JPH0193409A - Production of hydroxyapatite - Google Patents

Production of hydroxyapatite

Info

Publication number
JPH0193409A
JPH0193409A JP24911187A JP24911187A JPH0193409A JP H0193409 A JPH0193409 A JP H0193409A JP 24911187 A JP24911187 A JP 24911187A JP 24911187 A JP24911187 A JP 24911187A JP H0193409 A JPH0193409 A JP H0193409A
Authority
JP
Japan
Prior art keywords
hydroxyapatite
reaction
calcium
phosphoric acid
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24911187A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shimoda
下田 良幸
Yasuo Ochi
康雄 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP24911187A priority Critical patent/JPH0193409A/en
Publication of JPH0193409A publication Critical patent/JPH0193409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain hydroxyapatite, useful as artificial bones, etc., in high quality and quality, by subjecting a specific compound and phosphoric acid to condensation reaction in an organic solvent and refluxing the resultant reaction product in the presence of neutral or alkaline water. CONSTITUTION:An organometallic compound, such as Ca(OCH3)2, is reacted with phosphoric acid capable of condensation reaction therewith in an organic solvent, such as alcohols, to provide a condensation reaction product, which is then refluxed in the presence of neutral or alkaline water by heating at about 25 deg.C for about 3hr to afford a reaction product. The obtained product is subsequently filtered, separated, washed, dried and calcined at about 1,200 deg.C for about 1hr to produce the aimed crystalline hydroxyapatite.

Description

【発明の詳細な説明】 本発明はカルシウムからなる有機金属化合物と、リン酸
とを有機溶媒中で反応させ縮合反応物を得、さらにこれ
を含水溶媒下で熟成し結晶性水酸アパタイトを得る製造
方法に関する。
Detailed Description of the Invention The present invention involves reacting an organometallic compound consisting of calcium with phosphoric acid in an organic solvent to obtain a condensation reaction product, which is then aged in a water-containing solvent to obtain crystalline hydroxyapatite. Regarding the manufacturing method.

最近、リン酸カルシウム系物質は生体材料や工業材料の
原材料として有効であることが認識されてきており、今
後特に生体材料系の材料として極めて多くの需要が予想
されている。特に水酸アパタイト(Ca5(PO4)3
(OH) )は天然歯、天然骨の主成分であり優れた生
体親和性を示すことから人工歯、人工骨の生体材料とし
て有用な物質である。
Recently, it has been recognized that calcium phosphate-based substances are effective as raw materials for biomaterials and industrial materials, and it is expected that they will be in great demand in the future, especially as biomaterial-based materials. Especially hydroxyapatite (Ca5(PO4)3
(OH) ) is a main component of natural teeth and bones and exhibits excellent biocompatibility, making it a useful substance as a biomaterial for artificial teeth and bones.

これまでにリン酸カルシウム系物質の製造方法に関して
は生化学や地質鉱物学などの基礎化学分野で知られてい
たが、あくまで学術的な知見を得るための研究の一部に
過ぎず、生産を目的として検討が実施され始めたのはご
く最近になってからである。
Until now, methods for producing calcium phosphate-based substances have been known in basic chemical fields such as biochemistry and geological mineralogy, but this is only a part of research to obtain academic knowledge and is not intended for production purposes. It is only recently that studies have begun to be carried out.

これまでに報告されている従来の製造方法を大別すると
水熱法を含み水溶液中の反応による湿式法と高温下の固
相反応による乾式法に二分される。
The conventional production methods that have been reported so far can be roughly divided into two types: wet methods that involve reactions in aqueous solutions, including hydrothermal methods, and dry methods that involve solid phase reactions at high temperatures.

すなわち以下の概要にまとめられる。In other words, it can be summarized as follows.

(1)水溶性のリン酸塩とカルシウム塩とを水溶液中で
反応させる湿式合成法。
(1) A wet synthesis method in which a water-soluble phosphate and a calcium salt are reacted in an aqueous solution.

(2)オートクレーブ中で無水リン酸カルシウムとリン
酸を水熱反応させる湿式合成法。
(2) Wet synthesis method in which anhydrous calcium phosphate and phosphoric acid are subjected to a hydrothermal reaction in an autoclave.

(3) 900℃以上の高温でリン酸三カルシウムと酸
化カルシウムを水蒸気流下で反応させる乾式合成法。
(3) A dry synthesis method in which tricalcium phosphate and calcium oxide are reacted under a stream of steam at a high temperature of 900°C or higher.

しかしながら上記(2)、 (3)の製造方法はともに
高温や高圧で反応を行うため、装置が高価なものとなり
、さらに消費エネルギーも莫大なものとなる。(1)の
製造方法に於いては、僅かな条件の違いにより生成物の
組成が大きく影響され、さらに化学量論組成の水酸アパ
タイトを得るには20日以上という長い時間を要する。
However, in both of the above manufacturing methods (2) and (3), reactions are carried out at high temperature and high pressure, resulting in expensive equipment and an enormous amount of energy consumption. In the production method (1), the composition of the product is greatly affected by slight differences in conditions, and furthermore, it takes a long time of 20 days or more to obtain hydroxyapatite with a stoichiometric composition.

しかもその間、p■、温度などを厳密に管理しなくては
ならず操作が煩雑になり、その結果品質の再現性がとぼ
しい。
Moreover, during this time, p■, temperature, etc. must be strictly controlled, making the operation complicated, and as a result, the reproducibility of quality is poor.

しかも、カルシウムとリンの比(以下Ca/P比と記述
する。)が化学量論比の1.67以下のカルシウム欠損
型の水酸アパタイトが生成し易く、この様な非化学量論
水酸アパタイトは化学量論組成のものよりも熱的安定性
に欠け、高温での焼結時にリン酸三カルシウム、ピロリ
ン酸カルシウム、酸化カルシウムへ分解が生じ易く水酸
アパタイトの製造方法として適するとは言えない。
Moreover, calcium-deficient hydroxyapatite with a calcium to phosphorus ratio (hereinafter referred to as Ca/P ratio) of 1.67 or less, which is the stoichiometric ratio, is likely to be produced, and such non-stoichiometric hydroxyapatite Apatite is less thermally stable than those with stoichiometric composition, and is easily decomposed into tricalcium phosphate, calcium pyrophosphate, and calcium oxide during sintering at high temperatures, making it unsuitable as a method for producing hydroxyapatite. .

他方、製品の高純度化、高均質化を目標としてアルコキ
シド法により水酸アパタイトを合成する試みがある。す
なわちカルシウム源に硝酸カルシウム、リン源にリン酸
トリメチルを用い、有機溶媒中でアンモニア水を用い加
水分解しゲル化させてこれを焼成することにより水酸ア
パタイトを得る。しかしながらこのアルコキシドの加水
分解法では、ゲル化時間が1〜3ケ月程度必要なため、
実用の製造方法とは言えない。
On the other hand, attempts have been made to synthesize hydroxyapatite by an alkoxide method with the aim of achieving high purity and high homogeneity of the product. That is, using calcium nitrate as a calcium source and trimethyl phosphate as a phosphorus source, hydrolyzed and gelled in an organic solvent using aqueous ammonia and calcined to obtain hydroxyapatite. However, this alkoxide hydrolysis method requires gelation time of about 1 to 3 months;
This cannot be said to be a practical manufacturing method.

従って、高純度であり、高均質な化学量論水酸アパタイ
トの、簡便な製造方法の達成は重要な技術的課題であっ
た。
Therefore, the achievement of a simple method for producing highly pure and highly homogeneous stoichiometric hydroxyapatite has been an important technical challenge.

〔目的〕〔the purpose〕

従って、本発明の目的は高純度、高均質な化学量論組成
の水酸アパタイトを多量に簡便に生産できる新規製造方
法を提供することにある。
Therefore, an object of the present invention is to provide a new manufacturing method that can easily produce large quantities of hydroxyapatite with high purity, high homogeneity, and a stoichiometric composition.

〔概要〕〔overview〕

本発明は、カルシウムと有機基とが酸素を介して結合し
た構造を有する有機金属化合物と、これと綜合反応し得
るリン酸とを有機溶媒中で反応させ、生成した縮合反応
物を水の存在下で還流することにより結晶化させ、生成
した水酸アパタイトを採取することを特徴とする結晶性
水酸アパタイトの製造方法よりなる。
In the present invention, an organometallic compound having a structure in which calcium and an organic group are bonded via oxygen is reacted with phosphoric acid capable of a synthetic reaction in an organic solvent, and the resulting condensation reaction product is collected in the presence of water. A method for producing crystalline hydroxyapatite, which is characterized by crystallizing it by refluxing it under water and collecting the produced hydroxyapatite.

〔製品の性状〕[Product properties]

本発明の結晶性水酸アパタイトは結晶質と一部非晶質と
の混合物であるが、わずかな熱量を加えることにより結
晶質物質として製造される。
The crystalline hydroxyapatite of the present invention is a mixture of crystalline and partially amorphous materials, but it can be produced as a crystalline material by adding a small amount of heat.

これらの結晶質はすべて水酸アパタイトに帰属する。All of these crystals belong to hydroxyapatite.

本発明の水酸アパタイトの構成元素の分布は一様であり
、どの部分を観測しても組成に差はない。この水酸アパ
タイトはサブミクロメータ以下の微粒子から構成されて
いる。
The distribution of constituent elements of the hydroxyapatite of the present invention is uniform, and there is no difference in composition no matter which part is observed. This hydroxyapatite is composed of fine particles of submicrometer size or less.

又、熱的安定性に優れ、1200℃に於いても長時間安
定であり酸化カルシウム、リン酸三カルシウム等に分解
しない。
Furthermore, it has excellent thermal stability, is stable for a long time even at 1200°C, and does not decompose into calcium oxide, tricalcium phosphate, etc.

〔発明の効果〕〔Effect of the invention〕

1)本発明の製造方法は従来の方法に比較し高濃度での
反応が可能であることから、製品に対する溶媒量の割合
を少なくすることができ、又、反応時間を短縮化するこ
とが出来る。
1) Since the production method of the present invention allows reaction at a higher concentration than conventional methods, the ratio of the amount of solvent to the product can be reduced and the reaction time can be shortened. .

2)本発明の複合酸化物は選択的な反応を行って得られ
るため、構成元素が均一に分布し、偏析がない。これに
よりこの発明による水酸アパタイト粉体から作られる焼
結体は機械強度等に向上が計られ、製造上奏止まりの向
上が期待され、著しく有用な効果を発揮する。
2) Since the composite oxide of the present invention is obtained by performing a selective reaction, the constituent elements are uniformly distributed and there is no segregation. As a result, the sintered body made from the hydroxyapatite powder according to the present invention has improved mechanical strength, etc., and is expected to improve the manufacturing process, thereby exhibiting a significantly useful effect.

3)又、本発明の製造方法は特に特殊な操作を必要とせ
ず、簡便な操作である。しかも反応条件は常圧、低温で
実施するため合成装置も複雑なものを使う必要がない。
3) Furthermore, the manufacturing method of the present invention does not require any special operations and is a simple operation. Moreover, since the reaction conditions are normal pressure and low temperature, there is no need to use complicated synthesis equipment.

〔用途〕[Application]

つまり本発明の結晶質水酸アパタイトは、生体材料に特
に好適に用いられる。又、近年湿度センサー等にも使用
が検討されており電子材料への応用にも使用される。
In other words, the crystalline hydroxyapatite of the present invention is particularly suitable for use as a biomaterial. In addition, in recent years, its use in humidity sensors and the like has been considered, and it is also used in electronic materials.

〔製造方法〕〔Production method〕

有機基と酸素を介してカルシウムが結合した構造を有す
る有機金属化合物と、リン酸を、該化合物と反応せず、
溶解又は分散する非水系溶媒又は非水系分散媒中に添加
し、異種化合物の間に選択的に縮合反応させ、アパタイ
ト前駆体とし、この非晶質前駆体に水を反応させるべく
、水と加熱還流することにより生成物を得る結晶質水酸
アパタイトの製造方法である。
An organometallic compound having a structure in which calcium is bonded via an organic group and oxygen, and phosphoric acid without reacting with the compound,
It is added to a non-aqueous solvent or a non-aqueous dispersion medium to be dissolved or dispersed, and a selective condensation reaction occurs between different types of compounds to form an apatite precursor.The amorphous precursor is heated with water in order to react with water. This is a method for producing crystalline hydroxyapatite in which a product is obtained by refluxing.

〔原料〕〔material〕

■)有機金属化合物 上記有機金属化合物は、特に限定されず公知のものが使
用できるが、一般には、一般弐Ca(OR) ! (但
しRはアルキル基)で表示される金属アルコキシド化合
物、あるいはCa(RCOO)nで表示される化合物、
キレートのようにカルシウムを配位する構造をもつ化合
物など、金属と有機基が酸素を介して結合した化合物が
好ましい。特にこれらの化合物を例示するならばCa(
OCHs) t 、 C’a(OCJs) t 、 C
a(OCtl(CHs) t) t 。
■) Organometallic compound The above-mentioned organometallic compound is not particularly limited and any known one can be used, but in general, general 2Ca(OR)! A metal alkoxide compound represented by (where R is an alkyl group) or a compound represented by Ca(RCOO)n,
Compounds in which a metal and an organic group are bonded via oxygen, such as a compound having a structure that coordinates calcium such as a chelate, are preferable. Particularly illustrative of these compounds is Ca(
OCHs) t, C'a(OCJs) t, C
a(OCtl(CHs) t) t.

Ca(CIIaCOO) t 、 Ca(OCHtCH
tO) 、 Ca(CH3COCHtCHa) を等が
掲げられるがこれらの化合物は本発明に於いて使用可能
な原料の一部であってこれらに限定されるものではない
Ca(CIIaCOO) t , Ca(OCHtCH
tO), Ca(CH3COCHtCHa), etc., but these compounds are part of the raw materials that can be used in the present invention and are not limited thereto.

2)リン酸 リン酸は市販の原料がそのまま使用できるが好ましくは
脱水重合してないものがよい。
2) Phosphoric acid Although commercially available raw materials for phosphoric acid can be used as they are, those that have not been dehydrated and polymerized are preferred.

3)水 水のpHは中性あるいはアルカリ側に保持することか必
要である。
3) Water It is necessary to keep the pH of the water on the neutral or alkaline side.

〔溶媒〕〔solvent〕

溶媒は前記金属化合物、及び有機金属化合物を溶解、又
は分散するものであるならば、特に限定されずに使用で
きるが、操作性、入手の容易性の理由で、アルコール類
、グリコール類、芳香族類、アミン類、エステル類など
が可能であるが、これらに限定されるものではない。又
これらの非水系溶媒を数種類混合して用いることも可能
である。
The solvent can be used without particular limitation as long as it dissolves or disperses the metal compounds and organometallic compounds, but alcohols, glycols, aromatic Examples include, but are not limited to, amines, esters, etc. It is also possible to use a mixture of several types of these non-aqueous solvents.

〔反応のフロー〕[Flow of reaction]

本発明に於ける前記有機金属化合物は予め非水系溶媒又
は分散媒に希釈し調整する。
The organometallic compound in the present invention is prepared by diluting it in a non-aqueous solvent or dispersion medium in advance.

他方、該混合溶液と反応リン酸は予め非水系の溶媒又は
分散媒に希釈し調整する。
On the other hand, the mixed solution and the reacted phosphoric acid are diluted and adjusted in advance with a non-aqueous solvent or dispersion medium.

ざらに又、前記原料を溶解した調整液の濃度は、低過ぎ
ると溶媒の使用量が増大し、高過ぎると反応の制御が難
しくなり、取り扱いが不便になるのでこれを勘案して適
宜決定する。
Furthermore, if the concentration of the adjustment solution in which the raw materials are dissolved is too low, the amount of solvent used will increase, and if it is too high, it will be difficult to control the reaction and it will be inconvenient to handle, so it should be determined appropriately by taking this into account. .

一般には原料濃度が50%重以下、好ましくは5〜50
%重の範囲の濃度にして使用することが好ましい。上記
カルシウム溶液にリン酸溶液を注加し、あるいは溶媒又
は分散媒中に各溶液を注加し、第1番目の反応を完結す
る。
Generally, the raw material concentration is 50% by weight or less, preferably 5 to 50% by weight.
It is preferred to use a concentration in the range of %wt. A phosphoric acid solution is added to the calcium solution, or each solution is added to a solvent or a dispersion medium to complete the first reaction.

さらにこの反応器中に水を注加し所定の温度、時間例え
ば25℃、3時間で加熱還流したのち第2番目の反応を
完結する。
Further, water is added into this reactor and heated to reflux at a predetermined temperature, for example, 25° C. for 3 hours, and then the second reaction is completed.

この第1番目の反応の段階でカルシウムにリン酸が求核
置換反応し、かっ、多官能基のため縮合反応か進み、結
果的にカルシウムとリンが酸素を介在して結合するため
均一な原子分布となり偏析はなくなる。
In this first reaction step, phosphoric acid undergoes a nucleophilic substitution reaction with calcium, and due to the polyfunctional group, a condensation reaction progresses, and as a result, calcium and phosphorus are bonded via oxygen, resulting in uniform atoms. distribution and no segregation.

この反応はすこぶる早いため特に触媒の必要はないが、
反応を制御する意味から第1番目の反応速度を制御する
ための触媒を用いることも出来る。
This reaction is very fast and does not require a catalyst.
For the purpose of controlling the reaction, a catalyst for controlling the first reaction rate can also be used.

この様にして得られた第1番目の縮合物は非晶質リン酸
カルシウムであり、反応系は無水であるため、焼成して
も水酸アパタイトとはならずオキシアパタイト(Ca+
o(POa)go)となる。
The first condensate obtained in this way is amorphous calcium phosphate, and since the reaction system is anhydrous, it does not become hydroxyapatite even when fired, but oxyapatite (Ca +
o(POa)go).

そこで第1番目の反応で得られた非晶質リン酸カルシウ
ムの分散触媒中に水を注加し、所定の温度、例えば数1
0−100℃で加熱還流を所定の時間、例えばθ〜数時
間行う。この結果得られた反応生成物を濾液と分離、洗
浄、乾燥し、所定の条件、例えば1200℃、lhrで
焼成すれば結晶性水酸アパタイトの焼成体を得る。
Therefore, water is poured into the dispersed catalyst of amorphous calcium phosphate obtained in the first reaction, and a predetermined temperature, e.g.
Heating and refluxing at 0-100° C. is carried out for a predetermined period of time, for example θ to several hours. The resulting reaction product is separated from the filtrate, washed, dried, and calcined under predetermined conditions, for example, 1200° C. and 1hr, to obtain a calcined body of crystalline hydroxyapatite.

〔反応機構〕[Reaction mechanism]

第1段目の反応機構 カルシウムは陽性の強い元素であり、そのアルコキシド
は塩基として作用することが知られている。このため1
式のようにカルシウムのアルコキシドと、リン酸の酸塩
基反応によりCa−0−P結合が形成され、副生成物と
してアルコールが生成する。
First-stage reaction mechanism Calcium is a strongly positive element, and its alkoxide is known to act as a base. For this reason 1
As shown in the formula, a Ca-0-P bond is formed by an acid-base reaction between calcium alkoxide and phosphoric acid, and alcohol is produced as a by-product.

OHOH RO−Cm−OR十旧)−P−OH−e RO−Ca 
−OR+ : 0−P−OH0■ →RO−Cm −0−P −OH+ ROH(1)(R
はフルキル基等) 上記反応を繰り返し非晶質リン酸カルシウムが生成する
。カルシウムフルコキシド(Ca(OR)z )に対し
てリン酸(H,PO,)をモル比1.67で反応させた
場合、生成する非晶質リン酸カルシウムのCa/Pモル
比が1.67になることから、この反応は、下記の様な
反応式であると推定される。
OHOH RO-Cm-OR10)-P-OH-e RO-Ca
-OR+: 0-P-OH0■ →RO-Cm -0-P -OH+ ROH(1)(R
is a furkyl group, etc.) The above reaction is repeated to produce amorphous calcium phosphate. When calcium flukoxide (Ca(OR)z) is reacted with phosphoric acid (H, PO,) at a molar ratio of 1.67, the Ca/P molar ratio of the amorphous calcium phosphate produced is 1.67. Therefore, this reaction is estimated to have the following reaction formula.

5Ca(OR)t+3HsPOi −Ca5(Po4)
s(OR)+ 9RO■第2段目の反応機構 上記合成法で得られた非晶質リン酸カルシウムはCa/
P比はアパタイトと゛同様の1,67であるため水の存
在下で比較的短時間で結晶性アパタイトが生成するもの
と推定される。
5Ca(OR)t+3HsPOi -Ca5(Po4)
s(OR)+9RO ■Second-stage reaction mechanism The amorphous calcium phosphate obtained by the above synthesis method is Ca/
Since the P ratio is 1,67, which is the same as that of apatite, it is presumed that crystalline apatite is formed in a relatively short time in the presence of water.

nHt。nHt.

Caw (PO−) 3(OR)→Cas (PO4)
 (OH) + ROB〔性状の観察方法〕 (1)X線回折 結晶相の同定 一般に結晶構造の判定はX線回折法で回折することによ
り確認することが出来る。
Caw (PO-) 3 (OR) → Cas (PO4)
(OH) + ROB [Method for observing properties] (1) Identification of X-ray diffraction crystal phase Generally, the crystal structure can be confirmed by diffraction using an X-ray diffraction method.

実験例では、理学電気株式会社製X線回折装置RAD−
I[Bを使用し、Cu管球に40kV、 20mAの負
荷条件でX線を発生させ、回折プロファイルを測定し、
JCPDSの粉末回折標準データを基に結晶構造を同定
した。
In the experimental example, an X-ray diffraction device RAD- manufactured by Rigaku Denki Co., Ltd.
Using I[B, X-rays were generated in a Cu tube under load conditions of 40 kV and 20 mA, and the diffraction profile was measured.
The crystal structure was identified based on JCPDS powder diffraction standard data.

1丑L1 上記X線回折プロファイルより約20ケの回折ビークデ
ータを基に最小二乗法により決定した。
1 丑L1 Determined by the least squares method based on about 20 diffraction peak data from the above X-ray diffraction profile.

(2)組成の分布 構成元素の分布は、微視領域の観察を可能とするEPM
A、 EDX等により数点に亘り観測し、組成均一を結
論するのが現状の評価方法である。
(2) Composition distribution The distribution of constituent elements is determined by EPM, which allows observation in the microscopic region.
A. The current evaluation method is to observe at several points using EDX, etc. and conclude that the composition is uniform.

実験例では、日本電子株式会社製操作型電子顕微鏡(J
Sト20T)、及びLINK社製エネルギー分散型X線
分光器(EDX)Q−200Jを用い、微細構造の観察
、及び微小領域の組成分析を実施した。
In the experimental example, an operating electron microscope (JEOL Ltd.) was used.
Observation of the microstructure and analysis of the composition of the micro region were performed using an energy dispersive X-ray spectrometer (EDX) Q-200J manufactured by LINK.

(3)化学分析 アパタイト中のCa分、P分は、それぞれEDTA逆滴
定法及びモリブデンブルー(アスコルピン酸)吸光光度
法により定量し、Ca/P比を求めた。
(3) Chemical analysis The Ca content and P content in apatite were determined by EDTA back titration and molybdenum blue (ascorbic acid) spectrophotometry, respectively, to determine the Ca/P ratio.

〔実験例〕[Experiment example]

比較実験 本発明の利点は水処理することにより、短時間で熱的に
安定な結晶性の良いアパタイトが得られることにある。
Comparative Experiment The advantage of the present invention is that thermally stable apatite with good crystallinity can be obtained in a short time by water treatment.

そこで、比較実験として、従来行われてきたカルシウム
塩とリン酸塩の水溶液中での中和反応によるアパタイト
の合成を試みた。
Therefore, as a comparative experiment, we attempted to synthesize apatite using the conventional neutralization reaction of calcium salt and phosphate in an aqueous solution.

酢酸カルシウム0.05mof2を200mQの水に溶
解させ、これに0.3Mのリン酸水溶液100mQを加
えて白色の沈澱を得、これを98℃で6時間熟成したの
ち、濾別して150℃で乾燥し、白色粉末を得た。第1
図に生成物の粉末X線回折パターン、第2図に800℃
2時間焼成した試料の粉末X線回折パターンを示す。第
1図、第2図から生成物は結晶性の悪いアパタイトであ
り、800℃の低温でTCPへの分解が確認された。
Calcium acetate 0.05 mof2 was dissolved in 200 mQ of water, and 100 mQ of 0.3 M phosphoric acid aqueous solution was added thereto to obtain a white precipitate, which was aged at 98°C for 6 hours, then filtered and dried at 150°C. , a white powder was obtained. 1st
The powder X-ray diffraction pattern of the product is shown in the figure, and the temperature at 800°C is shown in Figure 2.
The powder X-ray diffraction pattern of a sample fired for 2 hours is shown. From FIGS. 1 and 2, it was confirmed that the product was apatite with poor crystallinity, and decomposed into TCP at a low temperature of 800°C.

実験例1 エチレングリコール100m(!に金属カルシウム0.
05moQを加え100〜110℃で3時間還流したの
ち、室温まで冷却してカルシウムグリコキシドのエチレ
ングリコール溶液を合成した。又、0.6Mのリン酸エ
タノール溶液を調整し、50mρをカルシウムグリコキ
シドエチレングリコール溶液に注加し、のち1時間攪拌
して、非晶質リン酸カルシウムの沈澱を得た。
Experimental Example 1 Ethylene glycol 100m (! and metallic calcium 0.
After adding 05moQ and refluxing at 100 to 110°C for 3 hours, the mixture was cooled to room temperature to synthesize an ethylene glycol solution of calcium glycoxide. Further, a 0.6 M phosphoric acid ethanol solution was prepared, and 50 mρ was added to the calcium glycoxide ethylene glycol solution, followed by stirring for 1 hour to obtain a precipitate of amorphous calcium phosphate.

さらにこの反応系に、イオン交換水10.0 m Qを
加え97℃で3時間還流したのち、濾別し、エタノール
で洗浄し、乾燥して、水酸アパタイトを得た。
Further, 10.0 mQ of ion-exchanged water was added to this reaction system, and the mixture was refluxed at 97°C for 3 hours, and then filtered, washed with ethanol, and dried to obtain hydroxyapatite.

第3図にこのX線回折図を、第4図に1200℃。Figure 3 shows this X-ray diffraction diagram, and Figure 4 shows the temperature at 1200°C.

2時間空気中で焼成した粉末のX線回折図を示す。第4
図よりCuXa線による回折角度は31 、7 。
The X-ray diffraction pattern of the powder calcined in air for 2 hours is shown. Fourth
From the figure, the diffraction angle by CuXa rays is 31 and 7.

32.2.32.8°に主ピークを有し、JCPDSカ
ード9−432に記載の水酸アパタイトの特性回折ピー
クと一致した。
It had a main peak at 32.2.32.8°, which coincided with the characteristic diffraction peak of hydroxyapatite described in JCPDS card 9-432.

この水酸アパタイト粉末を化学分析したところ、理論組
成から求まるCa/P比1.66にほぼ等しい1.67
を得た。又、EDXにより組成分布を観察しても不均一
な分布は認められず、全ての視野に亘り一様にCa/P
比が1.67であった。
Chemical analysis of this hydroxyapatite powder revealed a Ca/P ratio of 1.67, which is approximately equal to 1.66 found from the theoretical composition.
I got it. Furthermore, even when observing the composition distribution using EDX, no uneven distribution was observed, and Ca/P was uniformly distributed over the entire field of view.
The ratio was 1.67.

この水酸アパタイトの高温での結晶相は安定であり、比
較例で得られた粉末体が800℃で熱分解したのに比較
し、数時間1200℃の雰囲気下でも、安定にアパタイ
ト構造を維持していた。
The crystal phase of this hydroxyapatite is stable at high temperatures, and compared to the powder obtained in the comparative example, which was thermally decomposed at 800°C, the apatite structure remains stable even under an atmosphere of 1200°C for several hours. Was.

実施例2 実施例1の操作におけるイオン交換水を塩酸でp++t
に調整した水で置き換え、他の操作は全て実施例!と同
一とし、合成を行った。
Example 2 Ion-exchanged water in the operation of Example 1 was p++t with hydrochloric acid.
Replace with water adjusted to , all other operations are examples! Synthesis was carried out using the same formula.

この結果得られた粉体のX線回折図第5図に、又、第6
図に1200℃で焼成した粉体のX線回折図を示す。
The X-ray diffraction diagram of the powder obtained as a result is shown in Figure 5 and 6.
The figure shows an X-ray diffraction pattern of the powder fired at 1200°C.

この結果により、第2の反応による水のpl+の影響は
大きく 、TCP及びCa*Pt0aへの分解が観測さ
れる。
According to this result, the influence of water pl+ due to the second reaction is large, and decomposition into TCP and Ca*Pt0a is observed.

従って、第2の反応で用いる水のpHは酸側にあっては
アパタイトの合成を阻害する。
Therefore, if the pH of the water used in the second reaction is on the acid side, it inhibits the synthesis of apatite.

実施例3 実施例2の操作におけるI)Hlに調整した水の代わり
に、pH12に調整した水を用い、他の操作は実施例1
.2と全て同一とし合成を行った。
Example 3 I) In the operation of Example 2, water adjusted to pH 12 was used instead of water adjusted to Hl, and the other operations were as in Example 1.
.. Synthesis was carried out using the same conditions as 2.

この結果得られた粉末のX線回折図を第7図に、又、第
8図に1200℃で焼成した粉末のX線回折図を示す。
FIG. 7 shows the X-ray diffraction pattern of the powder obtained as a result, and FIG. 8 shows the X-ray diffraction pattern of the powder fired at 1200°C.

この結果から水のpHがアルカリ側にあるこの実施例に
おいて単相のアパタイトのみが析出した。
From this result, only single-phase apatite was precipitated in this example where the pH of the water was on the alkaline side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較実験により合成された粉末のX線回折図、
第2図は比較実験により合成した粉末を1200℃で熱
処理した後のX線回折図、第3図は実施例1により合成
された粉末のX線回折図、第4図は実施例1の粉末を1
200℃で熱処理した後のX線回折図、第5図は実施例
2により合成された粉末のX線回折図、第6図は実施例
2の粉末を1200℃で熱処理した後のX線回折図、第
7図は実施例3により合成された粉末のX線回折図、第
8図は実施例3の粉末を1200℃で熱処理した後のX
線回折図である。 特許出願人 株式会社アドバンス 第1図 第2図 第4図 1υ   20           tK)60第6
Figure 1 is an X-ray diffraction diagram of the powder synthesized in a comparative experiment.
Figure 2 is an X-ray diffraction diagram of the powder synthesized in a comparative experiment after heat treatment at 1200°C, Figure 3 is an X-ray diffraction diagram of the powder synthesized in Example 1, and Figure 4 is the X-ray diffraction diagram of the powder synthesized in Example 1. 1
X-ray diffraction diagram after heat treatment at 200°C. Figure 5 is an X-ray diffraction diagram of the powder synthesized in Example 2. Figure 6 is an X-ray diffraction diagram after heat treatment of the powder of Example 2 at 1200 °C. Figure 7 is an X-ray diffraction diagram of the powder synthesized in Example 3, and Figure 8 is an X-ray diffraction diagram of the powder of Example 3 after heat treatment at 1200°C.
It is a line diffraction diagram. Patent applicant Advance Co., Ltd. Figure 1 Figure 2 Figure 4 1υ 20 tK) 60 No. 6
figure

Claims (1)

【特許請求の範囲】[Claims] (1)カルシウムと有機基とが酸素を介して結合した構
造を有する有機金属化合物と、これと縮合反応し得るリ
ン酸とを有機溶媒中で反応させ、生成した縮合反応物を
中性あるいはアルカリ性の水の存在下で還流することに
より結晶化させることを特徴とする結晶性水酸アパタイ
トの製造方法。
(1) An organometallic compound having a structure in which calcium and an organic group are bonded via oxygen is reacted with phosphoric acid that can undergo a condensation reaction in an organic solvent, and the resulting condensation reaction product is neutralized or alkaline. A method for producing crystalline hydroxyapatite, which comprises crystallizing it by refluxing in the presence of water.
JP24911187A 1987-10-03 1987-10-03 Production of hydroxyapatite Pending JPH0193409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24911187A JPH0193409A (en) 1987-10-03 1987-10-03 Production of hydroxyapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24911187A JPH0193409A (en) 1987-10-03 1987-10-03 Production of hydroxyapatite

Publications (1)

Publication Number Publication Date
JPH0193409A true JPH0193409A (en) 1989-04-12

Family

ID=17188116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24911187A Pending JPH0193409A (en) 1987-10-03 1987-10-03 Production of hydroxyapatite

Country Status (1)

Country Link
JP (1) JPH0193409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111484A (en) * 2019-01-11 2020-07-27 国立研究開発法人物質・材料研究機構 Acicular hydroxyapatite particle and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295215A (en) * 1985-06-21 1986-12-26 Mitsubishi Petrochem Co Ltd Production of hydroxyapatite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295215A (en) * 1985-06-21 1986-12-26 Mitsubishi Petrochem Co Ltd Production of hydroxyapatite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111484A (en) * 2019-01-11 2020-07-27 国立研究開発法人物質・材料研究機構 Acicular hydroxyapatite particle and method for producing the same

Similar Documents

Publication Publication Date Title
Neira et al. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology
Lee et al. Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation
Massit et al. Synthesis and characterization of nano-sized β-tricalcium phosphate: effects of the aging time
JP2015048266A (en) Magnesium-substituted apatite and method of producing fine particle of the same
US20030235622A1 (en) Method of preparing alpha-and-beta-tricalcium phosphate powders
JPS6287406A (en) Production of beta-tricalcium phosphate
JPS60239313A (en) Crystalline zirconium phosphate and its manufacture
Ben-Nissan et al. 31P NMR studies of diethyl phosphite derived nanocrystalline hydroxyapatite
RU2395450C1 (en) Method of preparing calcium pyrophosphate powder capable of agglomeration
JPS61201612A (en) Production of calcium-phosphorous series apatite
JPH0193409A (en) Production of hydroxyapatite
KR100972537B1 (en) Preparation method of nano sized ?-tricalcium phosphate powders in high purity using electron beam irradiation
Sakamoto et al. Shape-controlled synthesis of hydroxyapatite from α-tricalcium bis (orthophosphate) in organic-aqueous binary systems
Pati et al. Preparation of nanocrystalline calcium aluminate powders
Safronova et al. Ceramics based on calcium hydroxyapatite synthesized from calcium acetate, calcium hydroxide, and potassium hydrophosphate
Salahi et al. Synthesis and thermal behaviour of β tricalcium phosphate precipitated from aqueous solutions
KR960012708B1 (en) Process for the preparation of hydroxy appatite
RU2629079C1 (en) Method for producing calcium pyrophosphate powder
JPH06122510A (en) Method for producing hexacalcium phosphate
JP2581653B2 (en) Method for producing zirconium phosphate
EP1473273A1 (en) Method of preparing alpha-and beta-tricalcium phosphate powders
JP2010280583A (en) Organic calcium phosphate precursor and calcium phosphate powder, ceramic structure and method for producing them
JPS62252307A (en) Wet synthesis of hydroxy apatite
Dorozhkin Green chemical synthesis of calcium phosphate bioceramics
JPH0578109A (en) Production of hydroxyapatite