JPH01648A - Method for manufacturing sintered electrodes for alkaline storage batteries - Google Patents

Method for manufacturing sintered electrodes for alkaline storage batteries

Info

Publication number
JPH01648A
JPH01648A JP62-155002A JP15500287A JPH01648A JP H01648 A JPH01648 A JP H01648A JP 15500287 A JP15500287 A JP 15500287A JP H01648 A JPH01648 A JP H01648A
Authority
JP
Japan
Prior art keywords
alkali
alkaline storage
metal salt
active material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-155002A
Other languages
Japanese (ja)
Other versions
JPS64648A (en
JPH0550101B2 (en
Inventor
中堀 真介
本田 浩則
大槻 浩三
Original Assignee
三洋電機株式会社
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP62-155002A priority Critical patent/JPH01648A/en
Publication of JPS64648A publication Critical patent/JPS64648A/en
Publication of JPH01648A publication Critical patent/JPH01648A/en
Publication of JPH0550101B2 publication Critical patent/JPH0550101B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ピ) 産業上の利用分野 本発明はニッケル焼結基板を用い、化学含浸法により活
物質を充填するという、アルカリ蓄電池用焼結式電極の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a method for manufacturing a sintered electrode for an alkaline storage battery, which uses a nickel sintered substrate and fills it with an active material by a chemical impregnation method.

仲) 従来の技術 一般に、この檜の焼結式電極は、見掛比重の小さいカー
ボニルニッケル粉末をメチルセルロース等の増粘剤及び
水と混合し、スラリーを得、このスラリー上ニッケル又
はニッケルメッキした金網或いはパンチングメタル等の
導1芯体に塗着した後、還元雰囲気中において800〜
1000’Cに加熱し、増粘剤及び水を分解して多孔性
ニッケル焼結基板となし、仁の基板多孔部に夫々所定量
の陰、陽極活物質を含浸せしめて陰、陽極電極板となす
ものである。この含浸工程においては、含浸液としての
隘陽極活物質の金属塩@(陰極側にはカドミウム塩、陽
極側にはニッケル塩など)例えば硝殴塩、硫酸塩、塩化
物の水溶液を焼、結基板に含浸せしめ、次にアルカリ溶
液中で化学置換、イ解或いは熱分解により上記塩#Aを
活物質たる水酸化物に転化し、これを水洗、乾燥すると
いう含浸工程t−数回繰返して所定量の活W質を得るも
のである。
Conventional technology Generally, this cypress sintered electrode is made by mixing carbonyl nickel powder with a small apparent specific gravity with a thickener such as methyl cellulose and water to obtain a slurry, and then applying nickel or a nickel-plated wire mesh on top of the slurry. Alternatively, after applying it to a conductive core such as punching metal, apply it to a conductor core body such as punched metal, and then
It was heated to 1000'C to decompose the thickener and water to form a porous nickel sintered substrate, and the porous portions of the substrate were impregnated with predetermined amounts of anode and anode active materials to form cathode and anode electrode plates. It is what you do. In this impregnation process, an aqueous solution of metal salts of the anode active material (cadmium salt on the cathode side, nickel salt on the anode side, etc.), such as nitrate salt, sulfate, and chloride, is used as the impregnating liquid. The impregnation process is repeated several times by impregnating the substrate, then converting the above salt #A into a hydroxide as an active material by chemical substitution, ilysis, or thermal decomposition in an alkaline solution, and washing and drying this with water. This is to obtain a predetermined amount of active W material.

上記含浸工程においてにいずれも焼結基板表面に活@質
の層、即ち例えば陰極側では水酸化カドミウム、Pa極
側では水酸化ニッケル等の水酸化物が沈着する。この沈
S物は多孔性焼結基板の孔部を凰ぐと共に、これら沈着
vlJは不溶性であるため、次の水洗にも除去されずに
残り、その九め次回の含浸工程において、含浸液が浸透
しにくくなり含浸量のバラツキを生じ均一な活物質充填
量が得にくくなる。
In each of the above impregnation steps, an active layer, ie, a hydroxide such as cadmium hydroxide on the cathode side and nickel hydroxide on the Pa electrode side, is deposited on the surface of the sintered substrate. This precipitate covers the pores of the porous sintered substrate, and since these deposits are insoluble, they remain unremoved even in the next washing with water, and in the ninth impregnation step, the impregnating solution is removed. This makes it difficult for the active material to penetrate, causing variations in the amount of impregnation, making it difficult to obtain a uniform filling amount of the active material.

そこでこの欠点を除くために従来上記含浸工程において
、化学置換等により水酸化物となしたものを水洗する際
に、ブラッシングを行って焼結基板表面の沈着物を除去
する方法が採られている。
Therefore, in order to eliminate this drawback, conventional methods have been adopted in which the deposits on the surface of the sintered substrate are removed by brushing when washing the hydroxide formed by chemical substitution etc. in the above impregnation process with water. .

しかしながら、この方法によれば谷水洗時に一々ブラッ
シングを行うために工数がかかり、含浸工程が複雑とな
ると共に電極表面に陽をつけるばかりでなく、焼結基板
孔部の活物質までも除去する懸念がるる。
However, with this method, it takes many man-hours to brush each time during valley water washing, which complicates the impregnation process, and there is a concern that not only will the electrode surface be stained, but also the active material in the holes of the sintered substrate may be removed. Garuru.

又、他の方法として脣公IFB60−8585号公報に
示されているように、焼結基板に所定活物質の塩@を含
浸したる後、この含浸液と同一の組成を有するが低濃度
である塩溶液中に浸漬して、これら濃度差による拡散に
より基板表面に付着せる塩fAを、a度を低減せしめて
基板表面より除去することが提案されている。しかしな
がら、この方法によれば、工程上時間を要すると共に、
強固に付層した活物質が生じた場合等にはその除去効果
が十分に得られないという問題点を有していた。
Another method is to impregnate a sintered substrate with a salt of a predetermined active material, as shown in IFB No. 60-8585. It has been proposed that the salt fA, which adheres to the substrate surface by immersion in a certain salt solution and diffuses due to the concentration difference, is removed from the substrate surface by reducing the a degree. However, this method requires time and
There is a problem in that when a strongly attached active material is formed, a sufficient removal effect cannot be obtained.

e→ 発明が解決しようとする問題点 本発明は前記問題点に遣みなされたものであって、活物
質含浸時において不要な付着活物質による焼結基板の孔
部の目づまVを抑制して含浸液を浸透しやすくし、活物
質全効率良く充填しようとするものである。加えて本発
明は、水洗工程を省略しうるものであり、電極製造工i
を簡略化し□よ)とするものである。
e→ Problems to be Solved by the Invention The present invention has been made to address the above-mentioned problems, and is aimed at suppressing the clogging V of the pores of a sintered substrate due to unnecessary adhering active material during active material impregnation. The purpose is to make it easier for the impregnating liquid to penetrate and to fill the active material with high efficiency. In addition, the present invention allows the water washing step to be omitted, and the electrode manufacturing process can be simplified.
This is simplified to □.

に)問題点を解決するための手段 不透明のアルカリ蓄電池用焼結式−極の製造方法に、ニ
ッケル焼結基板を金属塩水溶液に浸漬した後、アルカリ
処理を行いl記金属塩を水酸化9勿に変化させた後、i
σ記アルカリを一部残存させた状態で再度金属塩水溶液
に浸漬することを特徴とするものである。
2) Means for Solving Problems In the method for manufacturing opaque sintered electrodes for alkaline storage batteries, a sintered nickel substrate is immersed in an aqueous solution of metal salts, and then subjected to alkali treatment to hydrate the metal salts (9). Of course, after changing i
This is characterized by immersing the metal salt aqueous solution again in a state in which a portion of the alkali σ remains.

また前記アルカリ処理と、再度の孟属塩水溶液への浸漬
工程との同に、前記ア)vカリ処理工程時に匿用したア
ルカリエフも低1度のアルカリもしくvユ水に浸漬する
ことにエリアルカリの拡散が十分に行えるので、更に効
率よく活物質を充植しうる。
In addition, at the same time as the alkali treatment and the immersion process in the aqueous Meng salt solution, the Alkali-F that was saved during the a) v-potash treatment process is also immersed in low-1 degree alkali or v-water. Since the elyalkali can be sufficiently diffused, the active material can be planted more efficiently.

(ホ)作 用 化学含浸法で従来行なわれている金属塩溶液をニッケル
焼結基板に含浸し、アルカリ中で活物質化するのとは逆
に、アルカリを基板に含浸、保持させ、金4塩溶液に浸
漬することVC工ってこの金属塩を活物質化することが
0T岨でるる。また、この効果を最大限発揮するために
は、ニッケル焼結基板表面のアルカリをある程度除去す
る、あるいは基体の多孔体内部の水分を十分に除去して
おくことが付着、耳づま9の防止になる。友とえば水分
除去の方法としては乾燥するのが良い。このようにする
ことで、金属4溶液は直ちに焼結基板内部に浸透されや
すくなる。ここで、雀属塩溶液へのアルカリの持ち込み
によるPH及び濃度変化は、含浸時性のみならず、性能
にも影響を与えるため、十分に留意する心安がある。
(E) Function Contrary to the conventional chemical impregnation method in which a nickel sintered substrate is impregnated with a metal salt solution and made into an active material in an alkali, the substrate is impregnated with an alkali and held therein. It is possible to turn this metal salt into an active material by immersing it in a salt solution and using VC processing. In addition, in order to maximize this effect, it is necessary to remove a certain amount of alkali on the surface of the nickel sintered substrate, or to sufficiently remove moisture inside the porous body of the substrate, to prevent adhesion and clogging. Become. For example, drying is a good way to remove moisture. By doing so, the metal 4 solution is easily permeated into the inside of the sintered substrate. Here, it is safe to pay sufficient attention to changes in pH and concentration due to the introduction of alkali into the salt solution, since this affects not only the impregnating properties but also the performance.

(へ)実施例 多孔度約85%の焼結ニッケル基板を用い80 ’Cテ
、lj ラスR極法テP H1、*H5,5−tE、ル
/1に調理准持された硝酸ニッケル(金属塩)水溶液に
浸rA後、乾燥して80’C,25%の4性ソーダに浸
眞した。さらにこの後、水に約5抄1stDtし、乾燥
して、再び前記硝酸ニッケル水溶液に浸漬する。以上の
操作を1サイクルとして、この操作を繰り返したときの
活物貞光填童の伸び金、図中仇に示した。このようにし
て得られた1極を本開明蹴極aとする。
(F) Example Using a sintered nickel substrate with a porosity of about 85%, nickel nitrate (cooked to a temperature of 80'C, lj, 5-tE, 1/1) was used. (Metal salt) After immersing in an aqueous solution, it was dried and soaked in 25% tetrahydric soda at 80'C. Further, after this, about 5 pieces of paper were soaked in water for 1stDt, dried, and immersed in the nickel nitrate aqueous solution again. The above operation is regarded as one cycle, and the extension of the living body Sadamitsu dodo when this operation is repeated is shown on the back of the figure. One pole obtained in this manner is referred to as the kick pole a of the present invention.

比較例として、同一の基板を前記硝酸ニッケル水溶液に
浸酸後、同様に乾燥して80℃、25%の苛性ソーダに
浸漬した。このあと従来の通り、水洗してアルカリ’(
r十分に除去し、乾燥する。以上の操作を1サイクルと
して、この傑作’km!l返したときの活物買光填量の
伸びを図中すに示した。
As a comparative example, the same substrate was immersed in the nickel nitrate aqueous solution, dried in the same manner, and immersed in 25% caustic soda at 80°C. After this, as usual, wash with water and alkali' (
r Thoroughly remove and dry. With the above operations as one cycle, you can create this masterpiece 'km! The increase in the amount of active material purchased when the sample was returned is shown in the figure.

このようにして1・)られた成極を比較tibとする。The polarization obtained in this way (1.) is taken as comparison tib.

尚、含浸工程各サイクルでの活物質光J酌i工、谷サイ
クルともアルカリ浸漬後元植孟測定貧科を抜き取り、十
分に水託、乾燥後、風量を測疋し、含浸前の焼結基板重
虚との龜より非出したものである。この活@質充填量(
%)rC,次式で示される。
In addition, in each cycle of the impregnation process, the active material was immersed in alkali in both the light and valley cycles, and the sample was taken out, thoroughly exposed to water, dried, and the air flow rate was measured. This is something that was brought out from the perspective of the board's gravity and weakness. This active @mass filling amount (
%) rC, expressed by the following formula.

図より、本発明゛醒極aは所定活物質−を得るために4
回の含浸工程の〈シ返しで良いが、比較電極すにおいて
は6回含浸を行っても所定活物質充填量が得られていな
い。したがって本発明製造方法にあっては、所定活物質
を充填するための含浸回威が削減されることがわかる。
From the figure, it can be seen that in the present invention, the awakening electrode a is
Although it is sufficient to repeat the impregnation process twice, the predetermined active material filling amount was not obtained in the comparison electrode even after six impregnations. Therefore, it can be seen that in the manufacturing method of the present invention, the impregnation cycle for filling the predetermined active material can be reduced.

また従来化学含浸法で必要とされていた水洗工程全省略
しうる。
Furthermore, the water washing step required in conventional chemical impregnation methods can be completely omitted.

尚、実施例において25%の苛性ソーダによりアルカリ
処理を行った後、5秒間水に浸漬しているが、この工程
が従来性なかれていた水洗工程と異なるのは、水に浸漬
しても完全にアルカリを除去していない点である。した
がつてアルカリを含まない水への浸漬を行う場合は、5
0秒程度以下に保持しておけば、アルカリを保持したま
まに活物質の含浸が行なえる。また、アルカリ処理を行
った後、このアルカリ処理時のアルカリよりも低a度の
アルカリによシ処理することにより効率良く、アルカリ
の拡散が行なわれる。
In addition, in the example, after performing alkaline treatment with 25% caustic soda, it was immersed in water for 5 seconds, but this process differs from the conventional water washing process in that it was completely immersed in water. The point is that alkali is not removed. Therefore, when immersing in water that does not contain alkali, 5
If the time is maintained at about 0 seconds or less, the active material can be impregnated while the alkali is maintained. Further, after the alkali treatment, the alkali can be efficiently diffused by performing the alkali treatment with an alkali having a lower a degree than the alkali used in the alkali treatment.

(ト)  発明の効果 本発明のアルカリ蓄電池用焼結式成極の製造方法によれ
ば、活物質を効率良く充填できるので11L極製造工程
を簡略化しうるものであり、その工業的価11i[きわ
めて大きい。  −
(G) Effects of the Invention According to the method for producing a sintered polarizer for alkaline storage batteries of the present invention, the active material can be filled efficiently, thereby simplifying the 11L electrode production process, and its industrial value is 11i[ Extremely large. −

【図面の簡単な説明】[Brief explanation of the drawing]

図に活吻質含浸工81サイクル毎の活物質充填量の変化
を示したものである。 a・・・本発明電極、 b・・・比較゛成極。
The figure shows the change in the amount of active material filled every 81 cycles of the active anatomy impregnation process. a... Electrode of the present invention, b... Comparative polarization.

Claims (4)

【特許請求の範囲】[Claims] (1)ニッケル焼結基板を金属塩水溶液に浸漬した後、
アルカリ処理を行い前記金属塩を水酸化物に変化させた
後、前記アルカリを一部残存させた状態で、再度金属塩
水溶液に浸漬することを特徴とするアルカリ蓄電池用焼
結式電極の製造方法。
(1) After immersing the nickel sintered substrate in a metal salt aqueous solution,
A method for producing a sintered electrode for an alkaline storage battery, which comprises converting the metal salt into a hydroxide through alkali treatment, and then immersing it in an aqueous metal salt solution again with some of the alkali remaining. .
(2)前記アルカリ処理工程と、再度の金属塩水溶液へ
の浸漬工程との間に、前記アルカリ処理工程時に使用し
たアルカリよりも低濃度のアルカリもしくは水に浸漬す
ることを特徴とする特許請求の範囲第(1)項記載のア
ルカリ蓄電池用焼結式電極の製造方法。
(2) Between the alkali treatment step and the immersion step in the aqueous metal salt solution, the product is immersed in an alkali or water having a lower concentration than the alkali used in the alkali treatment step. A method for producing a sintered electrode for an alkaline storage battery according to scope (1).
(3)前記アルカリ処理工程と、再度の金属塩水溶液へ
の浸漬工程との間に、乾燥工程を設けることを特徴とす
る特許請求の範囲第(1)項記載のアルカリ蓄電池用焼
結式電極の製造方法。
(3) A sintered electrode for an alkaline storage battery according to claim (1), characterized in that a drying step is provided between the alkali treatment step and the step of dipping into the metal salt aqueous solution again. manufacturing method.
(4)前記アルカリ処理工程と、再度の金属塩水溶液へ
の浸漬工程との間に、前記アルカリ処理工程時に使用し
たアルカリよりも低濃度のアルカリもしくは水に浸漬し
た後、乾燥するという工程を設けることを特徴とする特
許請求の範囲第(1)項記載のアルカリ蓄電池用焼結式
電極の製造方法。
(4) Between the alkali treatment step and the re-immersion step in the aqueous metal salt solution, a step is provided in which the alkali is immersed in an alkali or water with a lower concentration than the alkali used in the alkali treatment step, and then dried. A method for manufacturing a sintered electrode for an alkaline storage battery according to claim (1).
JP62-155002A 1987-06-22 Method for manufacturing sintered electrodes for alkaline storage batteries Granted JPH01648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62-155002A JPH01648A (en) 1987-06-22 Method for manufacturing sintered electrodes for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62-155002A JPH01648A (en) 1987-06-22 Method for manufacturing sintered electrodes for alkaline storage batteries

Publications (3)

Publication Number Publication Date
JPS64648A JPS64648A (en) 1989-01-05
JPH01648A true JPH01648A (en) 1989-01-05
JPH0550101B2 JPH0550101B2 (en) 1993-07-28

Family

ID=

Similar Documents

Publication Publication Date Title
CN103993299B (en) A kind of preparation method of nano porous metal material
JPH01648A (en) Method for manufacturing sintered electrodes for alkaline storage batteries
JPH0550101B2 (en)
JP3679658B2 (en) Method for producing alkaline storage battery
JP3738171B2 (en) Method for producing sintered electrode for alkaline storage battery
JPS6068555A (en) Manufacture of plate for alkaline storage battery
JPS62243250A (en) Manufacture of plate for alkaline storage battery
JP3353617B2 (en) Manufacturing method of sintered electrode plate for alkaline storage battery
JPS608585B2 (en) Manufacturing method for alkaline storage battery sintered electrodes
JPH0714576A (en) Manufacture of unsintered electrode
JPS62243251A (en) Manufacture of plate for alkaline battery
JPH01176660A (en) Manufacture of electrode for alkaline storage battery
JP3055387B2 (en) Manufacturing method of electrode plate for alkaline storage battery
JPS6043630B2 (en) Manufacturing method for electrode plates for nickel-cadmium storage batteries
JPS6041758A (en) Manufacture of plate for alkaline storage battery
JP3691301B2 (en) Method for producing alkaline storage battery
JPH0241865B2 (en)
JPS62281268A (en) Manufacture of cathode plate for alkaline storage battery
JPS59154759A (en) Production method of positive plate for nickel cadmium storage battery
JPS61245466A (en) Manufacture of nickel positive plate for alkaline storage battery
KR100328678B1 (en) Preparation method of nickel electrode for alkali storage battery
JPS62105368A (en) Manufacture of plate for alkaline storage battery
JPH0586624B2 (en)
JPS62281269A (en) Manufacture of cathode plate for alkaline storage battery
JP2988218B2 (en) Manufacturing method of sintered cathode plate for alkaline storage battery