JPH0192924A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0192924A
JPH0192924A JP25048987A JP25048987A JPH0192924A JP H0192924 A JPH0192924 A JP H0192924A JP 25048987 A JP25048987 A JP 25048987A JP 25048987 A JP25048987 A JP 25048987A JP H0192924 A JPH0192924 A JP H0192924A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording layer
corrosion resistance
fluorine
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25048987A
Other languages
Japanese (ja)
Inventor
Takayoshi Akamatsu
孝義 赤松
Takuya Nakasu
中洲 卓也
Tetsuo Oka
哲雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP25048987A priority Critical patent/JPH0192924A/en
Publication of JPH0192924A publication Critical patent/JPH0192924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of a magnetic recording medium by incorporating fluorine and carbon into a magnetic recording layer essentially consisting of a ferromagnetic material and the oxide thereof on a substrate. CONSTITUTION:The fluorine and carbon are incorporated into the magnetic recording layer of the magnetic recording medium provided with the magnetic recording layer essentially consisting of the ferromagnetic material and the oxide thereof on a substrate. The content of the fluorine contained in the magnetic recording layer is confined to a 0.1-10% range in carbon atoms of the ferromagnetic material atoms. The corrosion resistance of the magnetic recording layer itself is thereby improved and the degradation in the magnetic characteristics and recording density of the magnetic recording layer itself is obviated; in addition, the magnetic recording layer is efficiently formed under high productivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜型の磁気記録媒体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film magnetic recording medium.

(従来の技術〕 磁性体とバインダーから主としてなる磁気記録層を備え
た従来の磁気記録媒体に対して、金属、酸化物または、
金属と酸化物の組み合わせから主としてなり、バインダ
ーを用いない薄膜の磁気記録層を備えた薄膜型の磁気記
録媒体が高密度記録が可能なものとして精力的に検討さ
れている。本発明者らもコバルト、酸化コバルトまたは
鉄および/またはニッケルならびにそれらの酸化物から
主としてなる薄膜型の磁気記録膜を特開昭61−177
566号で提案した。
(Prior Art) In contrast to conventional magnetic recording media that have a magnetic recording layer mainly composed of a magnetic material and a binder, metals, oxides or
Thin-film magnetic recording media, which are mainly made of a combination of metals and oxides and have a thin-film magnetic recording layer that does not use a binder, are being actively studied as being capable of high-density recording. The present inventors also developed a thin magnetic recording film mainly composed of cobalt, cobalt oxide, iron and/or nickel, and their oxides in JP-A-61-177.
It was proposed in issue 566.

薄膜型磁気記録媒体を実用化する上で最も重要な問題の
1つに耐食性を向上させることが挙げられる。
One of the most important issues in putting thin-film magnetic recording media into practical use is improving corrosion resistance.

従来、耐食性を向上させる方法としては、保護層を設け
る方法(例えば特開昭61−17224号)や防錆層を
設ける方法(例えば特開昭61−8232号)が提案さ
れている。また磁気記録層自体の耐食性を向上させる方
法としては、酸素原子温度の膜厚方向の分布を規定した
ものヤクロムなどの金属元素を添加したもの(例えば特
開昭59τ58804号、61−66217号)が提案
されている。
Conventionally, as methods for improving corrosion resistance, a method of providing a protective layer (for example, JP-A-61-17224) and a method of providing a rust-preventing layer (for example, JP-A-61-8232) have been proposed. In addition, methods for improving the corrosion resistance of the magnetic recording layer itself include methods that define the distribution of oxygen atom temperature in the film thickness direction, and methods that add metal elements such as Yakrom (for example, Japanese Patent Application Laid-open Nos. 59-58, 58804 and 61-66217). Proposed.

[発明が解決しようとする問題点] しかしながら、保護層や防錆層を磁気記録層上に設ける
方法は、これらの層上にピンホールがあった場合、これ
が腐食の起点になり全体の耐食性を著しく低下させると
いう問題がある。
[Problems to be Solved by the Invention] However, the method of providing a protective layer or anti-corrosion layer on a magnetic recording layer has the disadvantage that if there are pinholes on these layers, these can become a starting point for corrosion and reduce the overall corrosion resistance. There is a problem of significantly lowering the performance.

また、従来の酸素濃度の高い層を磁気記録層表層に形成
する方法(特開昭59−58804号)の場合、本発明
者らの検討によれば、耐食性を向上させるためには酸素
濃度の高い層を数百Å以上の厚さに形成しなければなら
ないという問題がある上、酸素濃度の高い層は非磁性で
あるため、この層を厚くすると、磁気記録層と磁気ヘッ
ドとの間隔が大きくなり、スペーシングロスによる再生
出力および記録密度が著しく低下するという問題があっ
た。
Furthermore, in the case of the conventional method of forming a layer with a high oxygen concentration on the surface layer of a magnetic recording layer (Japanese Unexamined Patent Publication No. 59-58804), according to the study of the present inventors, in order to improve corrosion resistance, it is necessary to reduce the oxygen concentration. There is a problem in that a layer with a high oxygen concentration must be formed to a thickness of several hundred Å or more, and since the layer with a high oxygen concentration is non-magnetic, making this layer thick will increase the distance between the magnetic recording layer and the magnetic head. There was a problem in that the reproduction output and recording density were significantly reduced due to spacing loss.

ざらに耐食性向上に効果のある金属元素を磁気記録層に
添加することは、薄膜付着速度が速く、生産性の高い真
空蒸着法においては、材料間での蒸気圧の違いにより、
組成制御が難しいなど生産上適応が難しいばかりでなく
、耐食性向上の効果を現出するだけの量を添加すると、
磁気記録層の磁気特性、特に再生出力の低下を伴なう飽
和磁化の低下を引き起こすという問題があることが本発
明者らの検討で判明した。
Adding a metal element to the magnetic recording layer, which is effective in improving corrosion resistance, is useful in the vacuum deposition method, which allows thin films to be deposited quickly and with high productivity, due to the difference in vapor pressure between materials.
Not only is it difficult to adapt to production because it is difficult to control the composition, but if added in an amount sufficient to produce the effect of improving corrosion resistance,
The inventors' studies have revealed that there is a problem in that the magnetic properties of the magnetic recording layer, particularly the saturation magnetization, is reduced with a reduction in the reproduction output.

また耐摩耗性向上の目的で、磁気記録層に炭素を添加す
る提案がある(特開昭61−99923号)が、これは
本発明者らの検討によれば、耐食性の向上には効果がな
いことが明らかとなった。
There is also a proposal to add carbon to the magnetic recording layer for the purpose of improving wear resistance (Japanese Patent Laid-Open No. 61-99923), but according to the studies of the present inventors, this is not effective in improving corrosion resistance. It became clear that there was no.

本発明者らは、上記の問題点のない耐食性向上の方策に
ついて鋭意検討した結果、本発明に到達したものである
The present inventors have arrived at the present invention as a result of intensive study on measures for improving corrosion resistance that do not have the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の構成を有する。 The present invention has the following configuration.

すなわち、本発明は、基体上に、強磁性体とその酸化物
から主としてなる磁気記録層を備えた磁気記録媒体であ
って、該磁気記録層が弗素および炭素を含有してなるこ
とを特徴とする磁気記録媒体である。
That is, the present invention provides a magnetic recording medium comprising a magnetic recording layer mainly made of a ferromagnetic material and its oxide on a substrate, the magnetic recording layer containing fluorine and carbon. It is a magnetic recording medium.

本発明で使用される基体としては1、アルミニウム、銅
、鉄、ステンレスなどで代表される金属、ガラス、セラ
ミックなどの無機材料、プラスチックフィルムなどの各
種有機重合体材料が挙げられる。特にチーブ、フレキシ
ブルディスクなど加工性、形成性、可撓性が重視される
場合には、有機重合体材料が適している。特に二軸延伸
されたフィルム、シー1へ類は、平面性、寸法安定性に
優れ最も適しており、中でもポリエステル、ポワフエニ
レンスルフィド、芳香族ポリアミド、ポリイミドなどが
最も適している。
Examples of the substrate used in the present invention include metals such as aluminum, copper, iron, and stainless steel, inorganic materials such as glass and ceramics, and various organic polymer materials such as plastic films. In particular, organic polymer materials are suitable for cases where workability, formability, and flexibility are important, such as in the case of chives and flexible disks. In particular, biaxially stretched films such as sheet 1 are most suitable due to their excellent flatness and dimensional stability, and among them, polyester, polyphenylene sulfide, aromatic polyamide, polyimide, etc. are most suitable.

本発明で用いられる基体は、磁気記録層などの形成に先
たち、易接着化、平面性改良、着色、帯電防止、耐摩耗
性付与等の目的で各種の表面処理や前処理が施されても
よい。
Prior to the formation of the magnetic recording layer, etc., the substrate used in the present invention is subjected to various surface treatments and pretreatments for the purpose of facilitating adhesion, improving flatness, coloring, preventing static electricity, imparting wear resistance, etc. Good too.

基体の形状は、ドラム状、ディスク状、シート状、テー
プ状、カード状などいずれでも良く、厚みも特に限定さ
れるものではない。シート状、テープ状、カード状等の
場合、加工性、寸法安定性の点で、厚みは2〜500μ
m、中でも4〜20μmの範囲が好ましい。
The shape of the base body may be any shape such as a drum shape, a disk shape, a sheet shape, a tape shape, a card shape, etc., and the thickness is not particularly limited. In the case of sheets, tapes, cards, etc., the thickness should be 2 to 500μ in terms of processability and dimensional stability.
m, preferably in the range of 4 to 20 μm.

本発明において使用される強磁性体は特に限定されない
が、コバル1〜、鉄およびニッケル等の金属の単独また
は2種以上を組合わせて使用するのが好ましい。中でも
コバルトまたはコバルトと鉄および/またはニッケルで
あることが垂直磁化膜を形成できる点で好ましい。
The ferromagnetic material used in the present invention is not particularly limited, but it is preferable to use metals such as Kobal 1 to iron and nickel alone or in combination of two or more. Among these, cobalt or cobalt and iron and/or nickel is preferable because a perpendicularly magnetized film can be formed.

コバルト、鉄およびニッケルの組成比は特に限定される
ものではないが、コバルトと鉄を使用する場合は、重量
比で97〜85:3〜15の範囲となすのが、再生出力
の増大と磁気異方性の低下防止の点で好ましく、95〜
9o:5〜1oの範囲がさらに好ましい。
The composition ratio of cobalt, iron, and nickel is not particularly limited, but when cobalt and iron are used, a weight ratio of 97 to 85:3 to 15 is recommended for increasing reproduction output and magnetic Preferable in terms of preventing a decrease in anisotropy, from 95 to
9o: The range of 5 to 1o is more preferable.

またコバルトとニッケルを使用する場合は、重量比で9
7〜60:3〜4o範囲となすのが再生出力の増大と耐
食性の向上の点で好ましく、95〜70:5〜30の範
囲がざらに好ましい。
Also, when using cobalt and nickel, the weight ratio is 9
A range of 7 to 60:3 to 4o is preferable from the viewpoint of increasing reproduction output and corrosion resistance, and a range of 95 to 70:5 to 30 is more preferable.

ざらにコバルト、鉄およびニッケルを使用する場合には
、重量を百分率で各々P、Q、Rとした時、65≦P≦
98.1≦Q≦15.1≦R≦30、P十〇十R=10
0の範囲となすのが、再生出力とS/Nの増大および磁
気異方性の低下防止の点で好ましく、75≦P≦94.
1≦Q≦10.1≦R≦15の範囲がざらに好ましい。
When cobalt, iron, and nickel are used in the coating, 65≦P≦ when the weight is expressed as P, Q, and R, respectively, as a percentage.
98.1≦Q≦15.1≦R≦30, P100R=10
It is preferable to set the value within the range of 0 from the viewpoint of increasing reproduction output and S/N and preventing a decrease in magnetic anisotropy, and 75≦P≦94.
The range of 1≦Q≦10.1≦R≦15 is generally preferred.

磁気記録層に含まれる酸化物としてはCoo、CO2O
3、CO3O4やFed、Fe2O3、Fe3O4、N
 ioなどが主なものであるが、これらのほか、Coa
x、FeO’y、N ioz (x、y、ZはOから2
の間の数)で表わされる非化学量論的な亜酸化物、過酸
化物も含まれていてもよい。
The oxides contained in the magnetic recording layer include Coo and CO2O.
3. CO3O4, Fed, Fe2O3, Fe3O4, N
io etc. are the main ones, but in addition to these, Coa
x, FeO'y, N ioz (x, y, Z are from O to 2
Non-stoichiometric suboxides and peroxides represented by numbers between 1 and 2) may also be included.

窒化物、水酸化物が該垂直磁化膜の磁気特性を損わない
範囲で含まれていてもよい。
Nitride and hydroxide may be contained within a range that does not impair the magnetic properties of the perpendicularly magnetized film.

磁気記録層には炭素および弗素が同時に含まれているこ
とが重要である。
It is important that the magnetic recording layer contains carbon and fluorine at the same time.

磁気記録層中に含有される弗素の最は特に限定されない
が、弗素の量が少ない場合は耐食性向上の効果が現われ
にくく、一方多すぎる場合は、磁気記録層に積層する潤
滑層や保護層などとの接着性が低下しやすく、媒体の耐
摩耗性を低下させるため好ましくない。
The amount of fluorine contained in the magnetic recording layer is not particularly limited, but if the amount of fluorine is small, the effect of improving corrosion resistance will be difficult to appear, while if it is too large, it will affect the lubricating layer, protective layer, etc. laminated on the magnetic recording layer. This is undesirable because it tends to reduce the adhesion with the medium and lowers the abrasion resistance of the medium.

本発明において、磁気記録層中に含まれる好適な弗素の
伍は、強磁性体原子に対し、原子個数で0.1〜10%
の範囲にあることが好ましく、より好ましくは0.2〜
6%、さらに好ましくは0゜3〜3%の範囲である。
In the present invention, the preferred amount of fluorine contained in the magnetic recording layer is 0.1 to 10% by number of atoms based on the ferromagnetic material atoms.
It is preferably in the range of , more preferably 0.2 to
6%, more preferably in the range of 0.3 to 3%.

また磁気記録層中に含まれる炭素の量は特に限定されな
いが、炭素の量が少ない場合は耐食性向上の効果が現わ
れにくく、一方多すぎる場合は、磁気記録層にクラック
が入りやすくなるため好ましくない。
Further, the amount of carbon contained in the magnetic recording layer is not particularly limited, but if the amount of carbon is small, the effect of improving corrosion resistance will be difficult to appear, while if it is too large, cracks will easily occur in the magnetic recording layer, which is undesirable. .

磁気記録層中に含まれる好適な炭素の口は、強磁性体原
子に対し、原子個数で0.5〜30%の範囲にあること
が好ましく、より好ましくは1〜20%の範囲でおる。
The number of carbon atoms contained in the magnetic recording layer is preferably in the range of 0.5 to 30%, more preferably in the range of 1 to 20%, based on the number of atoms of the ferromagnetic material.

本発明においては、磁気記録層中の弗素と炭素は磁気記
録層の膜厚方向の全体にわたって存在しているが、磁気
記録層の表面または磁気記録層と仙の層との界面で濃度
が高くなるように含有させることが耐食性の向上効果の
点で好ましい。
In the present invention, fluorine and carbon in the magnetic recording layer exist throughout the thickness direction of the magnetic recording layer, but the concentration is high at the surface of the magnetic recording layer or at the interface between the magnetic recording layer and the magnetic layer. From the viewpoint of improving corrosion resistance, it is preferable to contain Ni such that

膜厚方向で弗素および炭素に濃度分布がおる場合は、膜
厚方向の平均で弗素および炭素の濃度をそれぞれ表わさ
れる。すなわち、磁気記録層の表層部分は汚染や酸化に
よる影響があるので、これらの影響のない深さの部分か
ら、磁気記録層の基体側界面までの範囲で、弗素、炭素
および強磁性体の原子個数の比を膜厚方向に所定間隔ご
とに(または連続的)に測定し、これらのデータをそれ
ぞれ膜厚方向に加算して平均の濃度比が算出される。
When there is a concentration distribution of fluorine and carbon in the film thickness direction, the concentrations of fluorine and carbon are respectively expressed as the average in the film thickness direction. In other words, since the surface layer of the magnetic recording layer is affected by contamination and oxidation, atoms of fluorine, carbon, and ferromagnetic substances are The ratio of the numbers is measured at predetermined intervals (or continuously) in the film thickness direction, and the average concentration ratio is calculated by adding these data in the film thickness direction.

また磁気記録層には上記コバルト、鉄、ニッケル以外の
元素や化合物、例えば銅、クロム、アルミニウム、シリ
コン、バナジウム、チタン、亜鉛、マンガンや、タンタ
ルおよびこれらの酸化物、窒化物、水酸化物などが磁気
記録層の磁気特性を損わない範囲で含まれていてもよい
The magnetic recording layer also contains elements and compounds other than the above-mentioned cobalt, iron, and nickel, such as copper, chromium, aluminum, silicon, vanadium, titanium, zinc, manganese, tantalum, and their oxides, nitrides, and hydroxides. may be included within a range that does not impair the magnetic properties of the magnetic recording layer.

磁気記録層中には、このほか、10〜50体積%の空隙
(ボイド)が含まれていることが、磁気特性の点から好
ましい。
In addition, it is preferable from the viewpoint of magnetic properties that the magnetic recording layer contains 10 to 50% by volume of voids.

磁気記録層の膜厚は特に制限されないが、再生出力、平
坦性、可撓性などの点から0.05μmから2μmの範
囲が良く、中でも0.1μmから0.5μmの範囲が最
も好ましい。
The thickness of the magnetic recording layer is not particularly limited, but from the viewpoint of reproduction output, flatness, flexibility, etc., it is preferably in the range of 0.05 μm to 2 μm, and most preferably in the range of 0.1 μm to 0.5 μm.

磁気記録層は基体の片面に設けてもよいし、両面に設け
てもよい。
The magnetic recording layer may be provided on one side or both sides of the substrate.

本発明において以下の説明で垂直磁化膜とは次のように
規定されるものである。
In the present invention, the perpendicular magnetization film in the following description is defined as follows.

JIS  C−2561に示される方法により膜面方向
のじステリシスループを測定する。
The steresis loop in the film surface direction is measured by the method shown in JIS C-2561.

このヒステリシスループに原点から接線を引き、この接
線上の磁化の値が飽和磁化と同じになる点め外部印加磁
界の値を異方性磁界という。異方性磁界が大きい程、垂
直方向に磁化し易いことを表わす。本発明では、異方性
磁界が2キロ工ルステツド以上のものを垂直磁化膜とす
る。
A tangent line is drawn from the origin to this hysteresis loop, and the value of the externally applied magnetic field at which the value of magnetization on this tangent line is the same as the saturation magnetization is called an anisotropic magnetic field. The larger the anisotropic magnetic field, the easier it is to magnetize in the perpendicular direction. In the present invention, a perpendicularly magnetized film has an anisotropic magnetic field of 2 km/hr or more.

次に本発明の磁気記録層の製造方法の1例を添付図面を
参照して説明する。
Next, one example of the method for manufacturing a magnetic recording layer of the present invention will be explained with reference to the accompanying drawings.

図は反応性蒸着方式による製造装置を例示するもので、
長尺フィルム状基体1を支持移動できる基体巻き出し軸
2、円筒上の基体支持ドラム3および基体巻き取り軸4
などの基体走行系を備えた真空槽5を排気口6より1X
10−5トール以下に抽気する。次いで酸素ガスと窒素
ガスと弗化炭素ガスが体積比で10:80:10の混合
ガスを0゜6d/分の流電でバリアプルリークバルブ7
より導入する。
The figure shows an example of manufacturing equipment using the reactive vapor deposition method.
A substrate unwinding shaft 2 capable of supporting and moving a long film-like substrate 1, a cylindrical substrate support drum 3, and a substrate winding shaft 4.
A vacuum chamber 5 equipped with a substrate traveling system such as
Bleed air to below 10-5 torr. Next, a mixed gas of oxygen gas, nitrogen gas, and fluorocarbon gas in a volume ratio of 10:80:10 is passed through the barrier pull leak valve 7 by applying a current of 0°6 d/min.
Introduce more.

次いで蒸発源8よりコバルトを蒸発させ、ドラム2にそ
って移動する基体上にコバルトおよび酸化コバルトから
主としてなる垂直磁化膜を、約5μm/分の速さで約3
,000人の厚さに付着させる。
Next, cobalt is evaporated from the evaporation source 8, and a perpendicularly magnetized film mainly composed of cobalt and cobalt oxide is deposited on the substrate moving along the drum 2 at a speed of about 5 μm/min.
,000 people thick.

9および10は蒸発源から蒸発される金属上記基体への
入射角度を規制するための遮蔽板で、基体への入射開始
点にあける入射蒸気と基体の法線とがなす角度が45°
以下となるように設置される。
9 and 10 are shielding plates for regulating the angle of incidence of the metal evaporated from the evaporation source onto the substrate, and the angle between the incident vapor at the starting point of incidence on the substrate and the normal to the substrate is 45°.
It will be set up as follows.

11および12は遮蔽板9および10の各上面の中間側
所定位置と基体支持ドラム3との間に設けられた隔壁で
、基体支持ドラム3、両隔壁11.12および遮蔽板9
.10によって囲まれる空間に、所定の混合ガスを導入
することによって部分酸化され、弗素と酸素とを含む薄
膜を得ることができる。
Reference numerals 11 and 12 denote partition walls provided between predetermined middle positions on the upper surfaces of the shielding plates 9 and 10 and the substrate support drum 3;
.. By introducing a predetermined mixed gas into the space surrounded by 10, a thin film that is partially oxidized and contains fluorine and oxygen can be obtained.

本発明の磁気記録層はその伯、弗化水素をイオン化し、
薄膜形成中に薄膜に照射するイΔンアシスト蒸着によっ
ても得ることができる。
The magnetic recording layer of the present invention ionizes hydrogen fluoride,
It can also be obtained by Δ-in assisted vapor deposition in which the thin film is irradiated during thin film formation.

基体と磁気記録層の間には磁気記録層の磁気特性向上、
耐食性向上、接着力向上などの目的で下地層を一層ある
いは複数層積層させることができる。特に下地層として
軟磁性層を設けることは、記録・再生感度を上げるため
に大ぎな効果がおり、好ましい。
Between the substrate and the magnetic recording layer, there is a layer that improves the magnetic properties of the magnetic recording layer.
For the purpose of improving corrosion resistance, adhesion, etc., one or more base layers can be laminated. In particular, it is preferable to provide a soft magnetic layer as an underlayer because it has a great effect on increasing the recording/reproducing sensitivity.

磁気記録層上に耐摩耗性向上、耐食性向上などの目的で
、さらに潤滑層、保護層、防錆層などを積層することは
適宜許される。特に炭素膜を磁気記録層上に設けること
は、耐摩耗性向上、耐食性向上効果が大きくため好まし
い。
It is permissible to further layer a lubricating layer, a protective layer, a rust prevention layer, etc. on the magnetic recording layer for the purpose of improving wear resistance, corrosion resistance, etc. In particular, it is preferable to provide a carbon film on the magnetic recording layer because it has a large effect of improving wear resistance and corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明は、強磁性体およびその酸化物から主としてなる
磁気記録層自体に弗素と炭素を同時に含有せしめたため
、磁気記録層自体の耐食性を著しく向上させることがで
きたものでおる。また本発明によれば磁気記録層自体の
磁気特性や記録密度などの性能低下がないうえ、磁気記
録層の形成を効率よく高生産性下に行なうことができる
利点がある。
In the present invention, the corrosion resistance of the magnetic recording layer itself can be significantly improved because the magnetic recording layer itself, which is mainly composed of a ferromagnetic material and its oxide, simultaneously contains fluorine and carbon. Further, according to the present invention, there is no deterioration in performance such as the magnetic properties and recording density of the magnetic recording layer itself, and there is an advantage that the magnetic recording layer can be formed efficiently and with high productivity.

この作用の詳細は不明でおるが、弗素を含有しているこ
とによる撥水性の光用が耐食・11向上に効果があるこ
とが考えられる。また炭素は弗化炭素の形で弗素を安定
に存在させる働きがあることが推測される。
Although the details of this effect are unknown, it is thought that the water-repellent light coating that contains fluorine is effective in improving corrosion resistance. It is also assumed that carbon has the function of stably existing fluorine in the form of carbon fluoride.

本発明で得られる磁気記録媒体はテープ、シー1〜、カ
ード、ディスク、ドラムなどの形状にて、オーディオ、
ビデオ、デジタル信号などの磁気記録用途に広く用いる
ことができる。
The magnetic recording medium obtained by the present invention can be used in the form of a tape, a sheet, a card, a disk, a drum, etc. for audio,
It can be widely used for magnetic recording applications such as video and digital signals.

(特性の測定方法・評価基準) ■ 垂直磁化膜の磁気異方性の測定 JIS  C−2561に示される方法により膜面方向
のヒステリシスループを測定する。ヒステリシスループ
の飽和点の磁化の値を飽和磁化という。このヒステリシ
スループに原点から接線を引き、この接線上の磁化の値
が飽和磁化と同じになる点の外部磁界の値を異方性磁界
(Hk)という。
(Characteristics Measuring Method/Evaluation Criteria) (1) Measurement of magnetic anisotropy of perpendicularly magnetized film The hysteresis loop in the film surface direction is measured by the method shown in JIS C-2561. The value of magnetization at the saturation point of the hysteresis loop is called saturation magnetization. A tangent line is drawn from the origin to this hysteresis loop, and the value of the external magnetic field at the point on this tangent line where the value of magnetization becomes the same as the saturation magnetization is called an anisotropic magnetic field (Hk).

本発明ではHkが2キロ工ルステツド以上のものを垂直
磁化膜とする。
In the present invention, a perpendicularly magnetized film having an Hk of 2 kilometrested or more is used.

測定には、試料振動式磁力計(理研電子(株)製、B 
HV −30>を使用した。
For measurement, a sample vibrating magnetometer (manufactured by Riken Denshi Co., Ltd., B
HV-30> was used.

■ 耐食性試験 試料を60℃、90%RHの雰囲気中に置き、時間の経
過による試料表面の状態の変化を微分干渉顕微鏡によっ
て観察し、耐食性の度合を相対比較したものである。
(2) Corrosion Resistance Test Samples were placed in an atmosphere of 60°C and 90% RH, and changes in the state of the sample surface over time were observed using a differential interference microscope, and the degree of corrosion resistance was compared relative to each other.

■ 磁気記録層中の弗素と炭素の濃度の測定X線光電子
分光分析機(VGサイアンティフィック社製ESCAL
AB5)を使用した。汚染おJ:び酸化の影響を除去す
るため、磁気記録層の表面より400Å以上の深さにお
いて、全ての強磁性体からのX線光電子と炭素におよび
弗素からのX線光電子を測定し、それらの強度からそれ
ぞれの相対的な原子個数を算出した。弗素および炭素の
濃度を全ての強磁性体の原子個数に対する原子個数の割
合で表わすことにする。
■ Measuring the concentration of fluorine and carbon in the magnetic recording layer X-ray photoelectron spectrometer (ESCAL manufactured by VG Scientific)
AB5) was used. In order to eliminate the effects of contamination and oxidation, X-ray photoelectrons from all ferromagnetic materials and X-ray photoelectrons from carbon and fluorine were measured at a depth of 400 Å or more from the surface of the magnetic recording layer. The relative number of atoms of each was calculated from their intensities. The concentrations of fluorine and carbon are expressed as the ratio of the number of atoms to the number of atoms of all ferromagnetic materials.

膜厚方向で弗素および炭素の濃度に分布がおる場合は、
膜厚方向の平均で弗素および炭素の濃度をそれぞれ表わ
す。すなわら、磁気記録層の表面より400人の深さか
ら磁気記録層の基体側界面までの範囲で、弗素、炭素お
よび強磁性体の原子個数の比を膜厚方向に所定間隔ごと
にに測定し、これらのデータをそれぞれ膜厚方向に加算
した1変、それぞれ加算したデータ数で除してそれぞれ
の平均の濃度を算出する。
If the concentration of fluorine and carbon is distributed in the film thickness direction,
The concentrations of fluorine and carbon are expressed as averages in the film thickness direction. In other words, the ratio of the number of atoms of fluorine, carbon, and ferromagnetic material is determined at predetermined intervals in the film thickness direction in a range from a depth of 400 mm below the surface of the magnetic recording layer to the substrate-side interface of the magnetic recording layer. The average concentration is calculated by dividing these data by the number of data added in each film thickness direction.

(実施例) 実施例1 図の装置を用い、蒸発源8にコバル1〜、ニッケル、鉄
が、IB比で85:10:5のインボッ1〜を充填した
。蒸発源には電子ビーム加熱器を使用し、基体は、二軸
延伸した厚さ50μmのポリエチレンテレフタシー1〜
フイルムとした。真空槽内を5X10’トール以下に排
気した後、バルブ7より酸素と窒素と02F6を体積比
で10:80:10の混合ガスを0.60./分の速さ
で導入した。
(Example) Example 1 Using the apparatus shown in the figure, the evaporation source 8 was filled with Kobal 1~, nickel, and iron in an IB ratio of 85:10:5. An electron beam heater was used as the evaporation source, and the substrate was made of biaxially stretched polyethylene terephthalate with a thickness of 50 μm.
It was made into a film. After evacuating the inside of the vacuum chamber to below 5X10' Torr, a mixed gas of oxygen, nitrogen, and 02F6 in a volume ratio of 10:80:10 is introduced from valve 7 at a volume ratio of 0.60. /min.

次いで蒸発源8より]パル1へ、ニッケル、鉄を蒸発さ
せ、ドラム3にそって移動する基体上にコバルト、ニッ
ケル、鉄およびこれらの酸化物から主として成る垂直磁
化膜を、約5μm/分の速さで約3000人の厚さに付
着させた。   □得られた垂直磁化膜の異方性磁界ト
1は3.2キロエルステッドであった。また400大エ
ツチング後における弗素原子は強磁性体原子(コバルト
、ニッケルおよび鉄)の1.5%、炭素原子は強磁性体
原子の8%であった。
Next, nickel and iron are evaporated from evaporation source 8 to Pal 1, and a perpendicularly magnetized film mainly consisting of cobalt, nickel, iron, and their oxides is deposited on the substrate moving along drum 3 at a rate of about 5 μm/min. It was deposited to a thickness of about 3,000 people at a speed. □The anisotropic magnetic field To1 of the obtained perpendicularly magnetized film was 3.2 kilooersteds. Further, after 400 etchings, fluorine atoms accounted for 1.5% of the ferromagnetic atoms (cobalt, nickel, and iron), and carbon atoms accounted for 8% of the ferromagnetic atoms.

次に1qられた試料を20X20mmに切り出し、60
’C90%RHの雰囲気中に入れ、耐食性試験を行なっ
た。1週間放首後、観察したところ、試料には全体で直
径2〜30μmの大きざの腐食点が7比的められたが、
(多連の各比較例に比べて耐食性は著しく良好であった
Next, cut out the 1q sample to 20 x 20 mm, and
A corrosion resistance test was conducted in a C90%RH atmosphere. When the specimen was observed after being exposed for one week, seven corroded points with a diameter of 2 to 30 μm were observed on the whole specimen.
(The corrosion resistance was significantly better than the multiple comparative examples.

実施例2 蒸発源にコバルトのインゴットを充填した以外は実施例
1と同様にして垂直磁化膜を形成した。
Example 2 A perpendicularly magnetized film was formed in the same manner as in Example 1 except that the evaporation source was filled with cobalt ingots.

)Hられた垂直磁化膜の11には3.9キロエルステツ
ドであった。また400人エツチング後にあける弗素原
子は強磁性体原子の1.8%、炭素原子は強磁性体原子
の13%でおった。
) The perpendicularly magnetized film No. 11 was 3.9 kOersted. Furthermore, after etching for 400 people, the number of fluorine atoms opened was 1.8% of the ferromagnetic atoms, and the number of carbon atoms was 13% of the ferromagnetic atoms.

次に得られた試料を20X20mmに切り出し、60 
’C90%RHの雰囲気中に入れ、耐食性試験を行なっ
た。1週間放置後、観察したところ、試料には全体で直
径2〜30μmの大きざの腐食点が11個比的られたが
、各比較例に比べて耐食性は著しく良好でめった。
Next, cut out the obtained sample to 20 x 20 mm, and
A corrosion resistance test was conducted in a C90%RH atmosphere. After being left for one week, observation revealed that the sample had a total of 11 corrosion points with a diameter of 2 to 30 μm, and the corrosion resistance was significantly better than that of each comparative example.

比較例1 導入する混合ガスを酸素と窒素が体積比で]O:90と
した以外、実施例1と同様にして垂直磁化膜を形成した
Comparative Example 1 A perpendicularly magnetized film was formed in the same manner as in Example 1, except that the mixed gas introduced was oxygen and nitrogen at a volume ratio of]O:90.

得られた垂直磁化膜のHkは3.2キロエルステツドで
あった。400人エツチング1変において弗素原子は測
定されず、炭素原子は強磁性体原子の5%存在していた
The Hk of the obtained perpendicularly magnetized film was 3.2 kOersted. No fluorine atoms were measured in 400 person etching changes, and carbon atoms were present at 5% of the ferromagnetic atoms.

次に得られた試おlについて実施例1と同様にして耐食
性試験を行なったところ、全体で直径4μm〜1.5m
mの大きさの腐食点が20([発生しており、本発明に
比べて耐食性が著しく不良であった。
Next, a corrosion resistance test was conducted on the obtained sample in the same manner as in Example 1, and the overall diameter was 4 μm to 1.5 m.
Corrosion points with a size of 20 m occurred, and the corrosion resistance was significantly poorer than that of the present invention.

比較例2 導入する混合ガスを酸素と窒素が体積比で10:90と
した以外、実施例2と同様にして垂直磁化膜を形成した
Comparative Example 2 A perpendicularly magnetized film was formed in the same manner as in Example 2, except that the mixed gas introduced was oxygen:nitrogen at a volume ratio of 10:90.

得られた垂直磁化膜のト1には4.2キロエルステツド
であった。400人エツチング)変において弗素原子は
測定されず、炭素原子は強磁性体原子の4%存在してい
た。
The perpendicularly magnetized film thus obtained had a T1 of 4.2 kOersted. No fluorine atoms were measured in the 400-person etching experiment, and carbon atoms were present at 4% of the ferromagnetic atoms.

実施例2と同様にして耐食性試験を行なったところ、試
料には全体で直径4μm〜1mmの大ぎざの腐食点が2
40個発生しており、本発明に比べて耐食性が著しく不
良であった。
A corrosion resistance test was conducted in the same manner as in Example 2, and the sample had two large serrated corrosion points with a diameter of 4 μm to 1 mm.
40 pieces were generated, and the corrosion resistance was significantly poorer than that of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の磁気記録媒体の製造するための装置の1例
を示す概略断面図である。 1:基体、5:真空槽、8:蒸発源。
The figure is a schematic cross-sectional view showing one example of an apparatus for manufacturing the magnetic recording medium of the present invention. 1: Substrate, 5: Vacuum chamber, 8: Evaporation source.

Claims (1)

【特許請求の範囲】[Claims] (1)基体上に、強磁性体とその酸化物から主としてな
る磁気記録層を備えた磁気記録媒体であって、該磁気記
録層が弗素および炭素を含有してなることを特徴とする
磁気記録媒体。
(1) A magnetic recording medium comprising a magnetic recording layer mainly made of a ferromagnetic material and its oxide on a substrate, characterized in that the magnetic recording layer contains fluorine and carbon. Medium.
JP25048987A 1987-10-02 1987-10-02 Magnetic recording medium Pending JPH0192924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25048987A JPH0192924A (en) 1987-10-02 1987-10-02 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25048987A JPH0192924A (en) 1987-10-02 1987-10-02 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0192924A true JPH0192924A (en) 1989-04-12

Family

ID=17208626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25048987A Pending JPH0192924A (en) 1987-10-02 1987-10-02 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0192924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141922A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Magnetic recording medium
WO2006022437A1 (en) * 2004-08-26 2006-03-02 Showa Denko K.K. Substrate for perpendicular magnetic recording medium, method of manufacturing the same, and perpendicular magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141922A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Magnetic recording medium
WO2006022437A1 (en) * 2004-08-26 2006-03-02 Showa Denko K.K. Substrate for perpendicular magnetic recording medium, method of manufacturing the same, and perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
EP0156625B1 (en) Vertical magnetic recording medium and process for preparation thereof
US5589263A (en) Magnetic recording medium having a ferromagnetic metal thin film, a dry etched layer, a carbonaceous film, and a lubricant film
US4643915A (en) Process for producing magnetic recording medium
JPH0192924A (en) Magnetic recording medium
JPH1049853A (en) Magnetic recording medium and its manufacture
CA2081095A1 (en) Magnetic recording medium and method for examining magnetic recording medium
JP3208972B2 (en) Magnetic recording media
KR100244059B1 (en) Magnetic recording medium and method for producing the same
JP3093818B2 (en) Magnetic recording media
JPS61139920A (en) Magnetic recording medium
JPS63266627A (en) Perpendicular magnetic recording medium
JPH01224914A (en) Perpendicular magnetic recording medium
JPS6313117A (en) Magnetic recording medium
JP3317054B2 (en) Manufacturing method of magnetic recording medium
JP3787086B2 (en) Method for manufacturing magnetic recording medium
JPS6348609A (en) Perpendicular magnetic recording medium and its production
JPS63108534A (en) Production of perpendicular magnetic recording medium
JPS62214522A (en) Production of magnetic recording medium
JPS61229228A (en) Magnetic recording medium
JPS62279516A (en) Vertical magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPS639020A (en) Production of magnetic recording medium
JPS6280823A (en) Vertical magnetic recording medium
JPS63102021A (en) Magnetic recording medium
JPS62109218A (en) Vertical magnetic recording medium and its manufacture