JPH019231Y2 - - Google Patents

Info

Publication number
JPH019231Y2
JPH019231Y2 JP13406583U JP13406583U JPH019231Y2 JP H019231 Y2 JPH019231 Y2 JP H019231Y2 JP 13406583 U JP13406583 U JP 13406583U JP 13406583 U JP13406583 U JP 13406583U JP H019231 Y2 JPH019231 Y2 JP H019231Y2
Authority
JP
Japan
Prior art keywords
insulating spacer
conductor
creepage
electric field
metal ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13406583U
Other languages
Japanese (ja)
Other versions
JPS6042023U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13406583U priority Critical patent/JPS6042023U/en
Publication of JPS6042023U publication Critical patent/JPS6042023U/en
Application granted granted Critical
Publication of JPH019231Y2 publication Critical patent/JPH019231Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【考案の詳細な説明】 〔技術分野〕 本考案は2媒質のインターフエイスとして不平
等電界中に置かれる絶縁スペーサの改良に係わ
る。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an improvement in an insulating spacer placed in an unequal electric field as an interface between two media.

〔在来技術とその問題点〕[Conventional technology and its problems]

第1図に従来より使用されている絶縁スペーサ
の一例を内部導体の長さ方向の断面で示す。
FIG. 1 shows an example of a conventionally used insulating spacer in a cross section along the length of an internal conductor.

図において1は内部導体(高電圧部)であり、
2は内部導体1を支持する絶縁板(スペーサ)で
あり、3は外部導体である。
In the figure, 1 is the internal conductor (high voltage part),
2 is an insulating plate (spacer) that supports the inner conductor 1, and 3 is an outer conductor.

この場合、内部導体間に課電すれば、絶縁スペ
ーサ沿面には内部導体に近い程大きな電界強度を
生ずる。
In this case, if an electric current is applied between the internal conductors, a larger electric field strength will be generated along the surface of the insulating spacer as it is closer to the internal conductor.

また第2図に従来より使用されている他の絶縁
スペーサの例を内部導体横断面で示す。
Further, FIG. 2 shows an example of another conventionally used insulating spacer as a cross section of an internal conductor.

図において4は内部導体(高電圧部)であり、
6は絶縁物、5は金属リング、7は外部導体であ
る。絶縁物6および金属リング5を多層に重ねて
絶縁スペーサが形成される。
In the figure, 4 is the internal conductor (high voltage part),
6 is an insulator, 5 is a metal ring, and 7 is an external conductor. An insulating spacer is formed by stacking the insulator 6 and the metal ring 5 in multiple layers.

この場合、金属リング5を入れ、沿面を多層に
分割しても、図に示すように、平等電界配位用で
あつて、層間距離は一定である。
In this case, even if the metal ring 5 is inserted and the creeping surface is divided into multiple layers, as shown in the figure, it is for equal electric field coordination and the distance between the layers is constant.

ところで、一般に沿面破壊電界強度EBは沿面
長lに依存し、lの増大とともに、EBは低下す
る傾向にある。例えば、真空中の短パルス沿面破
壊電界強度EBは、およそEB∝1/√lの関係がある といわれている。従つて第1図のように一枚の絶
縁板2では沿面長が長く、耐電圧が低くなる。
Incidentally, the creepage breakdown electric field strength E B generally depends on the creepage length l, and as l increases, E B tends to decrease. For example, it is said that the short pulse creepage breakdown electric field strength E B in vacuum has a relationship of approximately E B ∝1/√l. Therefore, as shown in FIG. 1, a single insulating plate 2 has a long creepage length and a low withstand voltage.

これに対し、第2図に示すように、金属リング
5を入れて全沿面を多層の小沿面に分割すると第
1図に示すものより耐圧は上るが、層間距離が一
定では、不平等電界配位で使用した場合、層ごと
の安全率SF(破壊電界強度/実際の電界強度)が
異なり、最適設計とはなつていない。
On the other hand, as shown in Fig. 2, if a metal ring 5 is inserted to divide the entire creeping surface into multiple small creeping layers, the withstand voltage will be higher than that shown in Fig. 1, but if the distance between the layers is constant, the uneven electric field will When used at high temperatures, the safety factor SF (breakdown electric field strength/actual electric field strength) differs for each layer, and the design is not optimal.

〔考案の開示〕[Disclosure of invention]

特に絶縁スペーサを高誘電率媒質(例えば水)
と低誘電率(例えば真空)のインターフエイスと
して使用する場合、絶縁スペーサにおける電位分
布は高誘電率側の構造で定まるので、本考案は高
誘電率側の電位を等分する位置と低誘電率側の沿
面距離を等分する位置とを結ぶようなテーパーを
持つた金属リングを絶縁スペーサに多層に入れる
ことにより、与えられた全沿面長に対して耐圧の
高い絶縁スペーサを得ようとするものである。
Especially insulating spacers in high dielectric constant media (e.g. water)
When used as an interface between an insulating spacer and a low dielectric constant (e.g. vacuum), the potential distribution in the insulating spacer is determined by the structure on the high dielectric constant side. An insulating spacer with high withstand voltage for a given total creepage length is obtained by inserting multiple layers of metal rings with tapers that connect positions that equally divide the side creepage distance into the insulating spacer. It is.

〔実施例〕〔Example〕

第3図は本考案の一実施例である。 FIG. 3 shows an embodiment of the present invention.

図は同軸構造の絶縁スペーサを導体の長さ方向
断面で示している。
The figure shows an insulating spacer with a coaxial structure in a cross section along the length of a conductor.

図において8は内部導体(インパルズ高電圧等
が与えられる)であり、11は外部導体であり、
10は絶縁物、9はテーパー付金属リングであ
る。
In the figure, 8 is an internal conductor (to which impulse high voltage etc. is applied), 11 is an external conductor,
10 is an insulator, and 9 is a tapered metal ring.

このような絶縁物10に複数のテーパー付金属
リング9を埋め込んだ同軸構造のスペーサの中心
に内部導体8を支持し、その外周を外部導体11
に固定し、絶縁スペーサはそれ自身によつて、図
の左側の空間を高誘電率媒質12、例えば純水、
右側の空間を低誘電率媒質13として分離して使
用するが、このような状態でインパルス電圧等を
課電使用するため、前記のテーパー付金属リング
9は、その高誘電率側12において、内部導体8
に近い程大きな電界強度となることを考慮して、
絶縁物10の全沿面を等電位差Vとなるように、
複数の位置で分割し、この分割位置にテーパー付
金属リング9の端部があり、この位置と低誘電率
媒質13側の全沿面で沿面距離を等間隔dに分け
る位置を結ぶように、テーパー付金属リング9が
絶縁物10中に埋込まれる。いうまでもないこと
であるが、このような複数のテーパー付金属リン
グ9の配置をとるためには、予めスペーサの寸
法、電位分布等に基づいて、それぞれテーパー付
金属リングを設計することが必要である。
The inner conductor 8 is supported at the center of a spacer having a coaxial structure in which a plurality of tapered metal rings 9 are embedded in such an insulator 10, and the outer periphery thereof is supported by an outer conductor 11.
By itself, the insulating spacer fills the space on the left side of the figure with a high dielectric constant medium 12, such as pure water,
The space on the right side is used separately as a low dielectric constant medium 13, but since an impulse voltage or the like is applied in such a state, the tapered metal ring 9 is conductor 8
Considering that the closer the electric field strength is to
So that the entire creepage of the insulator 10 has an equipotential difference V,
The tapered metal ring 9 is divided at a plurality of positions, and the end of the tapered metal ring 9 is located at the divided position, and the taper is connected to the position where the creepage distance is divided into equal intervals d on the entire creepage surface on the low dielectric constant medium 13 side. A metal ring 9 is embedded in the insulator 10. Needless to say, in order to arrange such a plurality of tapered metal rings 9, it is necessary to design each tapered metal ring in advance based on the spacer dimensions, potential distribution, etc. It is.

〔効果〕〔effect〕

第1図に示すような絶縁スペーサによれば、内
外導体間の課電により、絶縁スペーサ沿面に不平
等電界を生じ、沿面破壊電圧強度を下げることに
なるが、本考案によれば、高誘電率側で複数のテ
ーパー付金属リングを等電位差配置とすることに
より、沿面破壊電圧強度を上げることができ、ま
た低誘電率側では、等電位差、等間隔でテーパー
付金属リングが配置された状態となり、与えられ
た全沿面長に対して最も耐圧の高い絶縁スペーサ
を得ることができる。
According to the insulating spacer shown in Fig. 1, an unequal electric field is generated along the surface of the insulating spacer due to the charge applied between the inner and outer conductors, which lowers the creepage breakdown voltage strength. Creepage breakdown voltage strength can be increased by arranging multiple tapered metal rings with equal potential difference on the dielectric constant side, and on the low dielectric constant side, tapered metal rings are arranged with equal potential difference and at equal intervals. Therefore, an insulating spacer with the highest voltage resistance can be obtained for a given total creepage length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の絶縁スペーサの例示で
ある。第3図は本考案の一実施例を示す。 8…内部導体、9…金属リング、10…絶縁
物、11…外部導体、12…高誘電率側、13…
低誘電率側。
FIGS. 1 and 2 are examples of conventional insulating spacers. FIG. 3 shows an embodiment of the present invention. 8...Inner conductor, 9...Metal ring, 10...Insulator, 11...Outer conductor, 12...High dielectric constant side, 13...
Low dielectric constant side.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高誘電率媒質と低誘電率媒質のインターフエイ
スとして使用される絶縁スペーサであつて高誘電
率媒質側の電位を等分する位置と低誘電率媒質側
の沿面を距離を等分する位置とを結ぶテーパー付
リングを備える絶縁スペーサ。
An insulating spacer used as an interface between a high-permittivity medium and a low-permittivity medium, with a position that equally divides the potential on the high-permittivity medium side and a position that equally divides the distance between the creeping surface on the low-permittivity medium side. Insulating spacer with tapered ring for tying.
JP13406583U 1983-08-29 1983-08-29 insulation spacer Granted JPS6042023U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13406583U JPS6042023U (en) 1983-08-29 1983-08-29 insulation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13406583U JPS6042023U (en) 1983-08-29 1983-08-29 insulation spacer

Publications (2)

Publication Number Publication Date
JPS6042023U JPS6042023U (en) 1985-03-25
JPH019231Y2 true JPH019231Y2 (en) 1989-03-14

Family

ID=30302196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13406583U Granted JPS6042023U (en) 1983-08-29 1983-08-29 insulation spacer

Country Status (1)

Country Link
JP (1) JPS6042023U (en)

Also Published As

Publication number Publication date
JPS6042023U (en) 1985-03-25

Similar Documents

Publication Publication Date Title
JPH019231Y2 (en)
JP2530057B2 (en) Gas insulated transformer
JPH0650973Y2 (en) Gas insulated electromagnetic induction equipment
JPS5845143B2 (en) Cable connection
JP3461889B2 (en) Gas insulated transformer
JP2000277353A (en) Transformer winding
JPS5838747Y2 (en) insulation spacer
JPH03222621A (en) Gas-insulated spacer
JPH0411299Y2 (en)
JPS5919348Y2 (en) Split conductor connection
JPH04257209A (en) Resin-molded current transformer
JPS5834657Y2 (en) power cable
JP2000032618A (en) Power receiving and distributing facility
JPH0220811Y2 (en)
JP2002125339A (en) Coil of high-voltage dynamoelectric machine
JPH0510528Y2 (en)
JPH0447947Y2 (en)
JPS5930574Y2 (en) Conductor connection device
JPS6117815U (en) insulation spacer
JPS61120402A (en) Earth resistor
JPS60172108A (en) Ceramic power cable
JPH02223324A (en) Gas insulating spacer
JPS5893117A (en) Electric device
JPS5945870U (en) Hermetic insulation terminal
JPS60135021U (en) Insulating spacer for gas insulated switchgear