JPH0191941A - Method for continuously casting metal strip - Google Patents

Method for continuously casting metal strip

Info

Publication number
JPH0191941A
JPH0191941A JP25032087A JP25032087A JPH0191941A JP H0191941 A JPH0191941 A JP H0191941A JP 25032087 A JP25032087 A JP 25032087A JP 25032087 A JP25032087 A JP 25032087A JP H0191941 A JPH0191941 A JP H0191941A
Authority
JP
Japan
Prior art keywords
thickness
molten metal
metal
solidified shell
metal strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25032087A
Other languages
Japanese (ja)
Inventor
Isao Mizuchi
水地 功
Michiya Hayashida
道弥 林田
Keiichi Yamamoto
恵一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25032087A priority Critical patent/JPH0191941A/en
Publication of JPH0191941A publication Critical patent/JPH0191941A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal

Abstract

PURPOSE:To produce a product without any defects of longitudinal crack and inequal thickness by limiting over-heat degree at the time of pouring molten metal and specifying the thickness of a metal strip at the time of producing the metal strip by continuous casting with twin drum method. CONSTITUTION:Pouring basin part 3 is arranged at space between one pair of cooling drums 1a, 1b and solidified shells from the molten metal 4 supplied from there are formed and pressure-welded and integrated at the drum gap 6 part. Then, the over-heat degree at the time of pouring the molten metal is made to <=15 deg.C and the thickness of the metal strip is made to <=3mm. By this method, the product without any defects of longitudinal crack and inequal thickness can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、凝固時の収縮力を小さくすることにより縦割
れが発生することを防止しながら、金属薄帯を連続的に
製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for continuously manufacturing a metal ribbon while preventing the occurrence of vertical cracks by reducing the shrinkage force during solidification. .

〔従来の技術〕[Conventional technology]

最近、溶鋼等の溶融金属から最終形状に近い数關程度の
厚みをもつ薄帯を直接的に製造する方法が注目されてい
る。この連続鋳造方法によるときには、従来のような多
段階にわたる熱延工程を必要とすることがな(、また最
終形状にする圧延も軽度なもので良いため、工程及び設
備の簡略化が図られる。
BACKGROUND ART Recently, a method of directly manufacturing a ribbon having a thickness several orders of magnitude close to the final shape from molten metal such as molten steel has been attracting attention. When this continuous casting method is used, there is no need for a multi-step hot rolling process as in the conventional method (and only a light rolling process is required to form the final shape, so the process and equipment can be simplified.

このような連続鋳造法の一つとして、ツインドラム法が
ある(特開昭60−137562号公報参照)。
One such continuous casting method is the twin drum method (see Japanese Patent Laid-Open No. 137562/1983).

第3図は、このツインドラム法の概略を説明するための
図である。この方式においては、第3図(a)の斜視図
で示すように、互いに逆方向に回転する一対の冷却ドラ
ムla、 lbを水平に配置し、冷却ドラムla、  
lb及びサイドtl12a、 2bにより区画された凹
部に湯溜り部3を形成する。タンデイツシュ等の容器か
ら注湯ノズルを介し、溶融金属がこの湯溜り部3に注湯
される。湯溜り部3に収容された溶融金属4は、冷却ド
ラムla、 lbと接する部分が冷却・凝固して凝固シ
ェルとなる。
FIG. 3 is a diagram for explaining the outline of this twin drum method. In this system, as shown in the perspective view of FIG. 3(a), a pair of cooling drums la and lb that rotate in opposite directions are arranged horizontally.
A hot water reservoir 3 is formed in a recess section defined by lb and sides tl12a and 2b. Molten metal is poured from a container such as a tundish into this sump 3 through a pouring nozzle. The molten metal 4 accommodated in the sump 3 is cooled and solidified at the portions that come into contact with the cooling drums la and lb to form solidified shells.

この凝固シェル5は、第3図ら)の断面図で示すように
、冷却ドラムla、 lbの回転に随伴され、−対の冷
却ドラムla、 lbが互いに最も接近した位置で向か
い合う、いわゆるドラムギャップ部6に移動する。この
ドラムギャップ部6では、それぞれの冷却ドラムla、
 lbの表面で形成された凝固シェル5が互いに圧接・
一体化され、目的とする金属薄帯7となる。
As shown in the cross-sectional view of Fig. 3, etc., this solidified shell 5 is accompanied by the rotation of the cooling drums la, lb, and forms a so-called drum gap region where the pair of cooling drums la, lb face each other at the closest position. Move to 6. In this drum gap portion 6, each cooling drum la,
The solidified shells 5 formed on the surface of lb are pressed against each other.
The metal ribbon 7 is then integrated into a single piece.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

凝固シェル5が成長して所定の肉厚となり、金属薄帯7
が製造される過程で凝固シェル5の温度が低下する。こ
の温度低下に伴って、凝固シエνし5は収縮する。この
とき、冷却ドラムla、 lbの側面とサイドj[12
a、 2bの内面との間には若干の隙間があり、この隙
間に溶融金属4が流入し、いわゆる湯差しが生じる。隙
間に流入した溶融金R4はそこで凝固し、鋳バリとなる
。この鋳バリは、その生Fft′a程からして凝固ンエ
ル5に連続したものとなっている。
The solidified shell 5 grows to a predetermined thickness, and the thin metal strip 7
During the manufacturing process, the temperature of the solidified shell 5 decreases. As the temperature decreases, the coagulation shell 5 contracts. At this time, the sides of the cooling drums la and lb and the side j[12
There is a slight gap between the inner surfaces of a and 2b, and the molten metal 4 flows into this gap, creating a so-called hot water pourer. The molten metal R4 that has flowed into the gap solidifies there and becomes cast flash. This casting burr is continuous with the solidification well 5 from its raw Fft'a level.

このような条件下で収縮する凝固シェル5は、その両端
が鋳バリによって拘束されている。したがって、収縮力
が、冷却ドラムla、 lbの軸方向、すなわち金属薄
帯7の幅方向に働く。成長過程にある凝固シェル5は、
未だ高温で剛性が低い状態にあるので、僅かの力が作用
することによっても破断し易いものである。そこで、こ
の両端が拘束された収縮力により、金属薄帯7が長平方
向に破断する。或いは、破断しないまでも、この収縮力
によって凝固シェル5が部分的に薄肉化し、金属薄帯7
に幅方向に沿った肉厚変動を生じさせる。
The solidified shell 5, which contracts under such conditions, is restrained at both ends by flash. Therefore, the contraction force acts in the axial direction of the cooling drums la, lb, that is, in the width direction of the metal ribbon 7. The solidified shell 5 in the growth process is
Since it is still at a high temperature and has low rigidity, it is likely to break even when a small amount of force is applied to it. Then, due to the contraction force with which both ends are restrained, the thin metal strip 7 is broken in the longitudinal direction. Alternatively, even if it does not break, the solidified shell 5 is partially thinned due to this contraction force, and the thin metal strip 7
This causes wall thickness variation along the width direction.

このような収縮力の影響を無くすためには、冷却ドラム
la、 lbの側面とサイドi[2a、 2bの内面と
の間に湯差しが生じることを防止すればよい。二の湯差
しを無くす方法として、サイド堰2a、2bを冷却ドラ
ムla、 lbの側面に密着することが考えられる。し
かし、この密着状態を得ることは、実際上不可能である
In order to eliminate the influence of such contraction force, it is sufficient to prevent the formation of hot water between the side surfaces of the cooling drums la, lb and the inner surfaces of the sides i[2a, 2b. One possible way to eliminate the second hot water jug is to attach the side weirs 2a, 2b closely to the sides of the cooling drums la, lb. However, it is practically impossible to achieve this close contact state.

そこで、本発明は、鋳造条件を改良することによって、
両端が拘束された状態における収縮力の影響を緩和し、
縦割れを防止して、肉厚変動の少ない金属薄帯を製造す
ることを目的とする。
Therefore, the present invention improves the casting conditions to
Alleviates the effect of contraction force when both ends are restrained,
The purpose is to prevent vertical cracking and to produce a metal ribbon with less variation in wall thickness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の金属薄帯の連続鋳造方法は、その目的を達成す
るため、一対の冷却ドラムの間に設けられた湯溜り部に
供給された溶融金属を急冷凝固して凝固シェルを形成し
、該凝固シェルをドラムギャップ部で圧接・一体化する
ことにより金属薄帯を製造する際に、前記溶融金属の注
湯時の過熱度を15℃以下に抑え、且つ前記金属薄帯の
板厚を3叩以下とすることを特徴とする。
In order to achieve the object, the continuous casting method for metal ribbon of the present invention rapidly solidifies molten metal supplied to a sump provided between a pair of cooling drums to form a solidified shell. When manufacturing a metal ribbon by press-welding and integrating solidified shells at the drum gap, the degree of superheating of the molten metal during pouring is suppressed to 15°C or less, and the thickness of the metal ribbon is set to 3. It is characterized by being less than or equal to 100%.

なお、ここで過熱度とは、溶融金属の温度とその融点と
の差をいう。
Note that the degree of superheat here refers to the difference between the temperature of molten metal and its melting point.

〔作用〕[Effect]

第1図は、湯溜)部3に注湯された溶融金@4の過熱度
が、凝固ンエル5の歪み及び応力に与える影響を示す。
FIG. 1 shows the influence of the degree of superheating of the molten metal 4 poured into the sump 3 on the strain and stress of the solidification well 5.

すなわち、過熱度の大きな溶融金属を湯溜り部3に注湯
するとき、その過熱度に応じて湯溜り部3にある溶融金
属4の温度も高くなり、この高熱がドラムギャップ部6
にある凝固シェル5に伝達される。凝固シェル5は溶融
金@4−から凝固した直後の状態であり、その温度如何
によって剛性が大きく左右される。
That is, when pouring molten metal with a large degree of superheat into the molten metal sump 3, the temperature of the molten metal 4 in the sump 3 increases according to the degree of superheat, and this high heat flows into the drum gap 6.
is transmitted to the solidified shell 5 located at The solidified shell 5 is in a state immediately after being solidified from the molten metal @4-, and its rigidity is greatly influenced by its temperature.

この点から、本発明においては、湯溜り部3に注湯され
る溶融金属の過熱度を、15℃以下に抑えたものである
。これにより、凝固シェル5に過度の歪みや応力を与え
ることなく、冷却することが可能となる。したがって、
両端部が鋳バリによって拘束されていても、縦割れを生
じることなく、金属薄帯7をドラムギャップ116から
搬出することができる。これに対して、過熱度が15℃
を越えるとき、第1図に示したように歪み及び応力が急
激に上昇し、凝固ンエル5に発生した応力が変形応力よ
り大きなものとなる。
From this point of view, in the present invention, the degree of superheating of the molten metal poured into the pool 3 is suppressed to 15° C. or less. This makes it possible to cool the solidified shell 5 without applying excessive strain or stress to it. therefore,
Even if both ends are restrained by casting burrs, the metal ribbon 7 can be carried out from the drum gap 116 without causing vertical cracks. On the other hand, the degree of superheating is 15℃
As shown in FIG. 1, the strain and stress increase rapidly, and the stress generated in the solidification well 5 becomes larger than the deformation stress.

第2図は、金属薄帯7の板厚が割れ発生に与える影響を
示した図である。本例においては、過熱度10℃の溶鋼
を湯溜り部3に注湯し、金属薄帯7を製造した。
FIG. 2 is a diagram showing the influence of the thickness of the metal ribbon 7 on the occurrence of cracks. In this example, molten steel with a superheating degree of 10° C. was poured into the trough 3 to produce the metal ribbon 7.

同図(a)及び(b)は、それぞれ板厚2.0ml11
及び5.Qmmの金属薄帯7を製造したときの応力発生
状況を計算によって求め、これを冷却ドラム表面及び凝
固シェルの肉厚を両軸としてグラフ化したものである。
The same figure (a) and (b) each have a plate thickness of 2.0ml11
and 5. The stress generation situation when manufacturing the metal thin strip 7 of Qmm was determined by calculation, and this was graphed using the cooling drum surface and the solidified shell thickness as both axes.

発生した応力は、その大きさに応じた長さをもつ矢印と
して表している。なお、同図の下方に矢印と共に示され
た1、 0 kgf / s’及び4.0 kgf /
 man”は、応力値の大きさを示したスケールである
The generated stress is represented as an arrow whose length corresponds to its magnitude. Note that 1, 0 kgf/s' and 4.0 kgf/s' are shown with arrows at the bottom of the same figure.
"man" is a scale indicating the magnitude of stress value.

薄い金属薄帯7を製造するときには、ドラムギャップ部
6における凝固シェル5の肉厚が小さくなる。したがっ
て、凝固時間が短いために凝固シェルの温度が高く、同
図(a)に示すように凝固シェルに作用する応力も小さ
くなる。そのため、最大応力を示す表層部でも応力値は
変形応力値を越えず、縦割れ等を発生することがない。
When producing a thin metal ribbon 7, the thickness of the solidified shell 5 at the drum gap portion 6 is reduced. Therefore, since the solidification time is short, the temperature of the solidified shell is high, and the stress acting on the solidified shell is also small, as shown in FIG. Therefore, even in the surface layer showing the maximum stress, the stress value does not exceed the deformation stress value, and no vertical cracks or the like occur.

他方、板厚の大きな金属薄帯7を製造する場合には、ド
ラムギャップ部6に至る過程で充分な厚みに凝固シェル
5を成長させることが必要となることから、冷却時間が
長くなる。その結果、凝固シェル表層部の温度が下がり
、同図(b)に示すように凝固シェル5に大きな収縮応
力が発生する。このとき、最大応力を示す表層部では、
応力値が変形応力値を越えるため、縦割れが発生する。
On the other hand, when manufacturing a metal ribbon 7 with a large thickness, it is necessary to grow the solidified shell 5 to a sufficient thickness in the process of reaching the drum gap portion 6, which increases the cooling time. As a result, the temperature of the surface layer of the solidified shell decreases, and a large shrinkage stress is generated in the solidified shell 5, as shown in FIG. 5(b). At this time, in the surface layer showing the maximum stress,
Vertical cracking occurs because the stress value exceeds the deformation stress value.

すなわち、凝固シェルの表層部に発生する応力と変形応
力値の逆転が、板厚3 mを境にして行わ、  れる。
That is, the stress generated in the surface layer of the solidified shell and the deformation stress value are reversed at the plate thickness of 3 m.

そして、板厚が3 mm以下では発生応力値く変形応力
値となるために縦割れが発生せず、板厚が3 mmを越
えるとき発生応力値〉変形応力値となるために縦割れが
発生する。
When the plate thickness is 3 mm or less, the generated stress value is less than the deformation stress value, so no vertical cracks occur, and when the plate thickness exceeds 3 mm, the generated stress value > the deformation stress value, so vertical cracks occur. do.

また、溶融金属4の過熱度は、板厚が3fflI11以
下の範囲では、15℃以下が必要である。その理由は、
過熱度が15℃以下では発生応力値く変形応力値となる
ために縦割れが発生せず、過熱度が15℃を超えるとき
発生応力値〉変形応力値となるために縦割れが発生する
ためである。
Further, the degree of superheating of the molten metal 4 needs to be 15° C. or less in a range where the plate thickness is 3fflI11 or less. The reason is,
When the degree of superheating is below 15℃, the generated stress value becomes equal to the deformation stress value, so no vertical cracking occurs, and when the degree of superheating exceeds 15℃, the generated stress value becomes greater than the deformation stress value, so vertical cracking occurs. It is.

このようにして、本発明によるとき、冷却ドラムla、
 lbの側面とサイド堰2a、2bの内面との間に生じ
た鋳バリの影響を抑制しながら、縦割れ等の欠陥を発生
させることなく、凝固シェル5を成長させ、金属薄帯7
をドラムギャップ部6から取り出すことが可能となる。
In this way, according to the invention, the cooling drum la,
The solidified shell 5 is grown without causing defects such as vertical cracks while suppressing the influence of cast burrs generated between the side surface of the metal strip 7 and the inner surface of the side weirs 2a and 2b.
can be taken out from the drum gap portion 6.

〔実施例〕〔Example〕

次いで、具体的な操業条件及び得られた金属薄帯の性状
を示す。
Next, specific operating conditions and properties of the obtained metal ribbon will be shown.

普通鋼組成(融点1530℃)をもち温度1540℃の
溶鋼を、1500kg/分の流量で?’!Amり部に注
湯し、板厚2.0III11の銅帯を製造した。得られ
た製品には、縦割れが発生しておらず、また幅方向の肉
厚変動も100p以下の極めて小さなものであった。他
方、同じ条件下で温度1560℃の溶鋼を注湯して板厚
4.0mmの銅帯を製造したところ、銅帯の長手方向に
沿った縦割れが多数の個所にみられ、また幅方向の肉厚
変動も200pと大きなものであった。
Molten steel with a common steel composition (melting point 1530°C) and a temperature of 1540°C at a flow rate of 1500 kg/min? '! A copper strip having a plate thickness of 2.0III11 was produced by pouring the metal into the grooved area. The obtained product had no vertical cracks, and the wall thickness variation in the width direction was extremely small, 100 p or less. On the other hand, when a copper strip with a thickness of 4.0 mm was manufactured by pouring molten steel at a temperature of 1560°C under the same conditions, many vertical cracks were observed along the longitudinal direction of the copper strip, and cracks in the width direction were observed. The wall thickness variation was also as large as 200p.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、湯溜り部に
注湯される溶融金属の過熱度及び製造する金属薄帯の板
厚を特定することによって、両端が鋳バリにより拘束さ
れた凝固シェルの収縮時に発生する応力の影響を少なく
し、縦割れや不均一な肉厚等の欠陥がない金属薄帯を製
造している。
As explained above, in the present invention, by specifying the degree of superheating of the molten metal poured into the pool and the thickness of the metal ribbon to be manufactured, a solidified shell whose both ends are restrained by cast flash is produced. We manufacture thin metal strips that are free from defects such as vertical cracks and uneven wall thickness by reducing the effects of stress that occurs during shrinkage.

したがって、冷却ドラムの側面とサイド堰の内面との間
に禍差しを発生させる多少の隙間があっても何隻支障な
く連続鋳造を継続することができるので、サイド堰を冷
却ドラムの側面に厳格に密着させる必要もない。このよ
うに、本発明によるとき、ツインドラム方式の連続鋳造
作業が容易なものとなり、しかも得られた金属薄帯の性
状が安定化する。
Therefore, even if there is a slight gap between the side of the cooling drum and the inner surface of the side weir, continuous casting can be continued without any problem, so the side weir can be placed tightly on the side of the cooling drum. There is no need to place it in close contact with the As described above, according to the present invention, the twin-drum continuous casting operation is facilitated, and the properties of the obtained metal ribbon are stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融金属の過熱度が金属薄帯の歪み及び応力に
与える影響を表したグラフであり、第2図は凝固シェル
の肉厚が割れ発生に与える影響を表したグラフである。 また、第3図は、従来のツインドラム方式による連続鋳
造を説明するための図である。 特許出願人  新日本製鐵株式會社(ほか1名)代  
理  人   小  堀   益     (ほか2名
)第1図 第2図 (0)           (b) 1.0 kgf/mrrF        4.Okg
f/ rrvr?第3図 CG) b l−玉J萬屡帝
FIG. 1 is a graph showing the effect of the degree of superheating of molten metal on the strain and stress of a metal ribbon, and FIG. 2 is a graph showing the effect of the wall thickness of a solidified shell on the occurrence of cracks. Further, FIG. 3 is a diagram for explaining continuous casting using the conventional twin drum method. Patent applicant: Nippon Steel Corporation (and one other person)
Masato Kobori (and 2 others) Figure 1 Figure 2 (0) (b) 1.0 kgf/mrrF 4. Okg
f/rrvr? Figure 3 CG) b l-Jade J Wantian Emperor

Claims (1)

【特許請求の範囲】[Claims] 1、一対の冷却ドラムの間に設けられた湯溜り部に供給
された溶融金属を急冷凝固して凝固シェルを形成し、該
凝固シェルをドラムギャップ部で圧接・一体化すること
により金属薄帯を製造する際に、前記溶融金属の注湯時
の過熱度を15℃以下に抑え、且つ前記金属薄帯の板厚
を3mm以下とすることを特徴とする金属薄帯の連続鋳
造方法。
1. Molten metal supplied to a pool provided between a pair of cooling drums is rapidly solidified to form a solidified shell, and the solidified shell is pressed and integrated at the drum gap to form a metal ribbon. 1. A continuous casting method for a metal ribbon, characterized in that the degree of superheating of the molten metal during pouring is suppressed to 15° C. or less, and the thickness of the metal ribbon is 3 mm or less.
JP25032087A 1987-10-02 1987-10-02 Method for continuously casting metal strip Pending JPH0191941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25032087A JPH0191941A (en) 1987-10-02 1987-10-02 Method for continuously casting metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25032087A JPH0191941A (en) 1987-10-02 1987-10-02 Method for continuously casting metal strip

Publications (1)

Publication Number Publication Date
JPH0191941A true JPH0191941A (en) 1989-04-11

Family

ID=17206153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25032087A Pending JPH0191941A (en) 1987-10-02 1987-10-02 Method for continuously casting metal strip

Country Status (1)

Country Link
JP (1) JPH0191941A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168463A (en) * 1982-03-31 1983-10-04 Hitachi Zosen Corp Continuous casting method for thin walled ingot
JPS6070161A (en) * 1984-08-03 1985-04-20 Noboru Tsuya Production of light-gauge high permeability alloy strip
JPS60137562A (en) * 1983-12-27 1985-07-22 Mitsubishi Heavy Ind Ltd Continuous casting method for thin sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168463A (en) * 1982-03-31 1983-10-04 Hitachi Zosen Corp Continuous casting method for thin walled ingot
JPS60137562A (en) * 1983-12-27 1985-07-22 Mitsubishi Heavy Ind Ltd Continuous casting method for thin sheet
JPS6070161A (en) * 1984-08-03 1985-04-20 Noboru Tsuya Production of light-gauge high permeability alloy strip

Similar Documents

Publication Publication Date Title
RU2460607C2 (en) Device and method for subsequent casting of metals having equal or similar shrinkage factors
US4207941A (en) Method of continuous casting of metal in a tapered mold and mold per se
JPS5970443A (en) Method and device for continuously casting metallic strip
US2672665A (en) Casting metal
CN101678444B (en) Strip casting method of immiscible metals
JP2000042690A (en) Mold for continuous casting of metal
JPH01317658A (en) Method for continuously casting metal strip and nozzle for continuous casting
JPH0191941A (en) Method for continuously casting metal strip
JPS62259641A (en) Production of clad steel plate
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPH0675750B2 (en) Pouring nozzle for metal strip continuous casting machine
JPH0292438A (en) Method for continuously casting metal strip
JPH0536148B2 (en)
JP3055591B2 (en) Cooling drum for twin-drum continuous casting equipment
JPS5940539B2 (en) Continuous casting method
SU1424950A1 (en) Method of continuous casting of a blank
SU404201A1 (en) (USA)
JPS58151946A (en) Production of stainless steel in horizontal and continuous casting
JPH0242575B2 (en)
JPS63238953A (en) Method for casting molten metal by using twin rolls
JPS6087956A (en) Continuous casting method of metal
BE1002826A6 (en) PROCESS FOR PRODUCING A THIN STEEL SLAB BY CONTINUOUS CASTING.
JPS63242449A (en) Method for continuously casting metal strip
JPS63303656A (en) Side weir for metal strip continuous casting apparatus
JPS58141841A (en) Hot longitudinal splitting method of continuous casting ingot