JPH04253165A - Polymer solid electrolyte composition material - Google Patents

Polymer solid electrolyte composition material

Info

Publication number
JPH04253165A
JPH04253165A JP3008310A JP831091A JPH04253165A JP H04253165 A JPH04253165 A JP H04253165A JP 3008310 A JP3008310 A JP 3008310A JP 831091 A JP831091 A JP 831091A JP H04253165 A JPH04253165 A JP H04253165A
Authority
JP
Japan
Prior art keywords
formula
chemical formula
solid electrolyte
electrolyte composition
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3008310A
Other languages
Japanese (ja)
Inventor
Kenichi Takeyama
竹山 健一
Hiromu Matsuda
宏夢 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3008310A priority Critical patent/JPH04253165A/en
Publication of JPH04253165A publication Critical patent/JPH04253165A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a polymer solid electrolyte composition material with high ion conductivity at the room temperature by combining specific trifunctional polyoxyalkylene glycerol and a benzalacetophenone compound. CONSTITUTION:An organic solid electrolyte is mainly constituted of an inorganic electrolyte and a cross-linked polymer obtained by photo-cross-linking a compound introduced with a bendalacetophenone compound expressed by the formula II or the formula III as a photo-functional group into the terminal hydroxyl group of trifunctional polyoxyalkylene glycerol expressed by the formula I, where (n) in the formula I is 20 or below, and R in the formula II and the formula III indicates hydrogen, alkyl, alkoxyne or a hydroxyl group.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は一次電池、二次電池、コ
ンデンサーやエレクトロクロミック表示素子などの電気
化学素子用電解質として利用できる高分子固体電解質組
成物に関する。
FIELD OF THE INVENTION The present invention relates to a solid polymer electrolyte composition that can be used as an electrolyte for electrochemical devices such as primary batteries, secondary batteries, capacitors, and electrochromic display devices.

【0002】0002

【従来の技術】従来、一次電池、二次電池、コンデンサ
ーやエレクトロクロミック表示素子などの電気化学素子
の電解質としては液体が用いられてきた。  しかし、
液体の電解質は電気化学素子を長期間保存したり使用し
たりしていると漏液が発生し、長期間の信頼性に欠ける
欠点を有していた。
BACKGROUND OF THE INVENTION Conventionally, liquids have been used as electrolytes for electrochemical devices such as primary batteries, secondary batteries, capacitors, and electrochromic display devices. but,
Liquid electrolytes have the disadvantage that leakage occurs when electrochemical devices are stored or used for long periods of time, resulting in a lack of long-term reliability.

【0003】一方、固体電解質にはこのような欠点はな
く、上記のような電気化学素子に使用すると、素子の製
造の簡略化を図れると同時に、素子自身の小型・軽量化
を図れ、さらに耐漏液性があり、信頼性の高い素子を提
供することができる。このため、近年、固体電解質に対
する研究開発が活発に行われている。
On the other hand, solid electrolytes do not have such drawbacks, and when used in electrochemical devices such as those mentioned above, it is possible to simplify the manufacturing of the devices, reduce the size and weight of the devices themselves, and improve leakage resistance. It has liquid properties and can provide a highly reliable element. For this reason, research and development on solid electrolytes has been actively conducted in recent years.

【0004】従来より、研究開発が行われてきた固体電
解質としては無機系材料、有機系材料および複合系材料
の三種に大別できる。無機系材料としては、ヨウ化銀、
Li2Ti3O7、β−アルミナ、RbAg4I5 や
リンタングステン酸などが知られている。しかし、無機
系材料は任意の形状に製膜したり成形したりすることが
困難な場合が多い。さらに、原料が高価であり、十分な
イオン伝導性を得るためには、室温より高い温度を必要
とするものが多い。このような欠点を有することから実
用上の問題点も多い。
Solid electrolytes that have been researched and developed can be roughly divided into three types: inorganic materials, organic materials, and composite materials. Inorganic materials include silver iodide,
Li2Ti3O7, β-alumina, RbAg4I5, phosphotungstic acid, and the like are known. However, inorganic materials are often difficult to form into films or mold into arbitrary shapes. Furthermore, the raw materials are expensive and many require temperatures higher than room temperature in order to obtain sufficient ionic conductivity. Due to these drawbacks, there are many practical problems.

【0005】この無機系材料の製膜上の欠点をなくすた
め、樹脂と複合化する方法が特開昭63−78405号
公報などに開示されている。この方法でも、無機材料粒
子同士間の接触界面が外部ストレスによる剥離によりイ
オン伝導性が不安定になるという問題を有する。
[0005] In order to eliminate the drawbacks of this inorganic material in film formation, a method of compounding it with a resin is disclosed in Japanese Patent Application Laid-open No. 78405/1983. This method also has the problem that ion conductivity becomes unstable due to peeling of the contact interface between inorganic material particles due to external stress.

【0006】上記の欠点を改良する材料として、近年有
機系材料が注目され研究開発が盛んに行われている。こ
のような有機系材料としては、マトリクスとなる高分子
とキャリアとなる無機電解質とから構成され、ポリエチ
レンオキシド(PEO)とアルカリ金属塩が結晶性の錯
体を形成して、高いイオン伝導性を示すことが報告され
て以来、PEO、プロピレンオキサイド(PPO)、ポ
リエチレンイミン、ポリエピクロルヒドリンやポリホス
ファゼンなどの高分子固体電解質の研究が活発に行われ
てきた。このような有機系材料をマトリクスとする高分
子固体電解質は無機系固体電解質に比較して、軽量で柔
軟性があり、高エネルギ密度を有し、材料自体フィルム
加工性を有している。
[0006] In recent years, organic materials have attracted attention and are being actively researched and developed as materials for improving the above-mentioned drawbacks. Such organic materials are composed of a polymer as a matrix and an inorganic electrolyte as a carrier, and polyethylene oxide (PEO) and an alkali metal salt form a crystalline complex that exhibits high ionic conductivity. Since this was reported, research has been actively conducted on solid polymer electrolytes such as PEO, propylene oxide (PPO), polyethyleneimine, polyepichlorohydrin, and polyphosphazene. A solid polymer electrolyte having such an organic material as a matrix is lighter and more flexible than an inorganic solid electrolyte, has a high energy density, and the material itself has film processability.

【0007】このように優れた加工特性を維持しつつ、
高いイオン伝導性を有する高分子高分子電解質を得るた
め研究が活発に行われている。従来提案されている内容
としては、上記の直鎖状の高分子を固体電解質として使
う方法がある。この方法は、マトリクス高分子中で、解
離したイオンはポリマー中の酸素(−O−)と会合体を
形成して溶媒和し、電界を印加することにより、イオン
は会合と解離を繰り返しながら拡散移動する現象を利用
したものである。この時、イオンは高分子の熱運動によ
る高分子鎖の局所的な配置の変化により輸送される。従
って、高分子マトリクス材料はガラス転移温度の低いも
のでなければならない。しかし、従来の直鎖状高分子で
は、室温付近では結晶化が起こり、イオン伝導性が低下
する。
While maintaining these excellent processing characteristics,
Research is being actively conducted to obtain polymeric polymer electrolytes with high ionic conductivity. As for what has been proposed so far, there is a method of using the above-mentioned linear polymer as a solid electrolyte. In this method, the dissociated ions form an association with oxygen (-O-) in the polymer and are solvated in the matrix polymer, and by applying an electric field, the ions diffuse while repeating association and dissociation. It takes advantage of the phenomenon of movement. At this time, ions are transported by changes in the local arrangement of polymer chains due to thermal motion of the polymer. Therefore, the polymeric matrix material must have a low glass transition temperature. However, in conventional linear polymers, crystallization occurs near room temperature, resulting in a decrease in ionic conductivity.

【0008】高分子固体電解質が室温で高いイオン伝導
性を実現するためには、高分子材料に常温でアモルファ
ス領域を存在させることが必要となる。この方法として
、PEOなどの高分子の末端に活性基を導入し、この活
性基を熱で架橋して高分子の配列を防ぐ方法(特開昭6
3−55811号公報)あるいは直鎖状の高分子を電子
線やγ線など高エネルギー粒子線で架橋して高分子の配
列を防ぐ方法などが提案されている。このような従来の
方法では、電気化学素子に熱が加わる方法は使用するこ
とはできない。また、高エネルギー粒子線を使う方法は
高価な設備が必要となる。
In order for a solid polymer electrolyte to achieve high ionic conductivity at room temperature, it is necessary for the polymer material to have an amorphous region at room temperature. One method for this is to introduce an active group to the end of a polymer such as PEO, and crosslink this active group with heat to prevent the polymer from aligning (Japanese Patent Laid-Open No. 6
3-55811) or a method of crosslinking linear polymers with high-energy particle beams such as electron beams or gamma rays to prevent alignment of the polymers. In such conventional methods, methods that involve applying heat to the electrochemical element cannot be used. Furthermore, methods using high-energy particle beams require expensive equipment.

【0009】これら欠点を改善する方法として、高分子
を光架橋させる方法が特開平1−95117号公報など
に開示されている。ここでは光官能基としてシンナモイ
ル基を用いて架橋しているが、シンナモイル基は光感度
が低く、電気化学素子を工業的に製造するには生産性が
低いという問題があった。
[0009] As a method for improving these drawbacks, a method of photo-crosslinking polymers is disclosed in JP-A-1-95117 and other publications. Here, crosslinking is carried out using a cinnamoyl group as a photofunctional group, but the cinnamoyl group has low photosensitivity and has a problem of low productivity for industrially manufacturing electrochemical devices.

【0010】0010

【発明が解決しようとする課題】このような従来の固体
電解質では、加工性が悪く、室温でのイオン伝導度が低
く、また高分子マトリクスの製造に高価な設備を必要と
したり、生産性が低いなどの課題があった。
[Problems to be Solved by the Invention] Such conventional solid electrolytes have poor processability, low ionic conductivity at room temperature, require expensive equipment to manufacture polymer matrices, and have low productivity. There were issues such as low performance.

【0011】本発明はこのような課題を解決するもので
、電気化学素子製造時の加工時間の短縮を図るために光
感度の高い感光基を高分子材料に導入して架橋時間を短
縮するとともに、室温で高いイオン伝導度を有する高分
子固体電解質組成物を提供することを目的とするもので
ある。
The present invention is intended to solve these problems, and in order to shorten the processing time during the production of electrochemical elements, a photosensitive group with high photosensitivity is introduced into a polymer material to shorten the crosslinking time. The object of the present invention is to provide a solid polymer electrolyte composition having high ionic conductivity at room temperature.

【0012】0012

【課題を解決するための手段】この目的を達成するため
に本発明は、一般式(化4)で表わされ、(化4)中の
nが20を上限とする三官能性ポリオキシアルキレング
リセリンの末端水酸基に、一般式(化5)または(化6
)であらわされるベンザルアセトフェノン系化合物を光
官能基として導入した化合物を光架橋させて得られる架
橋高分子と無機電解質とを主体として有機固体電解質を
構成するものである。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a trifunctional polyoxyalkylene compound represented by the general formula (Chemical formula 4), in which n in (Chemical formula 4) has an upper limit of 20. General formula (Chemical formula 5) or (Chemical formula 6) is added to the terminal hydroxyl group of glycerin.
) The organic solid electrolyte is mainly composed of a crosslinked polymer obtained by photo-crosslinking a compound into which a benzalacetophenone compound represented by () is introduced as a photofunctional group, and an inorganic electrolyte.

【0013】[0013]

【作用】一般式が(化5)または(化6)で表されるベ
ンザルアセトフェノン基はシンナモイル基よりも長波長
域に感光波長が存在し、高圧水銀灯の発光スペクトルに
感光域が近くなる。一般式(化4)で示される化合物の
末端水酸基を従来のシンナモイル基と一般式(化5)ま
たは(化6)で示されるベンザルアセトフェノン基で置
換した場合の高圧水銀灯による光感度を比較した結果を
(表1)に示す。
[Operation] The benzalacetophenone group represented by the general formula (Chemical formula 5) or (Chemical formula 6) has a photosensitive wavelength in a longer wavelength range than that of a cinnamoyl group, and its photosensitive range is close to the emission spectrum of a high-pressure mercury lamp. The photosensitivity using a high-pressure mercury lamp was compared when the terminal hydroxyl group of the compound represented by the general formula (Chemical formula 4) was replaced with a conventional cinnamoyl group and a benzalacetophenone group represented by the general formula (Chemical formula 5) or (Chemical formula 6). The results are shown in (Table 1).

【0014】[0014]

【化4】[C4]

【0015】[0015]

【化5】[C5]

【0016】[0016]

【化6】[C6]

【0017】[0017]

【表1】[Table 1]

【0018】(表1)からベンザルアセトフェノン基は
光感度が高いことがわかる。このように感度の高いベン
ザルアセトフェノン基で置換した化合物を光架橋するこ
とにより、高分子固体電解質組成物の生産性を飛躍的に
改善することができることとなる。
From Table 1, it can be seen that the benzalacetophenone group has high photosensitivity. By photo-crosslinking a compound substituted with such a highly sensitive benzalacetophenone group, the productivity of the solid polymer electrolyte composition can be dramatically improved.

【0019】[0019]

【実施例】以下に具体例について詳細に説明する。[Example] Specific examples will be explained in detail below.

【0020】(実施例1)三官能性ポリオキシアルキレ
ングリセリン10gとピリジン15mlをベンゼン20
0mlに溶解して反応容器にとり、これにクロロホルム
10mlに4−クロルベンザルアセトフェノン13gを
溶解したものを混ぜながらゆつくりと滴下した。この混
合液を50℃にて5時間加熱して反応を続けた。反応終
了後、多量の氷冷した希塩酸を加え、100mlのエー
テルで抽出した。エーテルを蒸発後、エタノールで再結
晶して、三官能性ポリオキシアルキレングリセリンの水
酸基末端にベンザルアセトフェノン基を導入した組成物
を得た。得られた組成物をトルエンに10%となるよう
に溶解し、これに過塩素酸リチウムを0.01モル加え
た。これをチタン箔の上にキャスティングし、乾燥後1
0μm厚の薄膜を得た。この薄膜に高圧水銀灯光を、2
0mWで30秒照射して光架橋を行い高分子固体電解質
組成物を得た。
(Example 1) 10 g of trifunctional polyoxyalkylene glycerin and 15 ml of pyridine were mixed with 20 g of benzene.
The solution was dissolved in 0 ml and placed in a reaction vessel, and a solution of 13 g of 4-chlorobenzalacetophenone dissolved in 10 ml of chloroform was slowly added dropwise while stirring. This mixture was heated at 50° C. for 5 hours to continue the reaction. After the reaction was completed, a large amount of ice-cooled dilute hydrochloric acid was added, and the mixture was extracted with 100 ml of ether. After evaporating the ether, it was recrystallized with ethanol to obtain a composition in which benzalacetophenone groups were introduced at the hydroxyl terminals of trifunctional polyoxyalkylene glycerin. The obtained composition was dissolved in toluene to a concentration of 10%, and 0.01 mol of lithium perchlorate was added thereto. Cast this on titanium foil, and after drying,
A thin film with a thickness of 0 μm was obtained. High-pressure mercury lamp light is applied to this thin film for 2
Photocrosslinking was performed by irradiating at 0 mW for 30 seconds to obtain a polymer solid electrolyte composition.

【0021】得られた高分子固体電解質組成物にチタン
箔を圧接し、チタン・高分子固体電解質組成物・チタン
の系で複素インピーダンス法で室温でのイオン伝導度を
測定すると、2×10−3S/cmであった。
A titanium foil was pressed onto the obtained solid polymer electrolyte composition, and the ionic conductivity at room temperature of the titanium/solid polymer electrolyte composition/titanium system was measured using the complex impedance method. It was 3S/cm.

【0022】(実施例2)4−クロロベンザルアセトフ
ェノンを4’−クロロベンザルアセトフェノンに変えた
だけで、実施例1と同様の方法で、三官能性ポリオキシ
アルキレングリセリンの末端水酸基にベンザルアセトフ
ェノン基を導入した組成物を合成した。得られた組成物
を実施例1と同様の行程を経て、高圧水銀灯を20mW
で30秒間照射して光架橋膜を得た。この膜のイオン伝
導度は2×10−3S/cmであった。
(Example 2) Benzal was added to the terminal hydroxyl group of trifunctional polyoxyalkylene glycerin in the same manner as in Example 1, except that 4-chlorobenzalacetophenone was changed to 4'-chlorobenzalacetophenone. A composition incorporating acetophenone groups was synthesized. The obtained composition was subjected to the same process as in Example 1, and a high-pressure mercury lamp was turned on at 20 mW.
was irradiated for 30 seconds to obtain a photocrosslinked film. The ionic conductivity of this membrane was 2 x 10-3 S/cm.

【0023】[0023]

【発明の効果】以上の実施例の説明からも明かなように
本発明によれば、室温でのイオン伝導度の大きい架橋構
造の高分子固体電解質組成物を得るためにベンザルアセ
トフェノン基を導入することにより、光架橋反応の光感
度を飛躍的に改善するすることができる。その結果、高
分子固体電解質組成物を合成するときの生産性を大幅に
改善することができる。さらに、この組成物は一次電池
、二次電池、コンデンサー、エレクトロクロミック表示
素子などの固体電解質として用いた場合、加工性に優れ
るとともに高いイオン伝導度を示す固体電解質となる。
Effects of the Invention As is clear from the description of the above examples, according to the present invention, a benzalacetophenone group is introduced in order to obtain a polymer solid electrolyte composition having a crosslinked structure with high ionic conductivity at room temperature. By doing so, the photosensitivity of the photocrosslinking reaction can be dramatically improved. As a result, productivity when synthesizing a solid polymer electrolyte composition can be significantly improved. Furthermore, when this composition is used as a solid electrolyte for primary batteries, secondary batteries, capacitors, electrochromic display elements, etc., it becomes a solid electrolyte that exhibits excellent processability and high ionic conductivity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一般式(化1)で表わされ、(化1)
中のnが20を上限とする三官能性ポリオキシアルキレ
ングリセリンの末端水酸基に、一般式(化2)または(
化3)であらわされるベンザルアセトフェノン系化合物
を光官能基として導入した化合物を光架橋させて得られ
る架橋高分子と無機電解質とを主体とする高分子固体電
解質組成物。 【化1】 【化2】 【化3】
Claim 1: Represented by the general formula (Chemical formula 1), (Chemical formula 1)
The terminal hydroxyl group of the trifunctional polyoxyalkylene glycerin in which n is 20 as the upper limit, the general formula (Chemical formula 2) or (
A polymer solid electrolyte composition mainly comprising a crosslinked polymer obtained by photocrosslinking a compound into which a benzalacetophenone compound represented by Chemical Formula 3) is introduced as a photofunctional group, and an inorganic electrolyte. [Chemical formula 1] [Chemical formula 2] [Chemical formula 3]
JP3008310A 1991-01-28 1991-01-28 Polymer solid electrolyte composition material Pending JPH04253165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008310A JPH04253165A (en) 1991-01-28 1991-01-28 Polymer solid electrolyte composition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008310A JPH04253165A (en) 1991-01-28 1991-01-28 Polymer solid electrolyte composition material

Publications (1)

Publication Number Publication Date
JPH04253165A true JPH04253165A (en) 1992-09-08

Family

ID=11689583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008310A Pending JPH04253165A (en) 1991-01-28 1991-01-28 Polymer solid electrolyte composition material

Country Status (1)

Country Link
JP (1) JPH04253165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103202A (en) * 2005-10-05 2007-04-19 Sony Corp Electrolyte and battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103202A (en) * 2005-10-05 2007-04-19 Sony Corp Electrolyte and battery

Similar Documents

Publication Publication Date Title
Wang et al. Thiol‐branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium‐metal batteries
EP0301774B1 (en) Polymer electrolytes
CN110061288B (en) Polyether-sulfide-based polymer electrolyte and preparation method thereof
JP3328262B2 (en) Crosslinking agent for solid polymer electrolyte, crosslinked solid polymer electrolyte and lithium polymer secondary battery manufactured using the same
US4620944A (en) Macromolecular material of ionic conduction for producing electrolytes or electrodes
US5272021A (en) Lithium battery
CN111682261B (en) Repairable crosslinked solid polymer electrolyte, and preparation method and application thereof
He et al. High conductivity, lithium ion conducting polymer electrolyte based on hydrocarbon backbone with pendent carbonate
KR102702634B1 (en) Novel polyfluorene-based crosslinked block copolymer and preparation method thereof, anion exchange membrane for alkaline fuel cell using the same
EP1474839B1 (en) Polymer electrolyte membranes for use in fuel cells
KR20200005796A (en) Gel electrolyte comprising crosslinked polymer and manufacturing method for the same
JPS62249361A (en) Organic solid electrolyte
KR20070010962A (en) Composition of solid polymer electrolyte based on organic-inorganic hybrid network structure
WO2018079200A1 (en) Binder for electricity storage device electrodes
Xie et al. Controlling the supramolecular architecture enables high lithium cationic conductivity and high electrochemical stability for solid polymer electrolytes
Wang et al. Single‐Ion Gel Polymer Electrolyte based on In‐Situ UV Irradiation Cross‐Linked Polyimide Complexed with PEO for Lithium‐Ion Batteries
Xue et al. Crosslinked network solid polymer electrolyte with self‐healing ability and high stability for lithium metal battery
KR20170019150A (en) Solid polymer electrolytes comprising polymer crosslinked tannic acid derivative for secondary lithium battery
JPS60217263A (en) Ionic electrically conductive compound
JPH04253165A (en) Polymer solid electrolyte composition material
JP4672262B2 (en) Electrolyte composition, solid electrolyte membrane and polymer electrolyte fuel cell
Malhotra et al. Effect of fillers on composite polymer electrolytes-a study
JPH02105855A (en) Ionically conductive composition
KR20220038839A (en) An electrolyte membrane including polyfluorene-based ionomers and producing method thereof
JPH01169807A (en) Macromolecular solid polyelectrolyte