JPH0191789A - Production of optically active beta-substituted glutaric acid monoester - Google Patents

Production of optically active beta-substituted glutaric acid monoester

Info

Publication number
JPH0191789A
JPH0191789A JP24876387A JP24876387A JPH0191789A JP H0191789 A JPH0191789 A JP H0191789A JP 24876387 A JP24876387 A JP 24876387A JP 24876387 A JP24876387 A JP 24876387A JP H0191789 A JPH0191789 A JP H0191789A
Authority
JP
Japan
Prior art keywords
substituted
enzyme
glutaric acid
optically active
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24876387A
Other languages
Japanese (ja)
Inventor
Junichi Oda
小田 順一
Masaki Amano
天野 雅貴
Haruhiko Toda
戸田 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP24876387A priority Critical patent/JPH0191789A/en
Publication of JPH0191789A publication Critical patent/JPH0191789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently produce an optically active beta-substituted glutaric acid monoester, by alcoholizing a beta-substituted glutaric acid anhydride in the presence of an aliphatic alcohol in an organic solvent containing an enzyme suspended therein,. CONSTITUTION:A beta-substituted glutaric acid anhydride expressed by formula I (R is hydrogen, halogen or substituted or unsubstituted aliphatic hydrocarbon group or substituted or unsubstituted aromatic hydrocarbon group or at least one kind of substituent group containing a hetero-atom., such as oxygen, nitrogen or sulfur) is alcoholized in the presence of an aliphatic alcohol expressed by the formula Z-OH (Z is 1-10C straight-chain or branched chain alkyl) in an organic solvent, such as n-hexane, toluene, diethyl ether or n-dibutyl ether, containing an enzyme, such as lipase or esterase, suspended therein to afford the aimed optically active glutaric acid monoester expressed by formula II or III.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生理活性を有する光学活性物質の合成に際し
、その合成経路を短縮化させる光学活性合成中間体、と
して有用な光学活性β−置換グルタル酸モノエステルの
製造法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides an optically active β-substituted compound useful as an optically active synthetic intermediate that shortens the synthetic route when synthesizing an optically active substance having physiological activity. This invention relates to a method for producing glutaric acid monoester.

〔従来技術〕[Prior art]

従来、光学活性β−置換グルタル酸モノエステルの合成
例としては、コーエンとケトオリ−(S。
Conventionally, as an example of the synthesis of optically active β-substituted glutaric acid monoester, Cohen and Ketooli (S.

G、 Cohan、 E、にnedohri、 Nat
ure、 186.75(1960)と大野(日本特許
公開昭57−713!34)の提案が知られている。前
者はβ−アセドア≦トグルタル酸ジエチルエステルから
、スイ臓プロテアーゼの一種であるα−キモトリプシン
を用いて光学活性なモノエステルを得ている。一方、後
者は、β−ベンジルオキシカルボニルアミノグルタル酸
ジメチルエステルから、エステラーゼを用いて、光学活
性なモノエステルを得ている。
G. Cohan, E. Nedohri, Nat.
ure, 186.75 (1960) and the proposal by Ohno (Japanese Patent Publication No. 57-713!34) are known. In the former, an optically active monoester is obtained from β-acedo≦toglutarate diethyl ester using α-chymotrypsin, a type of watermelon protease. On the other hand, in the latter, an optically active monoester is obtained from β-benzyloxycarbonylaminoglutarate dimethyl ester using an esterase.

しかしながら、これらの研究は、酵素の水中での反応の
研究の枠を脱しておらず、近年、第四世代抗生物質と注
目を浴びているチェナマイシン等のβ−ラクタム系抗生
物質を合成的に生産するという目的にはほど遠いもので
あった。すなわち■高価な酵素は水中に溶解しているた
め、固定化しない限り回収できない。■固定化処理を行
った場合、処理の過程で、酵素の活性は減少する。■水
系での酵素は、固定化の有無にかかわらず、無水条件の
有機溶媒中より不安定である。■更に、使用〃x料は一
般に親油性で、水には難溶である為、アセI〜ンやDM
Fなどの可溶化剤を用いなければならず、このため酵素
が一段と不安定になる等の多くの欠点を有している。
However, these studies have not gone beyond the research on the reaction of enzymes in water, and in recent years, synthetic β-lactam antibiotics such as chenamycin have been attracting attention as fourth-generation antibiotics. It was far from the purpose of production. Namely: ■ Since expensive enzymes are dissolved in water, they cannot be recovered unless they are immobilized. ■When immobilization treatment is performed, enzyme activity decreases during the treatment process. ■Enzymes in aqueous systems are more unstable than in organic solvents under anhydrous conditions, regardless of whether they are immobilized or not. ■Furthermore, the materials used are generally lipophilic and poorly soluble in water, so acetone and DM
A solubilizing agent such as F must be used, which has many disadvantages such as making the enzyme even more unstable.

〔目 、的〕 本発明は、前記従来技術の欠点を克服し、光学純度の高
いβ−置換グルタル酸モノエステルを工業的に有利に製
造する方法を提供することを目的とする。
[Objectives] An object of the present invention is to overcome the drawbacks of the prior art and provide an industrially advantageous method for producing a β-substituted glutaric acid monoester with high optical purity.

〔構  成〕〔composition〕

本発明によれば、 一般式(1) %式% 〔式中Rは、水素、ハロゲン、置換もしくはM置換の脂
肪族炭化水素基、置換もしくは無置換の芳香族炭化水素
基、又は酸素、窒素、硫黄などのへテロ原子を含む少く
とも1種の置換基である。〕 で示されるβ−置換グルタル酸無水物をZ−011(式
中、2は炭素数1〜10の直鎖もしくは分枝鎖アルキル
基を表わす〕の存在下、酵素懸濁有機溶媒中で、加アル
コール分解する事を特徴とする、一般式(U) 〔式中R及び2は前記のとおりである〕で示される光学
活性β−置換グルタル酸モノエステルを製造する方法が
提供される。 。
According to the present invention, General formula (1) % Formula % [In the formula, R is hydrogen, halogen, a substituted or M-substituted aliphatic hydrocarbon group, a substituted or unsubstituted aromatic hydrocarbon group, or oxygen, nitrogen , at least one substituent containing a heteroatom such as sulfur. ] In the presence of Z-011 (wherein 2 represents a straight or branched alkyl group having 1 to 10 carbon atoms), the β-substituted glutaric anhydride represented by is suspended in an enzyme-suspending organic solvent. Provided is a method for producing an optically active β-substituted glutaric acid monoester represented by the general formula (U) in which R and 2 are as described above, which is characterized by alcoholysis.

すなわち、本発明は、酵素の安定性5回収性。That is, the present invention has five improvements in enzyme stability and recoverability.

再利用性を向上させる為に、反応溶媒として酵素が溶解
しない非水系有機溶媒を選択し、不斉合成がより効率良
く行なわれる反応として、加アルコール分解反応を選択
した事を特徴とする。
In order to improve reusability, a non-aqueous organic solvent in which the enzyme does not dissolve was selected as the reaction solvent, and an alcoholysis reaction was selected as a reaction that allows asymmetric synthesis to be carried out more efficiently.

本発明の反応式を図式すれば以下のとおりである。The reaction formula of the present invention is illustrated as follows.

〔本発明の反応式〕[Reaction formula of the present invention]

β−置換グルタ/La’1llt!水物    光学活
性β−置換グルタ/14mモノエステル 本発明における。β−置換グルタル酸無水物の酵素的加
アルコール分解による光学活性β−置換グルタル酸モノ
エステルの不斉合成に関する作用機構は以下の様に考え
られる。
β-substituted gluta/La'1llt! Water optically active β-substituted gluta/14m monoester in the present invention. The mechanism of action regarding the asymmetric synthesis of optically active β-substituted glutaric acid monoesters by enzymatic alcoholysis of β-substituted glutaric acid anhydrides is thought to be as follows.

まず1本反応系に酵素を加えない場合、β−置換グルタ
ル酸無水物はアルコールとエステル化反応を起こさず、
反応はガスクロマトグラフィー、高速液体クロマトグラ
フィーで確認する限り反応は進行しない。この事から、
酵素が反応を進行させる触媒となっている事は明らかで
ある。更に、P−ニトロフエニルジエチルフォスフェー
トによって酵素活性を完全に失ったリパーゼを用いた場
合、エステル化反応が全く進行しないことから、酵素タ
ンパクの求核性で反応が進行しているのではない事が推
定できる。この事から、反応は酵素の活性化部位で進行
している事が推定できる。
First, when no enzyme is added to the reaction system, β-substituted glutaric anhydride does not undergo an esterification reaction with alcohol;
As long as the reaction is confirmed by gas chromatography or high performance liquid chromatography, the reaction does not proceed. From this,
It is clear that enzymes are catalysts that drive reactions. Furthermore, when using lipase whose enzymatic activity has been completely lost with P-nitrophenyl diethyl phosphate, the esterification reaction does not proceed at all, indicating that the reaction is not proceeding due to the nucleophilicity of the enzyme protein. things can be estimated. From this, it can be inferred that the reaction is proceeding at the activation site of the enzyme.

本発明において、用いられるβ−置換グルタル酸無水物
は、前記したように下記一般式(りで示される。
In the present invention, the β-substituted glutaric anhydride used is represented by the following general formula (R) as described above.

一般式 〔式中Rは、水素、ハロゲン、置換もしくは無置換の脂
肪族炭化水素基、置換もしくは無置換の芳香族炭化水素
基、又は酸素、窒素、硫黄などのへテロ原子を含む少く
とも1種の置換基である。〕 式中Rは、特にメチル、エチル、イソプロピルなどの炭
素数1〜6の直鎖または分枝鎖のアルキル基、又はクロ
ルなどのハロゲン等が望ましい。
General formula [wherein R is hydrogen, halogen, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aromatic hydrocarbon group, or at least one group containing a heteroatom such as oxygen, nitrogen, or sulfur] It is a substituent of a species. ] In the formula, R is particularly preferably a straight or branched alkyl group having 1 to 6 carbon atoms such as methyl, ethyl or isopropyl, or a halogen such as chloro.

本発明で用いられるアルコール(Z−011)は脂肪族
アルコールを示す。
The alcohol (Z-011) used in the present invention represents an aliphatic alcohol.

よりJL体的には、不斉炭素を有しないアルコールとし
ては、炭素数1−10の直鎖もしくは分枝鎖脂肪族アル
コールであり、その中で、特に、炭素数3〜6の直鎖又
は分枝鎖脂肪族アルコールが望ましい。
More specifically, alcohols having no asymmetric carbon atoms include straight-chain or branched aliphatic alcohols having 1 to 10 carbon atoms, and especially straight-chain or branched aliphatic alcohols having 3 to 6 carbon atoms. Branched chain aliphatic alcohols are preferred.

本発明における有機溶媒としては、先に示したアルコー
ルが用いられる他次のような非水系有機溶媒である。非
水県有n溶媒を具体的に例示すると、n−ペンタン、n
−ヘキサン、n−へブタン等の直鎖型脂肪族炭化水素、
イソブタン、イソペンタン。
In addition to the alcohols mentioned above, the organic solvents used in the present invention include the following non-aqueous organic solvents. Specific examples of non-aqueous n-solvents include n-pentane, n-
- straight chain aliphatic hydrocarbons such as hexane, n-hebutane,
Isobutane, isopentane.

2−メチルペンタン等の分枝鎖型脂肪族炭化水素、シク
ロペンタン、シクロヘキサン等の脂環式炭化水素、二塩
化メチレン、クロロホルム、四塩化エチレン、ジクロロ
エタン、トリクロロエタン等の含ハロゲン化炭化水素、
ベンゼン、トルエン、キシレン等の芳呑族炭化水素、ジ
エチルエーテル、ジイソプロピルエーテル、n−ジブチ
ルエーテル等の脂肪族エーテル、テ!へラヒドロフラン
、テトラヒドロピラン等の脂環式エーテル等が挙げられ
るが、その中でn−ヘキサン、トルエン、ジエチルエー
テル、n−ジブチルエーテルがより適当である。
Branched aliphatic hydrocarbons such as 2-methylpentane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, halogenated hydrocarbons such as methylene dichloride, chloroform, ethylene tetrachloride, dichloroethane and trichloroethane,
Aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic ethers such as diethyl ether, diisopropyl ether, and n-dibutyl ether; Examples include alicyclic ethers such as herahydrofuran and tetrahydropyran, among which n-hexane, toluene, diethyl ether, and n-dibutyl ether are more suitable.

有機溶媒の使用量に特別な制約はないが通常、原料であ
るβ−置換グルタル酸無水物1重量部に対して5〜20
0重量部、好ましくは20〜100重量部使用すること
が望ましい。
There is no particular restriction on the amount of organic solvent used, but it is usually 5 to 20 parts by weight per 1 part by weight of the raw material β-substituted glutaric anhydride.
It is desirable to use 0 parts by weight, preferably 20 to 100 parts by weight.

本発明における酵素は加水分解酵素を示し、より具体的
に例示すると、豚すい臓リパーゼ、キャンディダ属由来
の酵母リパーゼ、アスペルギルス属、ムコール属、シュ
ードモナス属由来の菌体リパーゼ等のリパーゼ類、又は
豚肝臓由来のエステラーゼ、又は1−リプシン、キモト
リプシン、サブチリシン等のタンパク分解酵素が挙げら
れる。酵素の量は触媒量でよいが、反応速度を考慮して
原料であるβ−置換グルタル酸無水物1重量部に対して
0.1〜30重量部、好ましくは0.5〜17重量部と
するのがよい。
The enzyme in the present invention refers to a hydrolytic enzyme, and more specific examples include lipases such as swine pancreatic lipase, yeast lipase derived from the genus Candida, bacterial lipase derived from the genus Aspergillus, Mucor, and Pseudomonas, or pigs. Examples include esterase derived from the liver, and proteolytic enzymes such as 1-lipsin, chymotrypsin, and subtilisin. The amount of the enzyme may be a catalytic amount, but in consideration of the reaction rate, it is 0.1 to 30 parts by weight, preferably 0.5 to 17 parts by weight, based on 1 part by weight of the raw material β-substituted glutaric anhydride. It is better to do so.

本発明においては、反応系の水分含量を極めて低くし反
応を実質的に非水系で行なう。具体的には、前記β−置
換グルタル酸無水物、アルコール、有機溶媒中に含まれ
る全水分含量は2%(V/V)以下であり、更に、0.
5%(W/V)以下が望ましい。
In the present invention, the water content of the reaction system is kept extremely low and the reaction is carried out in a substantially non-aqueous system. Specifically, the total water content contained in the β-substituted glutaric anhydride, alcohol, and organic solvent is 2% (V/V) or less, and further, 0.
5% (W/V) or less is desirable.

〔効  果〕〔effect〕

本発明方法に従うと、比較的安価なβ−置換グルタル酸
無水物より、光学純度の高い光学活性β−置換グルタル
酸モノエステルを非常に高い収率で得ることができる。
According to the method of the present invention, an optically active β-substituted glutaric acid monoester with high optical purity can be obtained in a very high yield from a relatively inexpensive β-substituted glutaric acid anhydride.

また、従来の水系酵素反応を、有機溶媒系に置き換えた
ことにより、高価な酵素を不溶の状態で反応させる事が
できるため酵素の回収性、再利用性に優れたものである
。更に、原料の溶解性に関する問題点も除かれるので、
工業的な光学活性β−置換グルタル酸モノエステルの製
造法として好適である。
Furthermore, by replacing the conventional water-based enzyme reaction with an organic solvent system, it is possible to react an expensive enzyme in an insoluble state, resulting in excellent recoverability and reusability of the enzyme. Furthermore, problems related to the solubility of raw materials are also eliminated.
This method is suitable as an industrial method for producing optically active β-substituted glutaric acid monoester.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 3−クロログルタル酸無水物(1,49a)をトルエン
100m1に溶解し、酵素粉(アマノP、天野製薬)1
7g及び、n−ブチルアルコール(4,5g)を加え、
30℃で160分間撹はんする。反応終了後、酵素粉を
濾別し、濾液より溶媒を減圧留去後、シリカゲルカラム
クロマトグラフィーで精製を行い(−)−3−クロログ
ルタル酸モノブチルエステルを80%の収率で得た0次
いで、このモノエステルを光学活な2−ナフチルエチル
アミンと縮合させ、液体クロマトグラフィーを測定した
ところ、この光学純度は89%aeであった。
Example 1 3-Chloroglutaric anhydride (1,49a) was dissolved in 100ml of toluene, and enzyme powder (Amano P, Amano Pharmaceutical) 1
Add 7g and n-butyl alcohol (4.5g),
Stir for 160 minutes at 30°C. After the reaction was completed, the enzyme powder was filtered off, and the solvent was distilled off from the filtrate under reduced pressure, followed by purification using silica gel column chromatography to obtain (-)-3-chloroglutaric acid monobutyl ester with a yield of 80%. Next, this monoester was condensed with optically active 2-naphthylethylamine, and when liquid chromatography was measured, the optical purity was 89% ae.

実施例2 酵素の再利用の可能性を検討するため、実施例1で使用
した酵素粉を繰り返し使用した。繰り返し実験の内容は
実施例1と全く同じ条件で行い、酵素粉は反応終了後、
トルエンで洗浄し再利用した。2回目の反応において、
薄層クロマトグラフィーより1反応を追跡した結果、2
00分間で完結し、実施例1と同じ操作で精製を行い3
−クロログルタル酸モノブチルエステルを光学純度89
%eeで得た。更に、同じ酵素粉を用いて3回目の反応
を行ったところ、反応時間は200分間で3−クロログ
ルタル酸モノブチルエステルを光学純度89%eeで得
た。
Example 2 In order to examine the possibility of enzyme reuse, the enzyme powder used in Example 1 was used repeatedly. The content of the repeated experiment was carried out under exactly the same conditions as in Example 1, and the enzyme powder was used after the reaction was completed.
It was washed with toluene and reused. In the second reaction,
As a result of tracking 1 reaction by thin layer chromatography, 2
It was completed in 00 minutes, and the purification was performed in the same manner as in Example 1.
-Chloroglutaric acid monobutyl ester with optical purity of 89
Obtained in %ee. Furthermore, when a third reaction was carried out using the same enzyme powder, the reaction time was 200 minutes, and 3-chloroglutaric acid monobutyl ester was obtained with an optical purity of 89% ee.

実施例3 3−メチルグルタル酸無水物(1,28g)をベンゼン
100m1に溶解し、1g、素粉(アマノCES、大野
製薬)17g及び、n−ブチルアルコール(4,5g)
を加え、30℃で24時時間法んする。反応終了後、r
LIl素粉を濾別し、濾液より溶媒を減圧留去後、シリ
カゲルカラムクロマトグラフィーで精製を行い(−)−
3−メチルグルタル酸モノブチルエステルを75%の収
率で得た。このモノエステルを2段階を経て旋光度既知
の591〜2体に導いたところ光学純度は76%eeで
立体配置はRであった。
Example 3 3-Methylglutaric anhydride (1.28 g) was dissolved in 100 ml of benzene, 1 g, base powder (Amano CES, Ohno Pharmaceutical) 17 g, and n-butyl alcohol (4.5 g).
Add and incubate at 30℃ for 24 hours. After the reaction is complete, r
After filtering the LII powder and distilling off the solvent from the filtrate under reduced pressure, it was purified by silica gel column chromatography (-)-
3-Methylglutaric acid monobutyl ester was obtained with a yield of 75%. This monoester was converted into a 591-2 compound with a known optical rotation through two steps, and the optical purity was 76%ee and the configuration was R.

実施例4 3−エチルグルタル酸無水物1.42gをエチルエーテ
ル100m1に溶解し、酵素粉(アマノP、大野製薬)
17g及び、n−プロピルアルコール(3,7g)を加
え、30℃で5時間撹はんする。反応終了後、酵素粉を
濾別し、濾液より溶媒を減圧留去後、シリカゲルカラム
クロマトグラフィーで精製を行い(−)−3−二チルグ
ルタル酸モノプロピルエステルを95%の収率で得た。
Example 4 1.42 g of 3-ethylglutaric anhydride was dissolved in 100 ml of ethyl ether, and enzyme powder (Amano P, Ohno Pharmaceutical) was added.
17g and n-propyl alcohol (3.7g) were added and stirred at 30°C for 5 hours. After the reaction was completed, the enzyme powder was filtered off, and the solvent was distilled off from the filtrate under reduced pressure, followed by purification by silica gel column chromatography to obtain (-)-3-ditylglutarate monopropyl ester in a yield of 95%.

このモノエステルを旋光度既知のラクトン体に導いたと
ころ光学純度は70%eeで立体配置はRであった。
When this monoester was converted into a lactone with a known optical rotation, the optical purity was 70%ee and the configuration was R.

実施例5 3−クロログルタル酸無水物(1,49g)をエチルエ
ーテル100m1に溶解し、酵素粉(アマノP、大野製
薬)17g及び、n−プロピルアルコール(3,7g)
を加え、30℃で200分間撹はんする。反応終了後、
酵素粉を濾別し、濾液より溶媒を減圧留去後、シリカゲ
ルカラムクロマトグラフィーで精製を行い(−)−3−
クロログルタル酸モノプロピルエステルを80%の収率
で得た。次いで、このモノエステルを光学活性な2−ナ
フチルアミンと縮合させ、液体クロマトグラフィーで8
11定したところこの光学純度は80%eeであった。
Example 5 3-chloroglutaric anhydride (1.49 g) was dissolved in 100 ml of ethyl ether, and 17 g of enzyme powder (Amano P, Ohno Pharmaceutical) and n-propyl alcohol (3.7 g) were added.
Add and stir at 30°C for 200 minutes. After the reaction is complete,
After separating the enzyme powder by filtration and distilling off the solvent from the filtrate under reduced pressure, purification was performed using silica gel column chromatography to obtain (-)-3-
Chloroglutarate monopropyl ester was obtained with a yield of 80%. Next, this monoester was condensed with optically active 2-naphthylamine, and 8
The optical purity was 80%ee.

実施例6 3−エチルグルタル酸無水物1.42gをトルエン10
0m1に溶解し、酵素粉(PPL、シグマ社製)17g
及び、n−ブチルアルコール(4,5g)を加え、30
℃で5時間撹はんする。反応終了後、酵素粉を濾別し、
濾液より溶媒を減圧留去後、シリカゲルカラムクロマト
グラフィーで精製を行い(−)−3−エチルグルタル酸
モノブチルエステルを得た。収率及び光学純度は実施例
4と同様であった。
Example 6 1.42 g of 3-ethylglutaric anhydride was added to 10 g of toluene.
Dissolved in 0ml, 17g of enzyme powder (PPL, manufactured by Sigma)
Then, add n-butyl alcohol (4.5 g) and add 30
Stir at ℃ for 5 hours. After the reaction is completed, the enzyme powder is filtered and
After distilling off the solvent from the filtrate under reduced pressure, the residue was purified by silica gel column chromatography to obtain (-)-3-ethylglutaric acid monobutyl ester. The yield and optical purity were the same as in Example 4.

実施例7 3−アセ1−アミドグルタル酸無水物を、実施例1と同
様の条件で反応させたところ、良好な結果を得ることが
出来た。
Example 7 When 3-ace1-amidoglutaric anhydride was reacted under the same conditions as in Example 1, good results were obtained.

実施例8 3−ベンジルチオグルタル酸無水物を、実施例1と同様
の条件で反応させたところ、良好な結果を得ることが出
来た。
Example 8 When 3-benzylthioglutaric anhydride was reacted under the same conditions as in Example 1, good results were obtained.

実施例9 酵素の精製 アマノP(50g)を101011Iリン酸バツフアー
(pH7)200mlに溶解する。0℃で1時間30分
撹拌した後、遠心分離機にて沈澱を分離(1500G、
 15分)した後、上清を集め硫安分画する(硫安′a
度35%)。0℃で1時間撹拌した後、遠心分離にて沈
澱を集め35%硫安溶液で洗浄する。遠心分離後、沈澱
を20m1の18mMリン酸バッファー(pH7)に溶
解し一晩透析する。
Example 9 Purification of enzyme Amano P (50 g) was dissolved in 200 ml of 101011I phosphate buffer (pH 7). After stirring at 0°C for 1 hour and 30 minutes, the precipitate was separated using a centrifuge (1500G,
After 15 minutes), the supernatant was collected and fractionated with ammonium sulfate (ammonium sulfate a
35%). After stirring at 0°C for 1 hour, the precipitate was collected by centrifugation and washed with 35% ammonium sulfate solution. After centrifugation, the precipitate is dissolved in 20 ml of 18 mM phosphate buffer (pH 7) and dialyzed overnight.

この蛋白溶液にハイフロス−パーセルを16g加え撹拌
しなから0℃でアセトンを75%(W/V)になるまで
加える。その後、粉体を濾過し減圧下3時間乾燥する。
Add 16 g of Hyfloth-Purcel to this protein solution, stir, and add acetone to 75% (W/V) at 0°C. Thereafter, the powder is filtered and dried under reduced pressure for 3 hours.

3−メチルグルタル酸無水物(t、zgg)をトルエン
100m1に溶解し、上記ハイフロス−パーセル吸着酵
素3g及び、メタノール(0,3g)を加え、30℃で
23時間撹拌する。反応終了後、酵素粉を濾別し、濾液
より溶媒を減圧留去後、シリカゲルカラムクロマトグラ
フィーで精製を行い3−メチルグルタル酸モノメチルエ
ステルを定量的に得た。次いで、このモノエステル体を
光学活性な2−ナフチルエチルアミンと縮合させ、ジア
ステレオマーとした後、200 M 11 zのNMR
で光学純度を測定したところ、モノメチル体の絶対配置
はRで光学純度は92%eaであった。
3-Methylglutaric anhydride (t, zgg) is dissolved in 100 ml of toluene, 3 g of the above Hyfloth-Purcel adsorbed enzyme and methanol (0.3 g) are added, and the mixture is stirred at 30°C for 23 hours. After the reaction was completed, the enzyme powder was filtered off, and the solvent was distilled off from the filtrate under reduced pressure, followed by purification by silica gel column chromatography to quantitatively obtain 3-methylglutaric acid monomethyl ester. Next, this monoester was condensed with optically active 2-naphthylethylamine to form a diastereomer, and then subjected to NMR analysis at 200 M 11 z.
When the optical purity was measured, the absolute configuration of the monomethyl form was R and the optical purity was 92% ea.

実施例10 3−メチルグルタル酸無水物(1,28g)をジイソプ
ロピルエーテル100m Qを溶解し、酵素粉(アマノ
P。
Example 10 3-Methylglutaric anhydride (1.28 g) was dissolved in 100 mQ of diisopropyl ether, and enzyme powder (Amano P) was dissolved.

人好製ffi)2g及び、n−ブチルアルコール(1,
5g)を加え、25℃で6時間撹拌する。
2 g of Hitoko ffi) and n-butyl alcohol (1,
5g) and stirred at 25°C for 6 hours.

反応終了後、酵素粉を濾別し、濾液より溶媒を減圧留去
後、シリカゲルカラムクロマトグラフィーで精製を行い
、(−)−3−メチルグルタル酸モノブチルエステルを
定量的に得た。このモノエステルを2段階を経て、jM
光度既知のラクトン体に導いたところ、この光学純度は
90.8%であった。
After the reaction was completed, the enzyme powder was filtered off, and the solvent was distilled off from the filtrate under reduced pressure, followed by purification by silica gel column chromatography to quantitatively obtain (-)-3-methylglutaric acid monobutyl ester. This monoester is processed through two steps to produce jM
When the lactone was introduced into a lactone with a known luminous intensity, its optical purity was found to be 90.8%.

比較例 アマノP(人好製薬)200mgを、リン酸ナトリウt
1緩衝液(20+nM、pl+7)LomQに溶解後、
3−メチルグルタル酸ジメチルエステル(174B、]
、Ommol)を加え、37℃で65時間振盪する。
Comparative Example 200 mg of Amano P (Jinko Pharmaceutical) was added to sodium phosphate.
1 buffer (20+nM, pl+7) after dissolving in LomQ.
3-Methylglutarate dimethyl ester (174B, )
, Ommol) and shaken at 37°C for 65 hours.

反応終了後、反応液を3規定塩酸で酸性とし、酢酸エチ
ル(10ml)で3回抽出する。抽出液を、飽和重炭酸
ナトリウム水溶液(10ml)で3回洗浄後、洗浄液を
濃塩酸で酸性とし、酢酸エチル(10ml)で3回抽出
する。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウ
ムで乾燥、濃縮し、(+)−3−メチルグルタル酸モノ
メチルエステル80mg(50%収率)を得た。このモ
ノエステルの光学純度は、74%eeであった。本比較
例に示す様に、水溶液中の反応では、収率が低く、また
酵素が水に溶解している為。
After the reaction is completed, the reaction solution is acidified with 3N hydrochloric acid and extracted three times with ethyl acetate (10 ml). After washing the extract three times with saturated aqueous sodium bicarbonate solution (10 ml), the washings are acidified with concentrated hydrochloric acid and extracted three times with ethyl acetate (10 ml). The extract was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated to obtain 80 mg (50% yield) of (+)-3-methylglutaric acid monomethyl ester. The optical purity of this monoester was 74%ee. As shown in this comparative example, the yield is low in the reaction in an aqueous solution, and the enzyme is dissolved in water.

酵素の回収及び再使用が困難であるという欠点を有して
いる。
It has the disadvantage that recovery and reuse of the enzyme is difficult.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼( I ) 〔式中Rは、水素、ハロゲン、置換もしくは無置換の脂
肪族炭化水素基、置換もしくは無置換の芳香族炭化水素
基、又は酸素、窒素、硫黄などのヘテロ原子を含む少く
とも1種の置換基である。〕 で示されるβ−置換グルタル酸無水物をZ−OH〔式中
、Zは炭素数1〜10の直鎖もしくは分枝鎖アルキル基
を表わす〕の存在下、酵素懸濁有機溶媒中で、加アルコ
ール分解する事を特徴とする、 一般式(II) ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼(II) 〔式中R及びZは前記のとおりである〕 で示される光学活性β−置換グルタル酸モノエステルを
製造する方法。
(1) General formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula, R is hydrogen, halogen, substituted or unsubstituted aliphatic hydrocarbon group, substituted or unsubstituted aromatic carbon At least one substituent containing a hydrogen group or a heteroatom such as oxygen, nitrogen, or sulfur. ] The β-substituted glutaric anhydride represented by is suspended in an enzyme-suspending organic solvent in the presence of Z-OH [wherein Z represents a straight or branched alkyl group having 1 to 10 carbon atoms]. General formula (II), which is characterized by alcoholysis ▲There are mathematical formulas, chemical formulas, tables, etc.▼or ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) [In the formula, R and Z are as above. ] A method for producing an optically active β-substituted glutaric acid monoester.
(2)酵素が加水分解酵素である特許請求の範囲第(1
)項記載の製造方法
(2) Claim No. 1 in which the enzyme is a hydrolase
Manufacturing method described in )
JP24876387A 1987-09-30 1987-09-30 Production of optically active beta-substituted glutaric acid monoester Pending JPH0191789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24876387A JPH0191789A (en) 1987-09-30 1987-09-30 Production of optically active beta-substituted glutaric acid monoester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24876387A JPH0191789A (en) 1987-09-30 1987-09-30 Production of optically active beta-substituted glutaric acid monoester

Publications (1)

Publication Number Publication Date
JPH0191789A true JPH0191789A (en) 1989-04-11

Family

ID=17183012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24876387A Pending JPH0191789A (en) 1987-09-30 1987-09-30 Production of optically active beta-substituted glutaric acid monoester

Country Status (1)

Country Link
JP (1) JPH0191789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758336B2 (en) 2000-01-25 2004-07-06 Norio Kohana Storage case
CN115595340A (en) * 2022-11-28 2023-01-13 凯莱英生命科学技术(天津)有限公司(Cn) Method for synthesizing alkylene diacid monoester
WO2023126397A1 (en) 2021-12-31 2023-07-06 L'oreal Kit for customizing a cosmetic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758336B2 (en) 2000-01-25 2004-07-06 Norio Kohana Storage case
WO2023126397A1 (en) 2021-12-31 2023-07-06 L'oreal Kit for customizing a cosmetic composition
CN115595340A (en) * 2022-11-28 2023-01-13 凯莱英生命科学技术(天津)有限公司(Cn) Method for synthesizing alkylene diacid monoester

Similar Documents

Publication Publication Date Title
JPH1081648A (en) Enantiomerangereicherte malonic acid monoester alphamonosubstituted with tertiary hydrocarbon group or its salt and its production
JP3117157B2 (en) Acylation method of alcohol with immobilized enzyme
JPH0191789A (en) Production of optically active beta-substituted glutaric acid monoester
JPH01235599A (en) Method for optically resolving racemic alcohol
AU670088B2 (en) Enzymatic process to separate racemic mixtures of delta valerolactones
JP3704719B2 (en) Process for producing optically active 3-aminobutanoic acid and its ester intermediate
JPH05130881A (en) Enzymatic hydrolyzing method for carboxylic acid derivative
JPH1033191A (en) Optically active 3-n-substituted aminoisobutyric acid compounds and their salts and their production
JP3010382B2 (en) Method for producing (R) -2-propoxybenzene derivative
WO1991013163A1 (en) Stereospecific resolution by hydrolysis of esters of 2-arylpropionic acids by liver enzymes
JPH0533995B2 (en)
KR0150287B1 (en) Process for producing optically active 2-phenyl-1,3-propanediol derivatives
EP0435293B1 (en) Methods of producing optically active hydroxyesters
JP2764294B2 (en) Method for producing optically active 1,1'-binaphthol
JP3072150B2 (en) Method for producing optically active [3] (1,1 ') ferrocenophanes
JPH0253498A (en) Enzymatic resolution of optical isomer of racemic ester derivative of 3-mercapto-2-alkyl- propionic acid
JPS6012992A (en) Production of optically active carboxylic acid
JPS6078596A (en) Preparation of optically active oxazolidine derivative by immobilized enzyme
JPH01171497A (en) Optical resolution of racemic alcohol
JPH08119958A (en) Production of optically active chroman compound
JPH10210997A (en) Production of optically active 3-quinacridinol
JP3866357B2 (en) Thermostable, solvent-resistant esterase
JPS63173597A (en) Ester interchange reaction by enzyme
JP2714677B2 (en) Method for producing optically active 1,1'-binaphthol
JPH01247100A (en) Production of optically active carboxylic acid derivative