E O-alkali metal salt complexes.

高分子固体電解質は無機系固体電解質に比べ、軽量で柔
軟性、高エネルギー密度を有し、成形性に優れるという
特長を有している。この優れた成形性や柔軟性を保持し
たまま高イオン伝導度を有する高分子固体電解質を得る
ことが望ましい。しかしながら、現在報告されている材
料のうち、例えば室温で10’ S/afflの亮いイ
オン伝導度を有するポリホスファゼンは成膜性が悪く、
機械的強度に問題があり、また、優れた強度を有し、室
温で10°5S/c111を有するポリエチレンオキシ
ドのウレタン架橋体C3olld 5tate Ion
lcs。
Compared to inorganic solid electrolytes, polymer solid electrolytes are lightweight, flexible, have high energy density, and have excellent moldability. It is desirable to obtain a solid polymer electrolyte having high ionic conductivity while maintaining this excellent moldability and flexibility. However, among the currently reported materials, for example, polyphosphazene, which has a bright ionic conductivity of 10' S/affl at room temperature, has poor film forming properties.
C3old 5tate Ion is a urethane crosslinked product of polyethylene oxide that has problems with mechanical strength and also has excellent strength and has 10°5S/c111 at room temperature.
lcs.

1B&19,338(198B)]は、不溶不融膜とな
るため反応と同時に成膜する必要があり、成形加工性に
問題がある。以上のように室温で高いイオン伝導性を有
し、かつ、成膜性、加工性に優れた高分子固体電解質は
得られていないのが現状である。
1B & 19,338 (198B)] forms an insoluble and infusible film, so it is necessary to form a film at the same time as the reaction, and there is a problem in moldability. As described above, at present, a solid polymer electrolyte that has high ionic conductivity at room temperature and has excellent film formability and processability has not been obtained.

[目 的] 本発明は、かかる状況に鑑み、高イオン伝導性を有し、
かつ成膜性、加工性にすぐれた高分子固体電解質を提供
することを目的とするものである。
[Purpose] In view of this situation, the present invention has high ionic conductivity,
Another object of the present invention is to provide a solid polymer electrolyte that has excellent film-forming properties and processability.

[構 成] 本発明は室温で高いイオン伝導性を有し、かつ成形、加
工性に優れた新規な高分子固体電解質に関するものであ
る。また、光、または電子線、γ:X線などのエネルギ
ー線照射によって、三量化、付加等の反応による架橋構
造が新たに生じる官能基を分子内に有する高分子マトリ
クスを用いることを特徴とするものである。
[Structure] The present invention relates to a novel solid polymer electrolyte that has high ionic conductivity at room temperature and is excellent in moldability and processability. It is also characterized by the use of a polymer matrix that has a functional group in its molecules that generates a new crosslinked structure through reactions such as trimerization and addition when irradiated with energy rays such as light, electron beams, and γ:X rays. It is something.

すなわち、本発明は主鎖または側鎖にイオン解離基を有
し、かつ、エネルギー線反応性基(以下単に感光性基)
を有する高分子をマトリクスとすることを特徴とする高
分子固体電解質である。
That is, the present invention has an ion dissociative group in the main chain or side chain, and an energy ray-reactive group (hereinafter simply referred to as a photosensitive group).
This is a solid polymer electrolyte characterized by having a matrix of polymers having the following properties.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

高分子固体電解質、即ちイオン伝導性高分子は、少なく
とも、マトリクスとなる高分子とキャリアとなる電解質
塩とから構成されている。
A solid polymer electrolyte, ie, an ion-conducting polymer, is composed of at least a polymer serving as a matrix and an electrolyte salt serving as a carrier.

そして、高分子マトリクス中へ解離した電解質塩はポリ
マーと会合体を作って溶媒和され、電界を印加すると、
イオンはポリマー鎖の間を会合と解離をくり返しながら
拡散輸送され、導電性が実現される。高分子の無定形部
分の、イオンの伝導機構は一般に自由体積モデルで説明
されている(J、Appl、Phys、、44.537
2 (1973)コ。すなわち、イオン伝導は、イオン
移動に必要な体積以上の空孔ヘイオンが移ることによっ
て生じ、空孔(自由体積空間)は高分子鎖が熱運動によ
り局所的な配置を絶えず変化させることによって生じる
。このような空孔を介し、イオンは、高分子との会合−
熱運動による移動−解離の過程を繰返して移動すると考
えられている。イオン移動が高分子鎖の運動とともに起
きているとすると、高イオン伝導性高分子を得るために
は、マトリクスポリマーとして常温で高分子鎖の熱運動
が激しいもの、すなわちガラス転移温度(Tg)の低い
ものを選べばよい。
The electrolyte salt dissociated into the polymer matrix forms an association with the polymer and becomes solvated, and when an electric field is applied,
Ions are diffusely transported between polymer chains while repeatedly associating and dissociating, thereby achieving electrical conductivity. The ion conduction mechanism in amorphous parts of polymers is generally explained using a free volume model (J, Appl, Phys, 44.537
2 (1973) Ko. That is, ion conduction is caused by the movement of vacancy ions in a volume greater than that required for ion movement, and vacancies (free volume spaces) are produced by polymer chains constantly changing their local arrangement due to thermal motion. Through such vacancies, ions can associate with polymers.
It is thought that it moves by repeating the process of movement and dissociation due to thermal motion. Assuming that ion migration occurs with the movement of polymer chains, in order to obtain a highly ionically conductive polymer, the matrix polymer must be one in which the thermal movement of the polymer chains is intense at room temperature, that is, a material with a glass transition temperature (Tg). Just choose the lower one.

代表的な高分子固体電解質の1つであるPEOやポリエ
チレンイミン等は低いTgを有し、無定形部分における
イオン伝導性には優れている。しかしながら、室温付近
ではイオン解離基の一部が結晶化するため急激なイオン
伝導率の低下がおこる。このような欠点を補うため、結
晶性イオン解離基の一部を架橋させてアモルファス状態
にすることが有効である。
PEO, polyethyleneimine, and the like, which are typical solid polymer electrolytes, have a low Tg and have excellent ionic conductivity in their amorphous portions. However, near room temperature, some of the ionically dissociated groups crystallize, resulting in a rapid decrease in ionic conductivity. In order to compensate for such drawbacks, it is effective to crosslink some of the crystalline ion dissociative groups to make them amorphous.

さらに架橋構造にすることは上記問題の解決に加えて膜
に強度を与えることにもなる。
Furthermore, creating a crosslinked structure not only solves the above problems but also provides strength to the membrane.

現在までに報告されているPEO架橋体は多官能性のイ
オン解離性高分子と架橋剤、例えばジイソシアネート、
トリイソシアネート等を反応させて得られるもので、室
温における高いイオン伝導性と共に架橋構造による優れ
た機械的強度と柔軟性を有する高分子固体電解質である
The PEO crosslinked products reported to date include a polyfunctional ionically dissociable polymer and a crosslinking agent, such as diisocyanate,
It is obtained by reacting triisocyanate, etc., and is a solid polymer electrolyte that has high ionic conductivity at room temperature and excellent mechanical strength and flexibility due to its crosslinked structure.

しかしながら、上記架橋体は反応が進むと同時に不溶化
が生じるため、成膜と同時に架橋反応を進める必要があ
るが、架橋反応はPEOの融点以上で行うため膜厚の制
御が難しく、操作性が悪い。本発明では架橋体が有する
欠点の1つである成膜加工性を向上させるべく架橋反応
の過程を改善した。すなわち、架橋剤に感光基を用いて
成膜後に架橋反応が進む系を検討した。
However, since the above-mentioned crosslinked product becomes insolubilized as the reaction progresses, it is necessary to proceed with the crosslinking reaction at the same time as film formation, but since the crosslinking reaction is carried out above the melting point of PEO, it is difficult to control the film thickness and the operability is poor. . In the present invention, the crosslinking reaction process has been improved in order to improve film forming processability, which is one of the drawbacks of crosslinked products. That is, we investigated a system in which a photosensitive group is used as a crosslinking agent and the crosslinking reaction proceeds after film formation.

その結果、イオン導電率、成膜・加工性の両特性に優れ
た高分子固体電解質を得るに至った。
As a result, a solid polymer electrolyte with excellent ionic conductivity and film formation/processability properties was obtained.

以下、さらに具体的に説明する。This will be explained in more detail below.

高分子固体電解質を構成するマトリクスポリマーは、少
なくともイオン解離を促進する部分(イオン解離基)と
、感光性基とからなる。イオン解離基としては、例えば l −CH2CH2NH−1−C−O−1 が挙げられる。このうち特にエチレンオキシドをイオン
解離基として用いた際に優れた特性が得られた。
The matrix polymer constituting the solid polymer electrolyte consists of at least a portion that promotes ion dissociation (ion dissociation group) and a photosensitive group. Examples of the ionically dissociable group include l -CH2CH2NH-1-C-O-1. Among these, particularly excellent properties were obtained when ethylene oxide was used as the ion dissociative group.

感光性基としては例えば (R:NO2、CI、   OCH3)等があげられる
。このうち、特にシンナモイル基及びその誘導体におい
て、優れた効果が得られた。
Examples of the photosensitive group include (R:NO2, CI, OCH3). Among these, particularly excellent effects were obtained with the cinnamoyl group and its derivatives.

感光性基をイオン解離性高分子鎖中へ導入する方法とし
ては、例えばエステル化反応、ウレタン化反応、ウレア
化反応、エポキシからの付加反応・・・等があげられる
が、特にこれらに限定されるものではないが、酸クロリ
ドとアルコールからエステル化によって導入する方法が
、反応性が高く、高い導入率が得られた。
Methods for introducing photosensitive groups into ionically dissociable polymer chains include, for example, esterification reactions, urethanization reactions, ureaization reactions, addition reactions from epoxy, etc., but are not particularly limited to these. However, the method of introducing esterification from acid chloride and alcohol had high reactivity and a high introduction rate.

感光基の含有率は60%以上、望ましくは8026以上
が良い。
The content of photosensitive groups is preferably 60% or more, preferably 8026 or more.

キャリアとなる電解質塩としては、SCN″″、CI’
″、Br−1I−1BF4  、PF5−1AsFs−
1C104−1B (C6H5)4−1CF3SO3’
″等のアニオンと、Lt”、N a ” 、K+等のア
ルカリ金属カチオンや(C4H9)4 N”、(C2H
5)4N+等の有機カチオン等のカチオンとからなる電
解質塩が挙げられる。
Electrolyte salts that serve as carriers include SCN'''', CI'
'', Br-1I-1BF4, PF5-1AsFs-
1C104-1B (C6H5)4-1CF3SO3'
Anions such as ``, and alkali metal cations such as Lt'', Na '', K+, (C4H9)4N'',
5) Examples include electrolyte salts consisting of cations such as organic cations such as 4N+.

高分子固体電解質、すなわちポリマーマトリクスと電解
質塩の複合体を作製するには、電解質塩を溶解せしめた
架橋ポリマーが不溶の溶液に、光架橋後の高分子マトリ
クスフィルムを浸漬して含浸させる方法;ポリマーと電
解質塩とを溶かした溶液からキャスティング法によって
成膜させる方法などが挙げられる。本発明においては後
者の方が望ましい。
In order to produce a polymer solid electrolyte, that is, a composite of a polymer matrix and an electrolyte salt, a method of immersing a photo-crosslinked polymer matrix film in a solution in which the electrolyte salt is dissolved and the crosslinked polymer is insoluble; Examples include a method of forming a film using a casting method from a solution containing a polymer and an electrolyte salt. In the present invention, the latter is preferable.

高分子固体電解質の成膜法は■溶融法または溶液法等で
ポリマーをキャスティングし、■光またはエネルギー線
を照射する、手順で行うことが望ましい。ここで溶融法
とはポリマーの融点以上で基板に直接塗布する方法であ
る。また、溶液法とはポリマーを適切な溶媒に溶解させ
て、溶液から塗布し、溶媒を乾燥除去して膜を得る方法
である。どちらの方法においても良好な結果が得られた
The method for forming a polymer solid electrolyte film is preferably carried out by the following steps: (1) casting a polymer by a melting method or solution method, and (2) irradiating it with light or energy rays. Here, the melting method is a method in which the polymer is directly applied to the substrate at a temperature higher than the melting point of the polymer. The solution method is a method in which a polymer is dissolved in an appropriate solvent, applied from the solution, and the solvent is removed by drying to obtain a film. Good results were obtained with both methods.

架橋前の高分子固体電解質は溶融状態で粘性が高いため
、均一な膜を得るには溶液からキャスティングする方が
好ましい。キャスティング溶媒としてはエタノール、プ
ロパツール、ブタノール等のアルコール系、メチルエチ
ルケトン、メチルイソブチルケトン等のケトン系、イソ
プロピルアセテート等のエステル系、ジクロロエタン等
のハロゲン系等が用いられる。均一なキャスティングは
アプリケーターを用いる方法、あるいはスピンコーティ
ング法によって実現した。キャスティングした膜は融点
以下で加熱乾燥させて溶媒を除去した。
Since the polymer solid electrolyte before crosslinking has high viscosity in a molten state, it is preferable to cast it from a solution in order to obtain a uniform film. Examples of casting solvents used include alcohols such as ethanol, propatool and butanol, ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as isopropyl acetate, and halogens such as dichloroethane. Uniform casting was achieved by using an applicator or by spin coating. The cast film was dried by heating below its melting point to remove the solvent.

光架橋反応を行う光源は可視光、紫外光、X線、γ線、
電子線が用いられる。照射量は架橋反応が60%以上、
好ましくは80%以上おこる全必要である。光反応の増
感剤としては、例えばシンナモイル基を感光基として有
するポリマーの場合、三重項増感剤が有効で、光反応速
度が倍以上となった。増感剤としては感光基の吸収波長
よりも長波長側か、あるいは光源の最大波長に一致した
吸収を有するもの、例えば5−ニトロアセナフテン、N
−アセチル−4−ニトロ−1−ナフチルアミン等が効果
的であった。
The light sources that carry out the photocrosslinking reaction are visible light, ultraviolet light, X-rays, γ-rays,
An electron beam is used. The irradiation amount is 60% or more for the crosslinking reaction,
Preferably 80% or more of the total need occurs. As a photoreaction sensitizer, for example, in the case of a polymer having a cinnamoyl group as a photosensitive group, a triplet sensitizer was effective, and the photoreaction rate was more than doubled. As a sensitizer, one having absorption at a longer wavelength than the absorption wavelength of the photosensitive group or matching the maximum wavelength of the light source, such as 5-nitroacenaphthene, N
-Acetyl-4-nitro-1-naphthylamine and the like were effective.

以下に実施例を挙げ、本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 ポリエチレンオキシドトリオール(平均分子量3000
)  IOgとピリジン1.16gをベンゼン 300
CCに溶解させ、ベンゼン20ccに溶解させた桂皮酸
クロライド1.96gを常温、不活性ガス雰囲気下で滴
下し、そのまま6時間反応させて置換率85%のシンナ
モイル化PEOを得た。得られたポリマーをメチルエチ
ルケトンに20vt%となるように溶解し、ここにエチ
レンオキシドユニットあたり0.02モルのLiClO
4と増感剤である5−ニトロアセナフテンを感光基に対
して5モル%溶解させ、50μ■のアプリケーターを用
いてキャスティングした。キャスティングした膜は30
℃で20分間乾燥させ、ここに高圧水銀燈を用イテ11
0l1ノCll12テ10分光照射し、ゲル化率90%
の架橋体を得た。
Example 1 Polyethylene oxide triol (average molecular weight 3000
) IOg and pyridine 1.16g to benzene 300
1.96 g of cinnamic acid chloride dissolved in CC and 20 cc of benzene was added dropwise at room temperature under an inert gas atmosphere, and the reaction was continued for 6 hours to obtain cinnamoylated PEO with a substitution rate of 85%. The obtained polymer was dissolved in methyl ethyl ketone to a concentration of 20 vt%, and 0.02 mol of LiClO per ethylene oxide unit was added thereto.
4 and 5-nitroacenaphthene, which is a sensitizer, were dissolved at 5 mol % relative to the photosensitive group, and cast using a 50 μι applicator. The cast film is 30
Dry at ℃ for 20 minutes, then use a high pressure mercury lamp.
Irradiated with light for 10 minutes, gelation rate 90%
A crosslinked product was obtained.

得られた高分子固体電解質のイオン伝導度は試料を白金
板ではさみ、複素インピーダンス法により測定したとこ
ろ、室温において1,7X10→S/cmという高い値
が得られた。
The ionic conductivity of the obtained solid polymer electrolyte was measured by the complex impedance method by sandwiching the sample between platinum plates, and a high value of 1.7×10→S/cm was obtained at room temperature.

実施例2 実施例1においてシンナモイルクロリドのかわりにアク
リル酸クロリドを用いて、同様に反応させ、PEOのア
クリル酸エステル(エステル化率90%)を得た。得ら
れたポリマーをジクロロエタンに20vt%となるよう
に溶解し、ここにエチレンオキシドユニットあたり、0
.02モルのLiCl0+と増感剤であるCuEt3N
を触媒量溶解させ、50μmのアプリケーターを用いて
キャスティングした。得られた膜は室温で20分間乾燥
させ、これを実施例1と同様に光架橋させた。室温での
イオン伝導度は3.2×10= 370mであった。
Example 2 In Example 1, acrylic acid chloride was used instead of cinnamoyl chloride, and the reaction was carried out in the same manner as in Example 1 to obtain an acrylic ester of PEO (esterification rate: 90%). The obtained polymer was dissolved in dichloroethane to a concentration of 20 vt%, and 0% per ethylene oxide unit was dissolved therein.
.. 02 mol of LiCl0+ and sensitizer CuEt3N
was dissolved in a catalytic amount and cast using a 50 μm applicator. The obtained film was dried at room temperature for 20 minutes and photocrosslinked in the same manner as in Example 1. The ionic conductivity at room temperature was 3.2 x 10 = 370 m.

実施例3 実施例1において珪皮酸クロリドのかわりにP−ニトロ
珪皮酸を用いて、同様に合成した。
Example 3 Synthesis was carried out in the same manner as in Example 1 except that P-nitrocinnamic acid was used instead of cinnamic acid chloride.

光照射の際には増感剤を用いずに架橋させた。Crosslinking was carried out without using a sensitizer during light irradiation.

室温におけるイオン伝導度は2.8X 10″Slam
であった。
Ionic conductivity at room temperature is 2.8X 10″Slam
Met.

[効 果] 以上の説明から明らかなように、本発明の高分子固体電
解質は、室温で高いイオン伝導性を有し、かつ成形性、
加工性に優れており、有機固体二次電池、エレクトロク
ロミック索子、全固体コンデンサー等に有用である。
[Effect] As is clear from the above explanation, the polymer solid electrolyte of the present invention has high ionic conductivity at room temperature, and has good moldability and
It has excellent processability and is useful for organic solid secondary batteries, electrochromic cables, all-solid capacitors, etc.

Claims (1)

【特許請求の範囲】[Claims]  主鎖または側鎖にイオン解離基を有し、かつ、エネル
ギー線反応性基を有する高分子に該エネルギー線を照射
して得た架橋高分子をマトリクスとすることを特徴とす
る高分子固体電解質。
A polymer solid electrolyte characterized in that the matrix is a crosslinked polymer obtained by irradiating a polymer having an ion dissociative group in the main chain or side chain and an energy ray-reactive group with the energy ray. .
JP62251612A 1987-10-07 1987-10-07 Polymer solid electrolyte Expired - Fee Related JPH0753785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251612A JPH0753785B2 (en) 1987-10-07 1987-10-07 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251612A JPH0753785B2 (en) 1987-10-07 1987-10-07 Polymer solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0195117A true JPH0195117A (en) 1989-04-13
JPH0753785B2 JPH0753785B2 (en) 1995-06-07

Family

ID=17225408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251612A Expired - Fee Related JPH0753785B2 (en) 1987-10-07 1987-10-07 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0753785B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020594A1 (en) * 1992-04-06 1993-10-14 Yuasa Corporation Cell
SG109494A1 (en) * 2002-04-08 2005-03-30 Inst Of High Performance Compu Liquid ejection pump system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285954A (en) * 1986-06-04 1987-12-11 Nippon Sheet Glass Co Ltd Solid electrolyte composed of high-molecular material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285954A (en) * 1986-06-04 1987-12-11 Nippon Sheet Glass Co Ltd Solid electrolyte composed of high-molecular material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020594A1 (en) * 1992-04-06 1993-10-14 Yuasa Corporation Cell
SG109494A1 (en) * 2002-04-08 2005-03-30 Inst Of High Performance Compu Liquid ejection pump system

Also Published As

Publication number Publication date
JPH0753785B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP2696011B2 (en) Battery
US5362493A (en) Preparation of redox polymer cathodes for thin film rechargeable batteries
JP3817045B2 (en) Molten salt type polymer electrolyte
EP0301774B1 (en) Polymer electrolytes
JP2001040168A (en) Crosslinking agent for solid polyelectrolyte, crosslinked solid polyelectrolyte preapred using same and lithium polymer secondary cell
CN111748095B (en) Cross-linked modified polyimide single ion polymer and gel polymer electrolyte thereof
JPH0351064B2 (en)
JPH05503953A (en) Sulfonated polyaniline salt composition, manufacturing method and method of use
JPH03504050A (en) Electrochromic device and its manufacturing method
US5414025A (en) Method of crosslinking of solid state battery electrolytes by ultraviolet radiation
JPH0384807A (en) Polymer solid electrolyte
JP2003022709A (en) Blended polymer electrolyte, electrolytic membrane having the electrolyte as main component, and membrane /electrode junction containing the electrolyte
JPH0662728B2 (en) Polymer solid electrolyte
JPH05202281A (en) Ionically conductive polyelectrolyte
JPH03139566A (en) Ion-conductive material and its preparation
JPH0195117A (en) Solid polyelectrolyte
JPH02105855A (en) Ionically conductive composition
JP2813832B2 (en) Ion conductive polymer electrolyte
US4107097A (en) Process for preparing polycation-polyanion electrolyte complexes having carboxylic acid and alkenyl radical substituents and films thereof
JPS6355810A (en) Ion conducting solid electrolyte composition
JPS6355811A (en) Solid electrolyte composition
JPH04253165A (en) Polymer solid electrolyte composition material
JP2001160408A (en) Solid polymer electrolyte fuel cell
JPH025370A (en) Polymer solid electrolyte
JPH0324162A (en) Solid polyelectrolyte

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees