JPH0194671A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0194671A
JPH0194671A JP62251447A JP25144787A JPH0194671A JP H0194671 A JPH0194671 A JP H0194671A JP 62251447 A JP62251447 A JP 62251447A JP 25144787 A JP25144787 A JP 25144787A JP H0194671 A JPH0194671 A JP H0194671A
Authority
JP
Japan
Prior art keywords
region
substrate
zener
conductivity type
lightly doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251447A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsushita
松下 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62251447A priority Critical patent/JPH0194671A/en
Publication of JPH0194671A publication Critical patent/JPH0194671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide both VDMOS and other semiconductor elements with optimal characteristics, respectively and to provide Zener diodes with excellent reproducibility of Zener characteristics by monolithically forming both heavily doped substrate and lightly doped substrate by a direct bonding or like means to accurately control the thickness difference in both lightly doped regions in a first region and a second region. CONSTITUTION:A semiconductor device comprises a first conductivity type heavily doped substrate 1; a first conductive type lightly doped region 2 arranged thereupon by direct bonding; a vertical MOSFET 10 in which a first region in the lightly doped region 2 is formed to be a drain region, a first conductive type source region 6 being arranged in a second conductive channel region 5 arranged in such drain region, a gate electrode 8 being arranged on such channel region 5 while interposing a gate insulating film 7; a first conductive type heavily doped Zener region 3 in which a Zener diode 4 serving to determine a drain breakdown strength for the vertical MOSFET 10 is so arranged that it is in contact with the substrate 1 in the first region of the lightly doped region 2 and is bonded to the channel region 5 and which is formed by such junction; other semiconductor elements 20, 30 which consist of peripheral circuits, etc. of the vertical MOSFET 10 arranged in the second region of the lightly doped region 2.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、電力用の縦形MOSFET (以下VDM
O8という)とその周辺回路となる0MO8等を構成す
る他の半導体素子とを1チツプ上に集積した半導体装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to a vertical MOSFET (hereinafter referred to as VDM) for power use.
The present invention relates to a semiconductor device in which a semiconductor device (referred to as O8) and other semiconductor elements constituting a peripheral circuit such as OMO8 are integrated on one chip.

(従来の技術) 近年、各種車載電力負荷等のスイッチング素子として用
いられる電力用のVDMO3と、その周辺回路となる0
MO8等を構成する他の半導体素子とを1チツプ上に集
積した半導体装置(以下これをパワーICとも云う)が
提案されている。
(Prior art) In recent years, VDMO3 for power, which is used as a switching element for various in-vehicle power loads, and its peripheral circuits,
A semiconductor device (hereinafter also referred to as a power IC) in which other semiconductor elements constituting the MO8 and the like are integrated on one chip has been proposed.

上記の車載電力負荷は、モータやソレノイド等の誘導性
の負荷である場合が多く、これらの電力負荷は負荷電流
を遮断した際に高電圧のサージが発生する。この高電圧
のサージは、スイッチング素子であるVDMO8のドレ
イン・ソース間に加わるので、これに使用されるVDM
O8は、高電圧のサージに対して高い耐量を有するもの
が求められる。一方、VDMO3は、車載用バッテリ等
の低出力電圧の電源に対して十分な電流がとれるように
動作時のオン抵抗の低いものが求められる。
The above-mentioned on-vehicle power loads are often inductive loads such as motors and solenoids, and these power loads generate high voltage surges when the load current is interrupted. This high voltage surge is applied between the drain and source of the switching element VDMO8, so the VDM used for this
O8 is required to have high resistance to high voltage surges. On the other hand, the VDMO 3 is required to have a low on-resistance during operation so that it can draw sufficient current for a low output voltage power source such as a vehicle battery.

いま、このような従来の半導体装置を、第3図を用いて
これに使用されるVDMO8の例から説明する。同図中
、31は高濃度のn+基板であり、n1基板31上には
低濃度のn−領域32がエピタキシャル法により形成さ
れている。n−領域32は実質的にドレインとして作用
するものであり、低オン抵抗化等の目的からその厚さは
比較的薄く形成されて、製造プロセス終了後で約2〜4
μm程度とされている。n−領域32の所要部位にはn
+基板31に達するp形チャネル領域5が形成され、こ
のp形チャネル領域5とn+基板31とのpn接合によ
りドレイン耐圧規定用のツェナダイオード33が形成さ
れている。ツェナダイオード33のツェナ電圧は、VD
MO8のドレイン・ソース間耐圧よりも所要値だけ低く
設定されている。
Now, such a conventional semiconductor device will be explained using FIG. 3, starting with an example of a VDMO 8 used therein. In the figure, 31 is a highly doped n+ substrate, and a lightly doped n- region 32 is formed on the n1 substrate 31 by an epitaxial method. The n-region 32 essentially acts as a drain, and is formed to have a relatively thin thickness for the purpose of lowering the on-resistance.
It is said to be on the order of μm. In the required part of the n-region 32, n
A p-type channel region 5 is formed that reaches the + substrate 31, and a pn junction between the p-type channel region 5 and the n+ substrate 31 forms a Zener diode 33 for regulating drain breakdown voltage. The Zener voltage of the Zener diode 33 is VD
It is set lower than the drain-source breakdown voltage of MO8 by a required value.

p形チャネル領域5内には、n+ソース領域6が形成さ
れ、このn+ソース領域6とn−領[32との間におけ
るp形チャネル領域5上には、p形チャネル領域5の表
面層にチャネル5aを誘起させるためのゲート電極8が
、ゲート絶縁膜7を介して設けられている。9は中間絶
縁膜、11はソース電極であり、ソース電極11はn+
ソース領域6に接続されるとともに、p+チャネルコン
タクト領域12を介してp形チャネル領域5に接続され
ている。13はドレイン電極であり、n4′基板31の
裏面に設けられている。
An n+ source region 6 is formed in the p-type channel region 5, and a surface layer of the p-type channel region 5 is formed on the p-type channel region 5 between the n+ source region 6 and the n- region [32]. A gate electrode 8 for inducing a channel 5a is provided with a gate insulating film 7 interposed therebetween. 9 is an intermediate insulating film, 11 is a source electrode, and the source electrode 11 is n+
It is connected to source region 6 and to p-type channel region 5 via p + channel contact region 12 . Reference numeral 13 denotes a drain electrode, which is provided on the back surface of the n4' substrate 31.

そして、ツェナダイオード内蔵のVDMO8は、負荷等
からの高圧サージがツェナダイオード33に吸収される
ので、素子そのものの耐圧は電源電圧に耐える程度の構
造のものとすることができて、高いサージ耐量を有する
とともに十分に低オン抵抗化が図られている。
In addition, in the VDMO8 with a built-in Zener diode, high voltage surges from the load etc. are absorbed by the Zener diode 33, so the element itself can have a structure that can withstand the power supply voltage, and has a high surge withstand capacity. The on-resistance is sufficiently low.

このような長所を有するツェナダイオード内蔵のVDM
O8と、その駆動回路または制御回路等の周辺回路とを
1チツプ上に集積化したパワーICとすれば、装置寸法
の縮小、実装コストの低減、中間配線の省略によるコス
ト低減と性能向上、新たな機能の実現等の多くのメリッ
トが期待でき、その応用範囲は広いと考えられる。
VDM with built-in Zener diode has these advantages.
If O8 and its peripheral circuits such as drive circuits and control circuits are integrated on a single chip as a power IC, device size can be reduced, mounting costs can be reduced, and intermediate wiring can be omitted to reduce costs and improve performance. Many benefits can be expected, such as the realization of new functions, and the range of applications is thought to be wide.

第4図は、このようなツェナダイオード内蔵のVDMO
8とその周辺回路を構成する他の半導体素子とを1チツ
プ上に集積したパワーICの従来例を示している。
Figure 4 shows such a VDMO with a built-in Zener diode.
8 and other semiconductor elements constituting its peripheral circuit are integrated on one chip.

なお、第4図中、VDMO810については、前記第3
図のものとほぼ同様に構成されているので、第4図にお
いて前記第3図における部材または部位等と同等ないし
均等のものは、前記と同一符号を以って示し重複した説
明を省略する。
In addition, in FIG. 4, regarding the VDMO810, the third
Since the structure is almost the same as that shown in the figure, in FIG. 4, the same or equivalent members or parts, etc. in FIG.

第4図中、34はn+基板であり、n1基板34上に所
要厚さのn−領域35がエピタキシャル法により形成さ
れている。そしてVDMO310の形成される第1の領
域におけるn−領域35とn4″基板34との間に高濃
度のn+埋込層36が形成されている。このn+埋込層
36の存在により、n−領域35は第1の領域のみが、
前述のように低オン抵抗化等の目的から薄く形成されて
いる。p形チャネル領域5は、このn4′埋込層36に
達するように形成されて、p形チャネル領域5とn+埋
込層36とのpn接合によりドレイン耐圧規定用のツェ
ナダイオード33が形成されている。
In FIG. 4, 34 is an n+ substrate, and an n- region 35 of a required thickness is formed on the n1 substrate 34 by an epitaxial method. A high concentration n+ buried layer 36 is formed between the n- region 35 and the n4'' substrate 34 in the first region where the VDMO 310 is formed. In the area 35, only the first area is
As mentioned above, it is formed thin for the purpose of lowering the on-resistance. The p-type channel region 5 is formed to reach this n4' buried layer 36, and the pn junction between the p-type channel region 5 and the n+ buried layer 36 forms a Zener diode 33 for regulating drain breakdown voltage. There is.

n+埋込層36の形成および第1の領域におけるn−領
域35の厚さの制御は、次のようにして行なわれている
。即ち、n″基板34のn彫工細物としては、拡散定数
の小さい例えばアンチモン(Sb)が用いられ、n4′
埋込層36には拡散定数の大きい例えばリン(P)が用
いられており、n+Ji板34上にn−領域35をエピ
タキシャル成長させる前にn+基板34の所要部位に、
そのリン(P)不純物が多量にドープされる。モしてn
+基板34上に、n−領域35が所要厚さにエピタキシ
ャル成長されたのち、所要の熱処理が加えられ、リン(
P)不純物がn1基板34のドープ剤であるアンチモン
(Sb)不純物よりn−領域35中に大きく再拡散され
てn:埋込層36が形成されるとともに、第1の領域に
おけるn−領域35の厚さが所要の厚さまで薄くなるよ
うに制御されている。
Formation of the n+ buried layer 36 and control of the thickness of the n- region 35 in the first region are performed as follows. That is, as the n-carvings of the n'' substrate 34, for example, antimony (Sb), which has a small diffusion constant, is used.
The buried layer 36 is made of, for example, phosphorus (P), which has a large diffusion constant.
A large amount of phosphorus (P) impurity is doped. mote n
After the n- region 35 is epitaxially grown on the + substrate 34 to a required thickness, the required heat treatment is applied to form phosphorus (
P) The impurity is largely re-diffused into the n- region 35 from the antimony (Sb) impurity which is the dopant of the n1 substrate 34, forming the n: buried layer 36, and the n- region 35 in the first region. The thickness is controlled to be as thin as required.

一方、VDMO310側方のn−領域35が第2の領域
とされ、この第2の領域に、VDMO810の周辺回路
となる0MO8を構成するpチャネルMOSFET(以
下DMO8のように云う)20およびnMo830が次
のように形成されている。
On the other hand, the n-region 35 on the side of the VDMO 310 is used as a second region, and in this second region, the p-channel MOSFET (hereinafter referred to as DMO 8) 20 and nMo 830 that constitute the 0MO8, which is the peripheral circuit of the VDMO 810, are installed. It is formed as follows.

即ち、n−領域35の表面側に形成されたp+ソース領
域14およびp+ドレイン領域15、ゲート酸化膜16
上に形成されたゲート電極17、ソース電極18、ドレ
イン電極19°等により0MO820が構成されている
。また、n−領域35の表面側にpウェル21が形成さ
れ、このpウェル21に形成されたn+ソース領域22
およびn1ドレイン領域23、ゲート酸化膜24上に形
成されたゲート電極25、ソース電極26、ドレイン電
極27等によりnMo830が構成されている。
That is, the p+ source region 14 and p+ drain region 15 formed on the surface side of the n- region 35, and the gate oxide film 16
The gate electrode 17, source electrode 18, drain electrode 19°, etc. formed above constitute an 0MO820. Further, a p-well 21 is formed on the surface side of the n- region 35, and an n+ source region 22 formed in this p-well 21
The nMo 830 is composed of the n1 drain region 23, the gate electrode 25 formed on the gate oxide film 24, the source electrode 26, the drain electrode 27, and the like.

第2の領域におけるn−領域35は、その厚さがほぼエ
ピタキシャル成長時のまま、厚く保持されて0MO82
0およびnMo830の耐圧特性の向上が図られている
The n-region 35 in the second region is kept as thick as it was during epitaxial growth, so that the n-region 35 has a thickness of 0MO82
The breakdown voltage characteristics of nMo830 and nMo830 are improved.

このようにして、高いサージ耐量と低オン抵抗化の図ら
れたVDMO810と、耐圧特性の向上が図られた0M
O820およびnMo830とが1チツプ上に集積され
ている。
In this way, VDMO810 with high surge withstand capability and low on-resistance, and 0M with improved withstand voltage characteristics.
O820 and nMo830 are integrated on one chip.

そして、n−領域35の電位がドレイン電極13から加
えられる電源電圧に固定されてVDM○810とnMo
820およびnMo830からなる0MO8とが電気的
に分離され、VDMO810が、その0MO8等で構成
される周辺回路で駆動されてスイッチング動作等が行な
われる。
Then, the potential of the n- region 35 is fixed to the power supply voltage applied from the drain electrode 13, and VDM○810 and nMo
820 and 0MO8 consisting of nMo830 are electrically separated, and VDMO 810 is driven by a peripheral circuit composed of 0MO8 and the like to perform switching operations and the like.

(発明が解決しようとする問題点) 従来の半導体装置にあっては、拡散定数の小さいアンチ
モン(Sb)のドープされたn1基板34の所要部位に
、予め拡散定数の大きいリン(P)を多量にドープして
おき、n−領域35をエピタキシャル成長させたのち熱
処理を加えて、リン(P)とアンチモン(Sb)のn−
領域35中への再拡散の程度の差を利用して第1の領域
におけるn−領域35と、第2の領域におけるn−領域
35との間に厚さの差を付けるようにしていたため、第
2の領域におけるn−領域35中へもn+基板34から
アンチモン(Sb)が再拡散されて、第1の領域と第2
の領域との両n″″領域35間に所要の厚さの差を付け
ることが困難であり、VDMO$10とpMoS20お
よびnMo530とのそれぞれに最適の特性を与えるこ
とが難しいという問題点があった。また、ツェナダイオ
ード33の形成領域となるn+埋込層36は、リン(P
)の再拡散後のプロファイルの再現性が難しいので、ツ
ェナダイオード33のツェナ特性の再現性も良〜 好と
は云えず、さらにはn+基板34の所要部位にはリン(
P)不純物が予め多量にドープされるので半導体中に格
子欠陥などの異常を生じ易いという問題点があった。
(Problems to be Solved by the Invention) In a conventional semiconductor device, a large amount of phosphorus (P), which has a large diffusion constant, is preliminarily placed in the required portions of the N1 substrate 34 doped with antimony (Sb), which has a small diffusion constant. After epitaxially growing the n- region 35, heat treatment is applied to form an n- region of phosphorus (P) and antimony (Sb).
Since the difference in the degree of re-diffusion into the region 35 was used to create a difference in thickness between the n-region 35 in the first region and the n-region 35 in the second region, Antimony (Sb) is re-diffused from the n+ substrate 34 into the n- region 35 in the second region, and
There is a problem in that it is difficult to create a required difference in thickness between the n″″ region and the n″″ region 35, and it is difficult to provide optimal characteristics to each of the VDMO$10, pMoS20, and nMo530. Ta. Further, the n+ buried layer 36, which is the formation region of the Zener diode 33, is made of phosphorus (P).
) is difficult to reproduce after re-diffusion, so the reproducibility of the Zener characteristics of the Zener diode 33 is not good or good, and furthermore, the n+ substrate 34 contains phosphorus (
P) Since a large amount of impurities are doped in advance, there is a problem in that abnormalities such as lattice defects are likely to occur in the semiconductor.

この発明は、このような問題点に着目してなされたもの
で、第1の領域と第2の領域における第1導電形の両低
濃度領域の厚さの差を精度よく制御することができて、
VDMO8とpMO8およびnMO8等の他の半導体素
子とをそれぞれ最適特性とすることができ、ざらにはツ
ェナダイオードのツェナ特性の再現性が良好であるとと
もに半導体中への格子欠陥等の発生を少なくすることの
できる半導体装置を提供することを目的とする。
This invention has been made with attention to such problems, and it is possible to accurately control the difference in thickness between both the low concentration regions of the first conductivity type in the first region and the second region. hand,
The characteristics of VDMO8 and other semiconductor elements such as pMO8 and nMO8 can be optimized, and in general, the reproducibility of the Zener characteristics of the Zener diode is good, and the occurrence of lattice defects in the semiconductor is reduced. The purpose of this invention is to provide a semiconductor device that can

[発明の構成1 (問題点を解決するための手段) この発明は上記問題点を解決するために、第1導電形の
高濃度基板と、該高濃度基板上に当該高濃度基板との直
接接合により形成された第1導電形の低部゛度領域と、
該低濃度領域における第1の領域を実質的なドレイン領
域とし該第1の領域に形成された第2導電形のチャネル
領域内に第1導電形のソース領域が形成され該ソース領
域および前記ドレイン領域間における前記チャネル領域
上にゲート絶縁膜を介してゲート電極が形成された縦形
MOSFETと、前記低濃度領域における第1の領域に
前記高濃度基板に接して形成されるとともに前記チャネ
ル領域に接合するように形成され該接合部により前記縦
形MOSFETのドレイン耐圧規定用のツェナダイオー
ドが形成される第1導電形の高濃度ツェナ領域と、前記
低濃度領域における第2の領域に形成され前記縦形MO
SFETの周辺回路等を構成する他の半導体素子とを有
することを要旨とする。
[Structure 1 of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes a highly concentrated substrate of a first conductivity type, and a structure in which a high concentration substrate is directly connected to the high concentration substrate on the high concentration substrate. a first conductivity type low temperature region formed by bonding;
A first region in the low concentration region is a substantial drain region, a source region of a first conductivity type is formed in a channel region of a second conductivity type formed in the first region, and a source region of a first conductivity type is formed in a channel region of a second conductivity type formed in the first region. A vertical MOSFET in which a gate electrode is formed on the channel region between regions via a gate insulating film, and a gate electrode is formed in a first region in the low concentration region in contact with the high concentration substrate and connected to the channel region. a first conductivity type high-concentration Zener region formed in such a manner that a Zener diode for regulating the drain breakdown voltage of the vertical MOSFET is formed by the junction;
The gist of the present invention is to include other semiconductor elements constituting peripheral circuits of the SFET and the like.

(作用) 第1導電形の高濃度基板と第1導電形の低濃度領域とは
、直接接合により一体的に形成されるので、ツェナダイ
オード形成用の第1導電形の高濃度ツェナ領域は、低濃
度領域となる基板の所要部位に第1導電形不純物の連続
供給状態で所要の厚さとなるように予め拡散形成させる
ことができる。
(Function) Since the high concentration substrate of the first conductivity type and the low concentration region of the first conductivity type are integrally formed by direct bonding, the high concentration Zener region of the first conductivity type for forming the Zener diode is The impurity of the first conductivity type can be diffused in advance to a desired thickness in a continuous supply state to a desired portion of the substrate that will be a low concentration region.

而して第1の領域および第2の領域における各低濃度領
域の厚さを所望の厚さに精度よく形成することができて
、十分に高いサージmmと低オン抵抗を有するツェナダ
イオード内蔵のVDMO8および所望の耐圧特性を有す
る他の半導体素子が再現性よく1チツプ上に作製される
。また、高濃度ツェナ領域形成のための第1導電形不純
物の拡散時に、半導体中に格子欠陥等の異常の発生する
ことが抑えられて特性劣化が防止される。
Therefore, the thickness of each low-concentration region in the first region and the second region can be precisely formed to a desired thickness, and a built-in Zener diode having a sufficiently high surge mm and low on-resistance can be used. VDMO8 and other semiconductor elements having desired breakdown voltage characteristics are manufactured on one chip with good reproducibility. Further, during the diffusion of the first conductivity type impurity for forming the high concentration Zener region, the occurrence of abnormalities such as lattice defects in the semiconductor is suppressed, and characteristic deterioration is prevented.

(実施例) 以下、この発明の実施例を第1図および第2図に基づい
て説明する。なお、第1図および第2図において前記第
4図における部材または部位等と同一ないし均等のもの
は、前記と同一符号を以って示し重複した説明を省略す
る。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2. In FIGS. 1 and 2, parts that are the same as or equivalent to those in FIG. 4 are designated by the same reference numerals and redundant explanations will be omitted.

まず、半導体装置の構成を説明すると、第1図中、1は
高濃度のn+基板であり、n+基板1上には、このn+
基板1との直接接合により低濃度のn−領域2が10μ
m程度の所要の厚さに積層されている。VDMO810
が形成される第1の領域におけるn−領域2には、底面
がn+基板1に接するとともに上面がp形チャネル領域
5と接しているn+ツェナ領域3が形成されている。こ
のn+ツェナ領域3の形成により、第1の領域における
n−領域2の厚さは3μm程度の所要の厚さまで薄くさ
れている。そしてn+ツェナ領域3とp形チャネル領域
5とのpn接合によりVDMosioのドレイン耐圧を
規定するツェナダイオード4が形成されている。
First, to explain the structure of the semiconductor device, in FIG. 1, 1 is a high concentration n+ substrate, and on the n+ substrate 1,
The low concentration n-region 2 has a thickness of 10μ due to direct bonding with the substrate 1.
The layers are laminated to a required thickness of about m. VDMO810
An n+ Zener region 3 whose bottom surface is in contact with the n+ substrate 1 and whose top surface is in contact with the p-type channel region 5 is formed in the n- region 2 in the first region where the n-type transistor is formed. By forming this n+ Zener region 3, the thickness of the n- region 2 in the first region is reduced to a required thickness of about 3 μm. A pn junction between the n+ zener region 3 and the p-type channel region 5 forms a zener diode 4 that defines the drain breakdown voltage of VDMosio.

而して、第1、第2の各領域におけるn−領域2は、そ
れぞれ3μmおよび10μm程度の厚さに精度よく形成
され、第1の領域にはVDMO810が形成され、第2
の領域にはpMO820およびnMO830からなる周
辺回路等形成用の他の半導体素子が形成されている。
The n-region 2 in each of the first and second regions is formed with high precision to a thickness of about 3 μm and 10 μm, respectively, and the VDMO 810 is formed in the first region, and the
Other semiconductor elements for forming peripheral circuits, etc., including a pMO 820 and an nMO 830, are formed in the region.

次に製造工程の一例を第2図の(a)〜(e)を用いて
概説することにより、その構成をさらに詳述する。
Next, the structure will be explained in further detail by outlining an example of the manufacturing process using FIGS. 2(a) to (e).

砲)n−領域2となる基板の所要部位にh彫工細物を所
要の深さに拡散してn+ツェナ領域3を形成する。この
n′″ツェナ領域3形成のための拡散は、表面からn彫
工細物を連続的に供給しながら所要の深さとなるように
拡散させることができる。
2. Diffusion of H carvings to a desired depth in a desired portion of the substrate that will become the n- region 2 to form an n+ zener region 3. Diffusion for forming the n''' Zener region 3 can be performed to a required depth while continuously supplying n carved parts from the surface.

このn−領域2となる基板にn1ツエナ領域3を拡散形
成したものを第1の基板体とする。
A first substrate body is formed by diffusing and forming an n1 zener region 3 on the substrate that will become the n- region 2.

(b) n+基板1となる第2の基板体を準備し、この
第2の基板体と、上記(a)工程で準備された第1の基
板体とを親水処理したのち表面同士を密着させ適宜の温
度で7ニールすることにより、雨曇板体を直接接合する
。この直接接合により、n+ツェナ領域3の底面はn+
基板1に接するように接合される。なお、シリコン基板
同士の直接接合は、公知の技術である(特公昭60−5
1700号公報)。
(b) Prepare a second substrate body that will become n+ substrate 1, and after subjecting this second substrate body and the first substrate body prepared in step (a) above to a hydrophilic treatment, their surfaces are brought into close contact with each other. The rain cloud plate body is directly bonded by 7-nealing at an appropriate temperature. Due to this direct bonding, the bottom surface of the n+ Zener region 3 becomes n+
It is bonded so as to be in contact with the substrate 1. Note that the direct bonding of silicon substrates is a well-known technology (Japanese Patent Publication No. 1986-5).
1700).

(C) n−領域2が所定の厚さとなるまで削る。この
工程により、第1、第2の領域におけるn−領域2の厚
、さがそれぞれ所定の厚さとされる。
(C) Grind the n-region 2 until it reaches a predetermined thickness. Through this step, the thickness of the n-region 2 in the first and second regions is set to a predetermined thickness.

(d) n−領域2の表面の熱酸化により各ゲート酸化
膜の形成、多結晶シリコンを堆積したのちパターニング
を施して各電極8.17.25の形成、これらの電極8
.17.25等をマスクとしたp彫工細物およびn彫工
細物の拡散によるp形チャネル領域5、pウェル21、
各ソース領域6.14.22、各ドレイン領域15.2
3等の形成により、第1の領域にツェナダイオード4内
蔵の70MO810用の所要の領域等を形成し、第2の
領域にはpMO820およびnMO830の他の半導体
素子用の所要の領域等を形成する。
(d) Formation of each gate oxide film by thermal oxidation of the surface of n- region 2, depositing polycrystalline silicon and patterning to form each electrode 8, 17, 25, these electrodes 8
.. P-type channel region 5, p-well 21, p-type channel region 5, p-well 21, by diffusion of p-carvings and n-carvings using 17.25 etc. as a mask.
Each source region 6.14.22, each drain region 15.2
3, etc., a required region for the 70MO810 with built-in Zener diode 4 is formed in the first region, and a required region for other semiconductor elements such as pMO820 and nMO830 is formed in the second region. .

(e) P S Gによる中間絶縁m9を形成後、フォ
トエツチングにより所要位置にコンタクト孔を開孔し、
A11llを蒸着後、これをフォトエツチングして各電
極11.18.19.26.27を形成する。またn+
基板1の裏面には、70MO810のアノード電極13
を形成する。
(e) After forming the intermediate insulation m9 using PSG, contact holes are formed at desired positions by photoetching,
After depositing A11ll, it is photo-etched to form each electrode 11, 18, 19, 26, 27. Also n+
On the back side of the substrate 1, an anode electrode 13 of 70MO810 is provided.
form.

次いで、上述のように構成された半導体装置の作用を説
明する。
Next, the operation of the semiconductor device configured as described above will be explained.

n+ツェナ領域3は、n−領域2となる基板の所要部位
にn彫工細物の連続供給状態で所要の深さとなるように
拡散形成される。そしてこのようにn+ツェナ領域3が
予め形成されたn−領域2の基板と、n+基板1とが直
接接合される。
The n+ zener region 3 is diffused and formed to a desired depth at a desired portion of the substrate that will become the n- region 2 by continuously supplying the n carved material. In this way, the substrate of the n- region 2 in which the n+ Zener region 3 is formed in advance and the n+ substrate 1 are directly bonded.

したがって、前記第4図に示した従来例のように、n+
基板の所要部位には拡散定数の大きいリン(P)不純物
を予め多量にドープしておき、n−領域をエピタキシャ
ル成長させたのち、所要の熱処理によりそのリン(P)
不純物をn−領域中に再拡散させてn+埋込層を形成す
るわけではないので、この熱処理の際にn+基板からの
n彫工細物がn−領域中に再拡散することも防止されて
第1、第2の領域における各n−領域2の〜さが所望の
厚さに精度よく形成され、十分に高いサージ耐量と低オ
ン抵抗を有するツェナダイオード4内蔵の70MO81
0および所望の耐圧特性を有するpMO820およびn
MO830等の他の半導体素子とが再現性よく1チツプ
上に作製される。
Therefore, as in the conventional example shown in FIG.
A large amount of phosphorus (P) impurity with a large diffusion constant is doped in advance into the required parts of the substrate, and after the n- region is epitaxially grown, the phosphorus (P) is removed by the required heat treatment.
Since the impurities are not re-diffused into the n- region to form an n+ buried layer, the n-artifacts from the n+ substrate are also prevented from re-diffusing into the n- region during this heat treatment. The thickness of each n-region 2 in the first and second regions is precisely formed to a desired thickness, and the 70MO81 has a built-in Zener diode 4 having sufficiently high surge resistance and low on-resistance.
0 and pMO820 with desired voltage resistance characteristics and n
Other semiconductor devices such as MO830 can be fabricated on one chip with good reproducibility.

また、n+ツェナ領域3形成のためのn彫工細物の拡散
時においても、半導体中に格子欠陥などの異常の発生す
ることが抑えられて;特性劣化が防止される。
Further, even during the diffusion of the n carved part to form the n+ Zener region 3, the occurrence of abnormalities such as lattice defects in the semiconductor is suppressed; deterioration of characteristics is prevented.

そして、n−領域2の電位がドレイン電極13から加え
られる電源電圧に固定されてVDMO810とpMO8
20およびnMO830からなる0MO8とが電気的に
分離されて両者は独立して動作し、70MO810が、
その0MO8等で構成される周辺回路で駆動されてスイ
ッチング動作等が行なわれる。
Then, the potential of n-region 2 is fixed to the power supply voltage applied from drain electrode 13, and VDMO810 and pMO8
20 and 0MO8 consisting of nMO830 are electrically separated and operate independently, and 70MO810 is
It is driven by a peripheral circuit composed of 0MO8 and the like to perform switching operations and the like.

[発明の効果] 以上説明したように、この発明によれば、第1導電形の
高濃度基板と第1導電形の低濃度領域とは、直接接合に
より一体的に形成されるので、第1導電形の高濃度ツェ
ナ領域は、低濃度領域となる基板の所要部位に第1導電
形不純物の連続供給状態で所望の深さとなるように予め
拡喀形成させておくことができる。したがって、第1の
領域および第2の領域における各低濃度領域の厚さを所
望の厚さに精度よく形成することができて、十分に高い
サージ耐量と低オン抵抗を有するツェナダイオード内蔵
の縦形MOSFETおよび所望の耐圧特性を有する半導
体素子を再現性よく1チツプ上に作製することができ、
また高濃度ツェナ領域形成のための第1導電形不純物の
拡散時に半導体中に格子欠陥等の異常の発生することが
抑えられて特性劣化が防止されるという利点がある。
[Effects of the Invention] As explained above, according to the present invention, the high concentration substrate of the first conductivity type and the low concentration region of the first conductivity type are integrally formed by direct bonding. The conductivity type high concentration Zener region can be expanded in advance to a desired depth at a desired portion of the substrate that will become the low concentration region while continuously supplying impurities of the first conductivity type. Therefore, the thickness of each low concentration region in the first region and the second region can be precisely formed to a desired thickness, and the vertical type with a built-in Zener diode has sufficiently high surge resistance and low on-resistance. MOSFETs and semiconductor elements with desired breakdown voltage characteristics can be manufactured on one chip with good reproducibility,
Further, there is an advantage that the occurrence of abnormalities such as lattice defects in the semiconductor during diffusion of the first conductivity type impurity for forming the high concentration Zener region is suppressed, and characteristic deterioration is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体装置の実施例を示す縦断
面図、第2図は同上実施例の製造工程の一例を示ず工程
図、第3図は従来の半導体装置に用いられる縦形MOS
FETを示す縦断面図、第4図は従来の半導体装置を示
す縦断面図である。 1:n+基板(高濃度基板)、 2:n−領域(低濃度領域)、 3:n+ツェナ領域、 4:ツェナダイオード、5:p
形チ1?ネル@域、 6:n+ソース領域、7:ゲート
絶縁膜、   8:ゲート電極、13ニドレイン電極、
10:縦形MOSFET。 20 : pMO3(他の半導体素子)、30 ; n
MO8(他の半導体素子)。 代理人  弁理士  三 好  保 男第3図
FIG. 1 is a longitudinal sectional view showing an embodiment of a semiconductor device according to the present invention, FIG. 2 is a process diagram showing an example of the manufacturing process of the same embodiment, and FIG. 3 is a vertical MOS used in a conventional semiconductor device.
FIG. 4 is a vertical cross-sectional view showing a conventional semiconductor device. 1: n+ substrate (high concentration substrate), 2: n- region (low concentration region), 3: n+ Zener region, 4: Zener diode, 5: p
Shape 1? 6: n+ source region, 7: gate insulating film, 8: gate electrode, 13 dorain electrode,
10: Vertical MOSFET. 20: pMO3 (other semiconductor element), 30; n
MO8 (other semiconductor elements). Agent Patent Attorney Yasuo Miyoshi Figure 3

Claims (1)

【特許請求の範囲】  第1導電形の高濃度基板と、 該高濃度基板上に当該高濃度基板との直接接合により形
成された第1導電形の低濃度領域と、該低濃度領域にお
ける第1の領域を実質的なドレイン領域とし該第1の領
域に形成された第2導電形のチャネル領域内に第1導電
形のソース領域が形成され該ソース領域および前記ドレ
イン領域間における前記チャネル領域上にゲート絶縁膜
を介してゲート電極が形成された縦形MOSFETと、 前記低濃度領域における第1の領域に前記高濃度基板に
接して形成されるとともに前記チャネル領域に接合する
ように形成され該接合部により前記縦形MOSFETの
ドレイン耐圧規定用のツェナダイオードが形成される第
1導電形の高濃度ツェナ領域と、 前記低濃度領域における第2の領域に形成され前記縦形
MOSFETの周辺回路等を構成する他の半導体素子と を有することを特徴とする半導体装置。
[Claims] A high concentration substrate of a first conductivity type, a low concentration region of a first conductivity type formed on the high concentration substrate by direct bonding with the high concentration substrate, and a first conductivity type low concentration region in the low concentration region. a source region of a first conductivity type is formed in a channel region of a second conductivity type formed in the first region, and the channel region is between the source region and the drain region; a vertical MOSFET on which a gate electrode is formed via a gate insulating film; A high concentration Zener region of a first conductivity type whose junction forms a Zener diode for regulating the drain breakdown voltage of the vertical MOSFET; and a second region of the low concentration region forming a peripheral circuit of the vertical MOSFET. A semiconductor device characterized by having another semiconductor element.
JP62251447A 1987-10-07 1987-10-07 Semiconductor device Pending JPH0194671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251447A JPH0194671A (en) 1987-10-07 1987-10-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251447A JPH0194671A (en) 1987-10-07 1987-10-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0194671A true JPH0194671A (en) 1989-04-13

Family

ID=17222963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251447A Pending JPH0194671A (en) 1987-10-07 1987-10-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0194671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870184A (en) * 2015-01-21 2016-08-17 北大方正集团有限公司 Power device manufacturing method and power device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870184A (en) * 2015-01-21 2016-08-17 北大方正集团有限公司 Power device manufacturing method and power device

Similar Documents

Publication Publication Date Title
US5760440A (en) Back-source MOSFET
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US5023678A (en) High power MOSFET and integrated control circuit therefor for high-side switch application
JPS6359545B2 (en)
EP0292972B1 (en) IC with recombination layer and guard ring separating VDMOS and CMOS or the like
JPH0671079B2 (en) Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof
JP2984478B2 (en) Conductivity modulation type semiconductor device and method of manufacturing the same
JP3319215B2 (en) Insulated gate semiconductor device and method of manufacturing the same
US5910664A (en) Emitter-switched transistor structures
JP2896141B2 (en) High voltage semiconductor device
JPH0324791B2 (en)
JP2001077354A (en) Vertical insulating gate semiconductor device
JPH07312424A (en) Semiconductor device and its manufacture
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
EP0625797B1 (en) Integrated structure current sensing resistor for power MOS devices, particularly for overload self-protected power MOS devices
JPS6159852A (en) Manufacture of semiconductor device
JP2718907B2 (en) PIC structure and manufacturing method thereof
JP3400301B2 (en) High voltage semiconductor device
JPH03155137A (en) Semiconductor device and manufacture thereof
JPH0494576A (en) Vertical power mos fet
JPH0786580A (en) High-voltage semiconductor device
JP3063278B2 (en) Vertical field-effect transistor
JPH0194671A (en) Semiconductor device
JPH0888290A (en) Semiconductor device and using method therefor
JPH08330581A (en) Semiconductor device