JPH0193617A - Radial bearing - Google Patents

Radial bearing

Info

Publication number
JPH0193617A
JPH0193617A JP62245895A JP24589587A JPH0193617A JP H0193617 A JPH0193617 A JP H0193617A JP 62245895 A JP62245895 A JP 62245895A JP 24589587 A JP24589587 A JP 24589587A JP H0193617 A JPH0193617 A JP H0193617A
Authority
JP
Japan
Prior art keywords
bearing
resin
rotary shaft
rotating shaft
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62245895A
Other languages
Japanese (ja)
Inventor
Norihisa Tsutsui
徳久 筒井
Masaki Nakamura
優樹 中村
Hiromasa Marumo
丸茂 浩昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP62245895A priority Critical patent/JPH0193617A/en
Publication of JPH0193617A publication Critical patent/JPH0193617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/041Sliding-contact bearings self-adjusting with edge relief
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/08Shaping by casting by compression-moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To prevent the marring of a rotary shaft and suppress the promotion of wearing of a bearing in general by forming a curvature on end surfaces of a radial bearing for supporting the rotary shaft. CONSTITUTION:A material tablet 1 formed of glass carbon, phenol resin and a small amount of additives of surface active agent and grease is inserted into a lower mold 5, and is hardened with heat under pressure by an upper mold 4 to thereby form a resin bearing 3. A sliding surface 3a of the radial resin bearing 3 is formed at its opposite ends with curved surfaces 6. In this manner, as the curved surfaces 6 are formed at opposite ends of the sliding surface 3a for supporting a rotary shaft, marring of the rotary shaft can be very much suppressed. The end surfaces of the bearing may be made elliptical rather than circular. Further, the resin bearing may be replaced by a ceramic bearing or an oil containing sintered metal bearing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回転軸をラジアル方向に軸受するラジアル軸
受に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radial bearing that supports a rotating shaft in a radial direction.

〔従来の技術〕[Conventional technology]

従来、この種のラジアル軸受では、回転軸を支承する軸
受端面に面取りが施されているが、面取り部が形成され
た結果、この面取り部と軸受面との間にエツジ部ができ
、このエツジ部によって、回転軸にキズが付くことがわ
かった。
Conventionally, in this type of radial bearing, the end face of the bearing that supports the rotating shaft is chamfered, but as a result of forming the chamfer, an edge is created between the chamfer and the bearing surface, and this edge It was found that the rotating shaft could be scratched depending on the part.

回転軸にキズが付くと、上記軸受のエツジ部の摩耗が生
じ、このため発生する摩耗粉によって軸受全体の摩耗が
更に促進される。また、上記回転軸にキズが付くことに
より、回転軸と軸受との摺動抵抗が増加する欠点もある
If the rotating shaft is scratched, the edge portion of the bearing will wear out, and the resulting wear powder will further accelerate the wear of the entire bearing. Furthermore, there is also a drawback that the sliding resistance between the rotating shaft and the bearing increases due to scratches on the rotating shaft.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、回転軸のキズ付きを防止し、軸受全体
の摩耗が促進されることを防ぐようにすることである。
An object of the present invention is to prevent the rotating shaft from being scratched and to prevent accelerated wear of the entire bearing.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、回転軸をラジアル方向に軸受するラジアル軸
受において、上記ラジアル軸受の回転軸を支承する軸受
端面を曲面としたものである。
The present invention provides a radial bearing that supports a rotating shaft in a radial direction, in which the end surface of the radial bearing that supports the rotating shaft is curved.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

本発明の実施例におけるラジアル軸受は、微細粒のアモ
ルファス状カーボンとプラスチックとを含む樹脂軸受で
あるので、最初に、この樹脂軸受について説明する。
Since the radial bearing in the embodiment of the present invention is a resin bearing containing fine particles of amorphous carbon and plastic, this resin bearing will be described first.

まず、アモルファス状態、即ち、無定形状態のカーボン
の一形態であるガラス状カーボンを生成する。このガラ
ス状カーボンは、球状の粒体からなるもので、該球状の
粒体からなるガラス状カーボンは、球状の粒体からなる
樹脂材料を基に生成される。
First, glassy carbon, which is a form of carbon in an amorphous state, is produced. This glassy carbon is made of spherical particles, and the glassy carbon made of spherical particles is produced based on a resin material made of spherical particles.

上記球状の粒体からなる樹脂材料は、エポキシ樹脂、ポ
リイミド樹脂等の熱硬化性樹脂や、ポリアミド樹脂、ポ
リフェニレンサルファイド樹脂、ポリエーテルケトン樹
脂等の熱可塑性樹脂を溶融し、該溶融樹脂を気体や液体
等の流体中に噴出せしめることにより生成される。ここ
で、球状の粒体からなる樹脂材料の、その他の製造方法
としては、無機物粒子からなるコアに、上述の如くして
得られた樹脂をコーティングする方法、樹脂微粉末を溶
剤等により造粒する方法、モノマー混合物の油中水滴型
エマルジッンを作り、重合または縮合後、油分を分離し
て得る方法等があり、該球状の粒体からなる樹脂材料の
コアの材質は、熱的に安定であればどのようなものでも
よい、また上記球状樹脂の形状は、真球に限られるもの
ではないが、真球、楕円体、涙滴形状のものが望ましい
The above-mentioned resin material consisting of spherical particles is produced by melting thermosetting resins such as epoxy resins and polyimide resins, and thermoplastic resins such as polyamide resins, polyphenylene sulfide resins, and polyetherketone resins, and then converting the molten resin into gas or It is generated by ejecting it into a fluid such as a liquid. Other methods for producing resin materials made of spherical particles include coating a core made of inorganic particles with the resin obtained as described above, and granulating fine resin powder with a solvent or the like. The core material of the resin material made of spherical particles is thermally stable. The shape of the spherical resin is not limited to a true sphere, but preferably a true sphere, an ellipsoid, or a teardrop shape.

そして、上述の如くして生成された球状の粒体からなる
樹脂材料を、チッソ、113% Ar等の不活性ガス中
において、500〜2500℃で熱処理し、球状の粒体
からなるガラス状カーボンを得た。ここで該ガラス状カ
ーボンの粒径は、本実施例においては、全て5μ以下で
あった。
Then, the resin material made of spherical particles produced as described above is heat-treated at 500 to 2500°C in an inert gas such as nitrogen or 113% Ar to form a glassy carbon material made of spherical particles. I got it. In this example, the particle size of the glassy carbon was all 5 μm or less.

上記の如くして得られたガラス状カーボンとフェノール
樹脂とを、ガラス状カーボンの含有量を70χとし、界
面活性剤とグリースとを微量添加して材料タブレット1
を構成し、このタブレットlを第1図に示すように成形
型2に入れて成形し、軸受体3を成形した。
The glassy carbon and phenol resin obtained as described above were mixed with a glassy carbon content of 70χ and a small amount of surfactant and grease were added to form a material tablet 1.
This tablet 1 was put into a mold 2 and molded as shown in FIG. 1 to form a bearing body 3.

成形型2は、上型4と下型5とから構成されるものであ
り、加熱加圧用の下型5は、棒状に突出形成され樹脂軸
受の回転軸摺動面を形成するための疑僚回転軸部5aと
この疑偵回転軸部5aを取り囲むように形成された円環
状の凹溝部5bとを有している。上記疑僚回転軸部5a
と円環状の凹溝部5bとの境界部は曲面部Rが形成され
ている。樹脂軸受成形時には、上記凹溝部5b内に材料
タブレット1が供給設置される。−オニ型4には、成形
時に下型5の凹溝部5b内に供給された材料タブレット
1を押圧するための押圧部4aが形成されている。この
押圧部4aは、成形時に上記凹溝部5bを密閉するよう
に、上記凹溝部5bの開口部から凹溝部5bに入り込み
、成形材料を押圧可能に構成されている。
The mold 2 is composed of an upper mold 4 and a lower mold 5, and the lower mold 5 for heating and pressurizing is formed into a protruding rod shape and is used to form a rotating shaft sliding surface of a resin bearing. It has a rotating shaft portion 5a and an annular groove portion 5b formed so as to surround the suspect rotating shaft portion 5a. The above-mentioned suspicious rotating shaft part 5a
A curved surface portion R is formed at the boundary between the groove portion 5b and the annular groove portion 5b. At the time of resin bearing molding, the material tablet 1 is supplied and installed in the recessed groove portion 5b. - A pressing part 4a is formed in the onion mold 4 for pressing the material tablet 1 supplied into the groove part 5b of the lower mold 5 during molding. The pressing portion 4a is configured to enter into the recessed groove portion 5b from the opening of the recessed groove portion 5b and press the molding material so as to seal the recessed groove portion 5b during molding.

押圧部4aの内周側先端部には、外周側が曲面部Rとさ
れた突起4Cが設けられている。
A protrusion 4C having a curved surface R on the outer circumferential side is provided at the inner tip of the pressing portion 4a.

従って、下型5に材料タブレット1を入れ、上型4によ
って、加圧・加熱硬化させて樹脂軸受3を形成すると、
第2図に示すように、ラジアル樹脂軸受3が成形される
と共に成形された樹脂軸受3の摺動面3aの端部は曲面
6が形成される。
Therefore, when the material tablet 1 is put into the lower mold 5 and hardened under pressure and heat by the upper mold 4 to form the resin bearing 3,
As shown in FIG. 2, when the radial resin bearing 3 is molded, a curved surface 6 is formed at the end of the sliding surface 3a of the molded resin bearing 3.

このように、回転軸を支承する摺動面3aの軸受端面を
曲面6とした結果、回転軸へのギズ付きを非常に小さく
抑えることができる。
As a result of forming the bearing end surface of the sliding surface 3a that supports the rotating shaft into the curved surface 6 in this way, it is possible to suppress the jaggedness of the rotating shaft to a very small level.

第3図は、本発明におけるラジアル樹脂軸受の他の実施
例を示すもので、軸受摺動面7を断面円形状としたもの
である。尚、上記軸受摺動面は、円形状でなく、楕円形
状でもよい。
FIG. 3 shows another embodiment of the radial resin bearing according to the present invention, in which the bearing sliding surface 7 has a circular cross section. Note that the bearing sliding surface may not be circular but may be elliptical.

上記実施例の変形例として、ガラス状カーボンを、5μ
以下の微細粒と20μの大径粒との混合にして上記と同
様なる方法により軸受体を成形しても、上記の実施例と
略同様な効果が得られた。この結果からガラス状カーボ
ンに微細粒を含んでいれば、成形時の流動性が向上し支
障な(軸受が成形されると共に成形時の高寸法性が確保
され、その上プラスチックとの接合力も高められ、ガラ
ス状カーボンの脱落が生じず、耐摩耗性、低摩擦性及び
耐熱性に極めて優れるものとなる。そして、ガラス状カ
ーボンの含有量は、85〜90χが最も好ましいことが
わかった。
As a modification of the above embodiment, glassy carbon of 5μ
Even when a bearing body was formed by a method similar to the above using a mixture of the following fine grains and large diameter grains of 20μ, substantially the same effects as in the above example were obtained. This result shows that if glassy carbon contains fine particles, it improves fluidity during molding, ensuring high dimensional stability during molding, and also increases bonding strength with plastic. The glassy carbon does not fall off, resulting in extremely excellent wear resistance, low friction properties, and heat resistance.It has been found that the most preferable content of glassy carbon is 85 to 90χ.

尚、上記実施例では、大径粒の粒径を20μとしている
が、20μに限られるものではな(、ガラス状カーボン
に微細粒を含んでいれば、大径粒の粒径は余り問題では
ない。ガラス状カーボンの形状も球状に限らず破砕状の
ものでもよい。
In the above example, the particle size of the large-diameter particles is 20μ, but it is not limited to 20μ (If the glassy carbon contains fine particles, the particle size of the large-diameter particles is not a big problem No. The shape of the glassy carbon is not limited to spherical, but may be crushed.

上記実施例においては、樹脂軸受について説明したが、
セラミック軸受や焼結メタル含油軸受の軸受摺動面の端
部を曲面としてもよい。
In the above embodiment, a resin bearing was explained, but
The end portion of the bearing sliding surface of a ceramic bearing or a sintered metal oil-impregnated bearing may be a curved surface.

次に、上記樹脂軸受をステッピングモータに適用した例
について、第4図を参照して説明する。
Next, an example in which the resin bearing described above is applied to a stepping motor will be described with reference to FIG. 4.

第4図において、8はモータによって回転される回転軸
であり、該回転軸8は、2つの軸受9.10によって回
転自在に保持されている0図において、回転軸には右側
に負荷がかかる関係上、軸受9にかかる負荷は小さく、
軸受lOにかかる負荷は大きなものとなる。従って、本
実施例では、軸受9には焼結メタル含油軸受を用い、軸
受10には、焼結メタル含油軸受より耐摩耗性に優れて
いる前述の樹脂軸受を使用した。このようにすれば、軸
受の摩耗を最小限に押さえながら、コスト低下を計るこ
とができる。
In Figure 4, 8 is a rotating shaft rotated by a motor, and the rotating shaft 8 is rotatably held by two bearings 9 and 10. In Figure 0, a load is applied to the rotating shaft on the right side. For this reason, the load on bearing 9 is small;
The load applied to the bearing IO becomes large. Therefore, in this embodiment, a sintered metal oil-impregnated bearing was used as the bearing 9, and the aforementioned resin bearing, which has better wear resistance than a sintered metal oil-impregnated bearing, was used as the bearing 10. In this way, it is possible to reduce costs while minimizing bearing wear.

尚、上記の焼結メタル含油軸受と樹脂軸受の組合せでは
、耐摩耗性が不十分であれば、上記軸受9に本発明の樹
脂軸受を用い、軸受10にボールベアリングを用いるよ
うにしてもよい。
Incidentally, if the combination of the sintered metal oil-impregnated bearing and the resin bearing described above does not have sufficient wear resistance, the resin bearing of the present invention may be used as the bearing 9, and a ball bearing may be used as the bearing 10. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、回転軸をラジアル
方向に軸受するラジアル軸受において、上記ラジアル軸
受の回転軸を支承する軸受端面を曲面としたものである
から、回転軸へのキズ付きを防止ぐことができ、軸受全
体の摩耗が促進されることを防ぐことができる。
As explained above, according to the present invention, in a radial bearing that supports a rotating shaft in the radial direction, the bearing end surface that supports the rotating shaft of the radial bearing is curved, so that scratches on the rotating shaft can be prevented. This can prevent the bearing from accelerating wear as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における軸受の製造過程を示す図、第2
図は本発明の軸受の断面図、第3図は他の実施例におけ
る軸受の断面図、第4図はモータへの適用例を示す側断
面図である。 3・・・樹脂軸受  3a・・・摺動面  6・・・曲
面 7・・・軸受摺動面
Figure 1 is a diagram showing the manufacturing process of the bearing in the present invention, Figure 2 is a diagram showing the manufacturing process of the bearing in the present invention.
3 is a sectional view of a bearing according to another embodiment of the present invention, and FIG. 4 is a side sectional view showing an example of application to a motor. 3... Resin bearing 3a... Sliding surface 6... Curved surface 7... Bearing sliding surface

Claims (1)

【特許請求の範囲】[Claims] 回転軸をラジアル方向に軸受するラジアル軸受において
、上記ラジアル軸受の上記回転軸を支承する軸受端面を
曲面としたことを特徴とするラジアル軸受。
A radial bearing that supports a rotating shaft in a radial direction, characterized in that a bearing end surface of the radial bearing that supports the rotating shaft is a curved surface.
JP62245895A 1987-10-01 1987-10-01 Radial bearing Pending JPH0193617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62245895A JPH0193617A (en) 1987-10-01 1987-10-01 Radial bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62245895A JPH0193617A (en) 1987-10-01 1987-10-01 Radial bearing

Publications (1)

Publication Number Publication Date
JPH0193617A true JPH0193617A (en) 1989-04-12

Family

ID=17140413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62245895A Pending JPH0193617A (en) 1987-10-01 1987-10-01 Radial bearing

Country Status (1)

Country Link
JP (1) JPH0193617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341214B2 (en) 2013-07-24 2016-05-17 Nidec Corporation Sleeve, fluid dynamic pressure bearing including the sleeve, spindle motor including the fluid dynamic pressure bearing and electronic equipment including the spindle motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182020A (en) * 1984-09-29 1986-04-25 Hitachi Powdered Metals Co Ltd Finishing of sintered oil-moistened bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182020A (en) * 1984-09-29 1986-04-25 Hitachi Powdered Metals Co Ltd Finishing of sintered oil-moistened bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341214B2 (en) 2013-07-24 2016-05-17 Nidec Corporation Sleeve, fluid dynamic pressure bearing including the sleeve, spindle motor including the fluid dynamic pressure bearing and electronic equipment including the spindle motor

Similar Documents

Publication Publication Date Title
US3342667A (en) Dry fluorocarbon bearing material
US2998397A (en) Bearing element comprising thermoplastic resin and sintered teflon particles
US5236784A (en) Bearing material and plastic bearing
JPH0419256B2 (en)
JP2006214003A (en) Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
JP2019002570A (en) Vibration motor
JPH0193617A (en) Radial bearing
US6737016B2 (en) Process for manufacturing sintered slide bearing
JP2006189081A (en) Fluid bearing device
US10753395B2 (en) Oil-impregnated sintered bearing and method for manufacturing same
RU1828521C (en) Method for manufacturing radial bearings
GB2130306A (en) High temperature self lubricating bearing
JPH04105575A (en) Ultrasonic motor
JP2008232230A (en) Sintered bearing, bearing device and method of manufacturing bearing device
JP2010007141A (en) Sintered oil-retaining bearing, and method for producing the same
JP2004211792A (en) Sliding member for seal and its manufacturing method
JP2003021144A (en) Resin composite sliding member and manufacturing method of the same
JPH1045989A (en) Resin composition
CN110475982B (en) Sintered bearing and method for manufacturing same
JP2002364647A (en) Oil retaining sliding member and sliding bearing
CN109890539B (en) Sintered bearing and method for manufacturing same
JPH05209207A (en) Bearing
US4108939A (en) Porous polymeric bearing
JP5214555B2 (en) Sintered oil-impregnated bearing
KR102484890B1 (en) Manufacturing method for bearing