JPH0194207A - Measurement of thickness for concrete plate or the like - Google Patents

Measurement of thickness for concrete plate or the like

Info

Publication number
JPH0194207A
JPH0194207A JP25058387A JP25058387A JPH0194207A JP H0194207 A JPH0194207 A JP H0194207A JP 25058387 A JP25058387 A JP 25058387A JP 25058387 A JP25058387 A JP 25058387A JP H0194207 A JPH0194207 A JP H0194207A
Authority
JP
Japan
Prior art keywords
distance
probes
thickness
transition point
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25058387A
Other languages
Japanese (ja)
Other versions
JPH068729B2 (en
Inventor
Takeshi Miyajima
宮島 猛
Yukio Ogura
幸夫 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP25058387A priority Critical patent/JPH068729B2/en
Publication of JPH0194207A publication Critical patent/JPH0194207A/en
Publication of JPH068729B2 publication Critical patent/JPH068729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To facilitate the measurement of the thickness of a concrete slab or the like, by receiving an ultrasonic wave propagated through an object to be inspected varying a distance between probes to find a transition point where a change in propagation time becomes discontinuous. CONSTITUTION:A probe 2 for transmission and a probe 3 for reception are arranged as opposed to each other on the surface 1a of an object 1 to be inspected to measure a propagation time (t) lengthening a distance L between the probes gradually. Here, at first, the time (t) increases continuously almost at a fixed ratio with an increase in the distance L. But when the distance L almost doubles the thickness of an object 1 to be measured, a transition point appears where the increase of the time (t) becomes discontinuous. After the appearance of the transition point, the time (t) increases continuously with an increase in the distance L. Here, it is presumed that the transition point appears because of a difference in the propagation path before and after effect is given from a bottom surface and a delay in the sound velocity with a mode change. Thus, the thickness of a concrete plate can be measured with a distance between the probes as evaluation index at the transition point.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、超音波を利用してコンクリート板等の厚さ寸
法を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the thickness of a concrete plate or the like using ultrasonic waves.

ここでいうコンクリート板等とは、板状の非金属材料で
あって、例えばコンクリート、アスファルトのような粒
度・材質の異なるものを混合固化したもの、タイル、碍
子等の磁器類、煉瓦のように微粉末を焼結固化したもの
、石灰石、大理石等の岩石等をいう。また測定対象とす
る厚さ寸法は約20mn以上である。
Concrete plates, etc. here are plate-shaped non-metallic materials, such as concrete, asphalt, which are mixed and solidified materials of different particle sizes and materials, tiles, porcelain such as insulators, and bricks. Refers to sintered and solidified fine powder, limestone, marble, and other rocks. Further, the thickness dimension to be measured is about 20 mm or more.

[従来の技術] 固体の厚さ寸法の測定は、板内での超音波の共振を利用
する方法や、超音波パルスの板中における往復時間から
求める方法などが従来から多く使用されている。しかし
これらの測定方法は主として鋼材等の金属材料を測定の
対象とするもので、これらの方法をコンクリート等の減
衰度の大きい非金属材料に適用した場合は、使用する周
波数を20 k IIz〜300 k &の低周波数に
せざるを得ないから、送信振動子より発生する超音波は
パルスが鋼材等の減衰度の低い材質を対象とする数M 
Hzの周波数の場合に比べて非常に長くなり、反射して
きた反射波が送信パルスの中に埋没して送信パルスと受
信波との識別ができなくなり厚さ測定をすることができ
ない。また前記従来の方法は垂直探触子を使用する一探
触子法であるが、これを例えばコンクリ−1〜板の同一
平面上に送受の探触子を並設し二探触子法で測定するこ
とも考えられるが、この場合においても使用する探触子
の周波数が前記の如く低いため無指向性となり、一般に
送信用の探触子からコンクリート板内へ入射されたほと
んどの超音波が底面へ達することなく受信用の探触子ヘ
コンクリート板内を放物線的な径路で伝搬するといわれ
ており、そのため底面からの反射波が実質的に得られず
厚さ測定をすることができない。なおこの場合に指向性
利得を上げるために振動子を大きくすることも考えられ
るが、振動子を電気振動させるための寸法にはおのずか
ら限界があり、前記現象を避けることはできない。この
ように従来は、コンクリート板等の厚さを超音波を利用
して測定する方法は無く、スケール等の測定具による方
法に依存しているのが実状であった。
[Prior Art] Conventionally, many methods have been used to measure the thickness of a solid, such as a method that utilizes ultrasonic resonance within a plate, and a method that is determined from the reciprocating time of an ultrasonic pulse within a plate. However, these measurement methods mainly measure metal materials such as steel, and when these methods are applied to non-metallic materials with a high degree of attenuation such as concrete, the frequency used must be between 20 k IIz and 300 k IIz. Since it has to be at a low frequency of k &, the ultrasonic wave generated by the transmitting transducer has a pulse of a number M that targets materials with low attenuation such as steel.
This is much longer than in the case of a frequency of Hz, and the reflected wave is buried in the transmitted pulse, making it impossible to distinguish between the transmitted pulse and the received wave, making it impossible to measure the thickness. Furthermore, the conventional method described above is a one-probe method using a vertical probe, but this can be changed to, for example, a two-probe method in which transmitting and receiving probes are arranged side by side on the same plane of concrete 1 to plate. It is also possible to measure it, but even in this case, the frequency of the probe used is low as mentioned above, so it is non-directional, and generally most of the ultrasonic waves incident from the transmitting probe into the concrete plate are It is said that the waves propagate along a parabolic path within the concrete plate to the receiving probe without reaching the bottom surface, and as a result, the reflected waves from the bottom surface are not substantially obtained, making it impossible to measure the thickness. In this case, it is conceivable to increase the size of the vibrator in order to increase the directivity gain, but there is a natural limit to the dimensions for electrically vibrating the vibrator, and the above phenomenon cannot be avoided. As described above, in the past, there was no method of measuring the thickness of a concrete plate or the like using ultrasonic waves, and the actual situation was that the method relied on measuring tools such as scales.

[発明が解決しようとする問題点コ 本発明は上記の問題点に鑑み、超音波を利用してコンク
リ−1・板等の厚さ寸法を容易にかつ精度よく測定する
ことができる測定方法を提供することを目的とする。
[Problems to be Solved by the Invention] In view of the above problems, the present invention provides a measuring method that can easily and accurately measure the thickness of concrete 1, boards, etc. using ultrasonic waves. The purpose is to provide.

[問題点を解決するための手段] 上記目的を達成するため本発明のコンクリート板等の厚
さ測定方法は、被検体の同一平面上に送信用および受信
用の探触子を当接し、送信用の探触子より被検体に低周
波数の超音波を入射し、被検体を伝搬した前記超音波を
探触子間距離を変化させながら受信用の探触子に受信さ
せ、受信した信号の伝搬時間が前記探触子間距離の変化
量と一定の比で連続的に変化せず不連続になる変移点の
位置の探触子間距離を評価指標としてコンクリート板等
の厚さを測定することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for measuring the thickness of a concrete plate, etc. of the present invention is such that transmitting and receiving probes are brought into contact with the same plane of the object. A low-frequency ultrasonic wave is injected into the subject from a reliable probe, and the ultrasonic wave propagated through the subject is received by a receiving probe while changing the distance between the probes, and the received signal is The thickness of the concrete plate, etc. is measured using the distance between the probes at the position of the transition point where the propagation time does not change continuously but becomes discontinuous at a constant ratio to the amount of change in the distance between the probes as an evaluation index. It is characterized by

[作用] 」二記構成中に示す受信信号の伝搬時間と探触子間距離
との関係は、探触子間距離が板厚より短い場合は、超音
波はコンクリート等の被検体内を放物線のような径路で
両探M’?間を伝搬し、一方、探触子間距離が板厚より
長いような場合は、被検体内に入射された超音波が底面
に達するまでは前記放物線のような径路をたどるが、底
面に達した=3− 後は底面の影響を受は放物線のような径路とは異なる径
路で伝搬して受信される関係を有する。そして超音波が
前記放物線的な径路で伝搬する間は、探触子間距離の増
加に伴い伝搬時間もほぼ一定の比率で連続的に増加する
が、探触子間距離が被検体の厚さの約2倍付近まで増加
すると、前記底面の影響による伝搬径路の違いから伝搬
時間の増加が不連続になる変移点が出現する。この変移
点の出現以降は底面の影響を受けた伝搬径路に応じて探
触子間距離の増加に伴い伝搬時間も連続的に増加する。
[Function] The relationship between the propagation time of the received signal and the distance between the probes shown in the configuration shown in section 2 is that if the distance between the probes is shorter than the plate thickness, the ultrasonic waves will travel in a parabolic shape inside the object such as concrete. Ryokan M' with a route like? On the other hand, if the distance between the probes is longer than the plate thickness, the ultrasonic waves incident into the subject will follow the parabolic path described above until they reach the bottom. = 3- After that, there is a relationship in which the signal is influenced by the bottom surface and is propagated and received on a path different from the parabolic path. While the ultrasound propagates along the parabolic path, the propagation time increases continuously at a nearly constant rate as the distance between the probes increases. When the propagation time increases to approximately twice that of , a transition point appears where the increase in propagation time becomes discontinuous due to the difference in the propagation path due to the effect of the bottom surface. After the appearance of this transition point, the propagation time continuously increases as the distance between the probes increases, depending on the propagation path influenced by the bottom surface.

上記変移点は、被検体の底面の影響を受ける前後の伝搬
径路の違いによる伝搬距離と、モード変換で遅くなった
音速との差が伝搬時間の差となって出現するもので、本
発明はこの変移点の位置における探触子間距離を評価指
標としてコンクリート板等の厚さを測定するものである
The above transition point appears as a difference in propagation time between the propagation distance due to the difference in the propagation path before and after the influence of the bottom surface of the object and the sound speed slowed by mode conversion. The thickness of a concrete plate, etc. is measured using the distance between the probes at the position of this transition point as an evaluation index.

[実施例] 以下本発明の一実施例を図面により説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はコンクリートブロックの厚さ寸法(以下版厚と
いう)dの測定方法を示す図である。図において1はコ
ンクリートブロックの被検体で、縦(版厚dになる)×
横×長さの寸法が200 x 200 x800(単位
lff11)の鉄筋の入っていない□直方体である。ま
た、コンクリートブロックの呼び強度は210kg/c
dで、コンクリートの配合は次表の通りである。なお被
検体1における横波(S)の平均音速は3230.5m
/secである。   表   1 2は送信用の探触子、3は受信用の探触子で、被検体1
の表面Ja上に対向させて配置されており、図示しない
低周波探傷器に接続されている。使用した探触子2,3
は横波垂直探触子(型式0.IZ4ON−8H)で、周
波数100 k Hz 、振動子材質はジルコンチタン
酸鉛セラミック(PZT)、振動子直径D=40mv+
である。
FIG. 1 is a diagram showing a method for measuring the thickness dimension (hereinafter referred to as block thickness) d of a concrete block. In the figure, 1 is a concrete block to be inspected, length (thickness is d) x
It is a □ rectangular parallelepiped with no reinforcing bars and the width x length dimensions are 200 x 200 x 800 (unit: lff11). In addition, the nominal strength of the concrete block is 210 kg/c.
d, the concrete mix is as shown in the table below. The average sound speed of the transverse wave (S) in the object 1 is 3230.5 m.
/sec. Table 1 2 is the transmitting probe, 3 is the receiving probe, and test subject 1
are disposed facing each other on the surface Ja of the surface Ja, and are connected to a low frequency flaw detector (not shown). Probes 2 and 3 used
is a transverse wave vertical probe (model 0.IZ4ON-8H), frequency 100 kHz, transducer material is lead zirconium titanate ceramic (PZT), transducer diameter D = 40mv+
It is.

伝搬時間の測定は、まず探触子2,3を接近させて短い
探触子間距離から始め、次第に探触子間距離りを長くし
、測定ピッチを5ORI+ピツチとしてL=1001m
I〜700mmについて行った。測定結果を第2図に示
す。図の横軸は探触子間距離(探触子の中心間の距離)
L(mm)、縦軸は伝搬時間t(μS)を示す。図中O
印が測定値で、探触子間距離りの増加に伴い伝搬時間t
も増加しているのが判る。
To measure the propagation time, first bring the probes 2 and 3 close together and start with a short distance between the probes, gradually increase the distance between the probes, and set the measurement pitch to 5ORI + pitch, L = 1001 m.
I ~ 700mm. The measurement results are shown in Figure 2. The horizontal axis in the figure is the distance between the probes (distance between the centers of the probes)
L (mm), and the vertical axis indicates propagation time t (μS). O in the diagram
The mark is the measured value, and as the distance between the probes increases, the propagation time t
It can be seen that the number is also increasing.

しかしこの関係は一定の比率で連続せず、特に探触子間
距離りが400(財)と450nwnとの間で不連続に
なる変移点が出現している。
However, this relationship is not continuous at a constant rate, and a transition point appears where the inter-probe distance becomes discontinuous, especially between 400 and 450 nwn.

この変移点の出現の原因は、本実施例の場合探触子間距
離りが400mmまでは探触子間距離りと伝搬時間tと
の両者の関係がほぼ一定の比率で直線的に変化する関係
にあること、L=400〜450mは被検体1の版厚d
の約2倍に当たること、さらにL”450mm以上では
前記両者の関係はL=400mmまでとは異なる非直線
的な関係で連続的に変化することなどから、被検体1へ
入射された超音波が底面1bの影響を受け、L =40
01[111からL =450+ff++までの間で伝
搬径路の違いによる伝搬距離の増加と、モード変換によ
る音速の低下とにより伝搬時間の差を生じ、この差が原
因となって変移点が出現したものと推定される。この推
定を明らかにすべく本願発明者は、第1図に示す如く探
触子間距離りが版厚dより短い場合、例えば図中に一点
鎖線で示す(a)の位置または二点鎖線で示す(b)の
位置に探触子3があるような場合は、従来の超音波の伝
搬径路とされている放物線の径路を両探触子2゜3の中
央を円の中心(例えば(a)の位置の場合は図のA)と
し、探触子の端面までの距離を半径とする円弧(半円)
の径路として横波(S)が伝搬するとし、探触子間距離
りが長くなり前記円弧が底点にある図のCを中心とし探
触子の端面までの距離を半径とする円弧状で伝搬した横
波(S)が、底面1bに当って表面伝搬波(R)にモー
ド変換され、その表面伝搬波(R)が図中点線で示すよ
うに底面1bに沿って伝搬し、その後再び横波(S)に
モード変換されて探触子3に受信されるとして、探触子
間距離りの増加に伴う伝搬時間tを次式により計算した
。すなわち、 ここでQは第1図に示すように表面伝搬波(R)が底面
1bを伝搬する距離、0は同図に示すように表面伝搬波
(R)が横波(S)にモード変換されて探触子3に受信
される場合の垂線とのなす角度、VSは横波(S)の音
速、vRは表面伝搬波(R)の音速である。
The reason for the appearance of this transition point is that in this example, the relationship between the inter-probe distance and the propagation time t changes linearly at an almost constant rate until the inter-probe distance reaches 400 mm. There is a relationship between L = 400 and 450 m, which is the plate thickness d of the object 1.
This is approximately twice as much as the ultrasonic wave incident on the subject 1, and furthermore, the relationship between the two changes continuously in a non-linear relationship different from that up to L = 400 mm when L is 450 mm or more. Influenced by the bottom surface 1b, L = 40
From 01[111 to L = 450+ff++, a difference in propagation time occurs due to an increase in propagation distance due to a difference in propagation path and a decrease in sound speed due to mode conversion, and this difference causes a transition point to appear. It is estimated to be. In order to clarify this estimation, the inventor of the present application proposed that when the distance between the probes is shorter than the plate thickness d as shown in FIG. When the probe 3 is in the position shown in (b), the parabolic path, which is considered to be the propagation path of conventional ultrasonic waves, is set so that the center of both probes 2.3 is the center of a circle (for example, (a) ), use A) in the figure, and use a circular arc (semicircle) whose radius is the distance to the end face of the probe.
Assume that a transverse wave (S) propagates as a path, and as the distance between the probes becomes longer, the wave propagates in an arc shape whose center is C in the figure where the arc is at the bottom point and whose radius is the distance to the end face of the probe. The transverse wave (S) hit the bottom surface 1b and is mode-converted into a surface propagation wave (R), which propagates along the bottom surface 1b as shown by the dotted line in the figure, and then becomes a transverse wave ( Assuming that the mode is converted to S) and received by the probe 3, the propagation time t as the distance between the probes increases was calculated using the following equation. That is, here, Q is the distance that the surface propagating wave (R) propagates on the bottom surface 1b as shown in Figure 1, and 0 is the mode conversion of the surface propagating wave (R) to a transverse wave (S) as shown in the figure. VS is the sound speed of the transverse wave (S), and vR is the sound speed of the surface propagation wave (R).

上記(1)式を用いて計算した値を第2図に実線で示し
、式(2)による計算値を第2図に点線で示す。実線お
よび点線はいずれも測定値と良く一致としだ伝搬距離を
、求めた伝搬時間tで除すと約3230m/seeの音
速値が得られ、先に求めた被検体1の横波(S)の平均
音速と等しくなった。これらの結果から探触子間距離り
の変化に伴う超音波の伝搬径路および伝搬時間tを求め
る」二記式(1)および(2)は正しく、同時に前記変
移点の出現原因の推定も妥当なものであることが判る。
The values calculated using the above equation (1) are shown in solid lines in FIG. 2, and the values calculated using equation (2) are shown in FIG. 2 as dotted lines. Both the solid line and the dotted line are in good agreement with the measured values, and by dividing the propagation distance by the determined propagation time t, a sound velocity value of approximately 3230 m/see is obtained, which is the same as that of the transverse wave (S) of the object 1 determined earlier. equal to the average speed of sound. From these results, find the propagation path and propagation time t of the ultrasonic wave as the distance between the probes changes.'' Equations (1) and (2) are correct, and at the same time, the estimation of the cause of the appearance of the transition point is also valid. It turns out that it is something.

従って上記式(1)および(2)により伝搬時間t、が
不連続になる位置を11算し、または計算値をCRT等
に表示する等により変移点を検出すれば、その位置にお
ける探触子の端面間距離の]/2がコンクリ−1〜の版
厚として求められる。具体的に前記実施例においては、
変移点は探触子間距離りが400■と450mとの間に
あるから、探触子の端面間距離の1/2は]−80nw
n−205mnとなり実際の版厚d =200nmに対
し精度よく測定されていることを示している。
Therefore, by calculating the position where the propagation time t becomes discontinuous using equations (1) and (2) above, or detecting a transition point by displaying the calculated value on a CRT, etc., the probe at that position can be detected. ]/2 of the distance between the end faces is determined as the plate thickness of concrete 1~. Specifically, in the above example,
Since the transition point is between the distance between the probes of 400cm and 450m, 1/2 of the distance between the end faces of the probes is ]-80nw
n-205 mm, which indicates that the measurement is accurate with respect to the actual plate thickness d = 200 nm.

つぎに本発明を実際のコンクリート製品に適用した例に
ついて説明する。被検体となる製品は道路用の縁石で、
寸法は厚さdx幅×長さが150×120X600 (
単位n11)のほぼ直方体である。本被検体の横波の平
均音速VSは2853m/see 、表面伝搬波の平均
音速VRは1041m/seeである。また測定に使用
した探触子および測定条件とも前記第1図におけるもの
と同じである。
Next, an example in which the present invention is applied to an actual concrete product will be described. The product to be tested is a road curb.
Dimensions are thickness dx width x length 150 x 120 x 600 (
It is approximately a rectangular parallelepiped with unit n11). The average sound speed VS of transverse waves of this subject is 2853 m/see, and the average sound speed VR of surface propagation waves is 1041 m/see. Further, the probe used for the measurement and the measurement conditions were the same as those shown in FIG. 1 above.

第3図に測定結果を示す。図中0印は測定値で、横軸、
縦軸および図中の直線9点線は前記第2図と同じものを
示す。図から判るように探触子間距離りの変化に伴う伝
搬時間tの変化のパターンは前記第2図の場合と同様で
、伝搬時間tの変化が不連続となる変移点の位置は、探
触子間距離りが300nwnと350mとの間にあるこ
とを明瞭に示している。このことは探触子の端面間距離
の1/2が130■〜155mになるから実際の縁石の
厚さcl”150mmに対して精度よく測定されたこと
を示している。この測定精度は、前記変移点の前後を細
かいピッチで測定することにより、変移点の位置をより
狭い範囲に特定することができ一層向上させることが可
能である。
Figure 3 shows the measurement results. The 0 mark in the figure is the measured value, and the horizontal axis
The vertical axis and the nine-dot straight line in the figure indicate the same as in FIG. 2 above. As can be seen from the figure, the pattern of change in propagation time t as the distance between the probes changes is the same as in the case of Fig. 2, and the position of the transition point where the change in propagation time t becomes discontinuous is It is clearly shown that the distance between the tentacles is between 300nwn and 350m. This shows that since 1/2 of the distance between the end faces of the probe is 130 mm to 155 m, the measurement was performed with good accuracy for the actual curb thickness cl" 150 mm. This measurement accuracy is By measuring at a fine pitch before and after the transition point, the position of the transition point can be specified in a narrower range, and further improvement can be achieved.

なお、上記実施例はコンクリートを対象に説明したが、
コンクリート以外の前iil!磁器類、岩石等のポーラ
スな板状の非金属材料に対しても前記実施例と同様にし
て測定することができるのは勿論である。
In addition, although the above embodiment was explained with reference to concrete,
Before other than concrete! Of course, it is also possible to measure porous plate-shaped non-metallic materials such as porcelain and rocks in the same manner as in the above embodiment.

[発明の効果] 以上説明した如く本発明は、被検体を伝搬して受信され
た超音波の伝搬時間が、探触子間距離の変化量と連続的
に変化せず不連続になる変移点の位置における探触子間
距離を評価指標としてコンクリート板等の厚さを測定す
るようにしたから、該厚さを容易に精度よく測定するこ
とができる実用上の効果を奏する。
[Effects of the Invention] As explained above, the present invention provides a transition point at which the propagation time of the ultrasonic waves received while propagating through the object does not change continuously with the amount of change in the distance between the probes, but becomes discontinuous. Since the thickness of a concrete plate, etc. is measured using the distance between the probes at the position as an evaluation index, there is a practical effect that the thickness can be easily and precisely measured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の詳細な説明図で、第1図はコン
クリートブロックの版厚の測定方法を示す図、第2図は
第1図により測定した測定結果を示す図、第3図は実際
の゛コンクリート製品に対する測定結果の一例を示す図
である。
The drawings are all detailed explanatory diagrams of the present invention, with Fig. 1 showing the method for measuring the thickness of a concrete block, Fig. 2 showing the measurement results measured in accordance with Fig. 1, and Fig. 3 showing the actual thickness of the concrete block. FIG. 2 is a diagram showing an example of measurement results for a concrete product.

Claims (1)

【特許請求の範囲】[Claims] 1、被検体の同一平面上に送信用および受信用の探触子
を当接し、送信用の探触子より被検体に低周波数の超音
波を入射し、被検体を伝搬した前記超音波を探触子間距
離を変化させながら受信用の探触子に受信させ、受信し
た信号の伝搬時間が前記探触子間距離の変化量と一定の
比で連続的に変化せず不連続になる変移点の位置の探触
子間距離を評価指標としてコンクリート板等の厚さを測
定する方法。
1. Contact the transmitting and receiving probes on the same plane of the subject, inject low-frequency ultrasonic waves into the subject from the transmitting probe, and collect the ultrasonic waves that propagated through the subject. The receiving probe receives the signal while changing the distance between the probes, and the propagation time of the received signal does not change continuously but becomes discontinuous at a constant ratio to the amount of change in the distance between the probes. A method of measuring the thickness of concrete plates, etc. using the distance between the probes at the transition point as an evaluation index.
JP25058387A 1987-10-06 1987-10-06 Thickness measurement method for concrete boards Expired - Lifetime JPH068729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25058387A JPH068729B2 (en) 1987-10-06 1987-10-06 Thickness measurement method for concrete boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25058387A JPH068729B2 (en) 1987-10-06 1987-10-06 Thickness measurement method for concrete boards

Publications (2)

Publication Number Publication Date
JPH0194207A true JPH0194207A (en) 1989-04-12
JPH068729B2 JPH068729B2 (en) 1994-02-02

Family

ID=17210046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25058387A Expired - Lifetime JPH068729B2 (en) 1987-10-06 1987-10-06 Thickness measurement method for concrete boards

Country Status (1)

Country Link
JP (1) JPH068729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100258747B1 (en) * 1997-12-08 2000-08-01 반영호 Apparatus and method for measuring the thickness of solid material and the ultrasonic velocity
JP2003514624A (en) * 1999-11-22 2003-04-22 クロネス・アクチェンゲゼルシャフト Method and apparatus for sterilizing packaging containers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100258747B1 (en) * 1997-12-08 2000-08-01 반영호 Apparatus and method for measuring the thickness of solid material and the ultrasonic velocity
JP2003514624A (en) * 1999-11-22 2003-04-22 クロネス・アクチェンゲゼルシャフト Method and apparatus for sterilizing packaging containers
JP4733892B2 (en) * 1999-11-22 2011-07-27 クロネス・アクチェンゲゼルシャフト Packaging container sterilization method and apparatus

Also Published As

Publication number Publication date
JPH068729B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
Jones et al. Recommendations for testing concrete by the ultrasonic pulse method
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
AU597636B2 (en) Measurement of residual stresses in material
KR100345351B1 (en) A Method of Determining Angle and Length of Inclined Surface Opening Cracks in Concrete
JPS6156450B2 (en)
WO1988001054A1 (en) Measuring metal hardness utilizing ultrasonic wave time-of-flight
JPH0194207A (en) Measurement of thickness for concrete plate or the like
US5549001A (en) Set of ultrasonic probeheads for measurements of times of flight of ultrasonic pulses
JPH1048009A (en) Ultrasound temperature current meter
JP2581916B2 (en) Method of measuring concrete thickness or intrinsic crack depth
Jones The ultrasonic testing of concrete
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
JPS61254849A (en) Stress measuring method
JP3156012B2 (en) Concrete structure thickness measurement method
JPH0854378A (en) Method for evaluating surface crack of concrete
JPH09280848A (en) Surface thickness judging method of multi-ply material and device therefor
JPH01235847A (en) Method of measuring open crack depth of concrete surface
Jones Measurement of the thickness of concrete pavements by dynamic methods: a survey of the difficulties
SU1104408A1 (en) Method of determination of acoustic emission source coordinates
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JP2001004353A (en) Method for measuring diameter of reinforcing bar ultrasonically
SU1728658A1 (en) Method of ultrasound checking of thickness of plane parallel sample
SU1142788A1 (en) Method of measuring time of distribution of ultrasound in material
JPH0312509A (en) Method and device for measuring internal gap in concrete using ultrasonic wave
Swift et al. An Investigation of the Applicability of Acoustic Pulse Velocity Measurements to the Evaluation of the Quality of Concrete in Bridge Decks