JPH0161036B2 - - Google Patents

Info

Publication number
JPH0161036B2
JPH0161036B2 JP54006450A JP645079A JPH0161036B2 JP H0161036 B2 JPH0161036 B2 JP H0161036B2 JP 54006450 A JP54006450 A JP 54006450A JP 645079 A JP645079 A JP 645079A JP H0161036 B2 JPH0161036 B2 JP H0161036B2
Authority
JP
Japan
Prior art keywords
load
generator
runback
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54006450A
Other languages
Japanese (ja)
Other versions
JPS55100100A (en
Inventor
Masayoshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP645079A priority Critical patent/JPS55100100A/en
Publication of JPS55100100A publication Critical patent/JPS55100100A/en
Publication of JPH0161036B2 publication Critical patent/JPH0161036B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は負荷ランバツク装置に係り、特にター
ビン発電機の運転制御に好適な負荷ランバツク装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a load runback device, and more particularly to a load runback device suitable for controlling the operation of a turbine generator.

第1図は一般的なタービン発電機プラントの概
略構成図であり、同図中、1はボイラ、2は主蒸
気止め弁、3は加減弁、4はタービン、5は再熱
器、6は再熱蒸気止め弁、7は発電機、8は電力
系統、9は電流変成器、10は電流検出器、11
は故障検出器、12は復水器、13は給水ポンプ
である。
Figure 1 is a schematic diagram of a typical turbine generator plant, in which 1 is a boiler, 2 is a main steam stop valve, 3 is a control valve, 4 is a turbine, 5 is a reheater, and 6 is a Reheat steam stop valve, 7 is a generator, 8 is a power system, 9 is a current transformer, 10 is a current detector, 11
12 is a condenser, and 13 is a water supply pump.

かかる構成に於いて、ボイラ1にて発生した蒸
気は、主蒸気止め弁2、加減弁3を通つてタービ
ン4を駆動する。第1図に示す如く、再熱形シス
テムの場合、蒸気はさらに再熱器5で再熱され、
再熱蒸気止め弁6を通つてタービン4を駆動する
事となる。この様にしてタービン4が駆動されれ
ば、その軸に結合されている発電機7が回転し、
発電が行なわれ、発電出力は電力系統8に接続さ
れる。また前記発電機7の負荷電流は電流変成器
9により変形され電流検出器10により監視され
ている。また、タービン4を駆動した蒸気は復水
器12により復水され、給水ポンプ13によりボ
イラ1に供給される。
In this configuration, steam generated in the boiler 1 passes through the main steam stop valve 2 and the control valve 3 to drive the turbine 4. As shown in FIG. 1, in the case of a reheat type system, the steam is further reheated in a reheater 5,
The turbine 4 is driven through the reheat steam stop valve 6. When the turbine 4 is driven in this way, the generator 7 connected to its shaft rotates,
Electric power is generated, and the generated output is connected to the power system 8. Further, the load current of the generator 7 is transformed by a current transformer 9 and monitored by a current detector 10. Further, the steam that drove the turbine 4 is condensed by a condenser 12 and supplied to the boiler 1 by a feed water pump 13.

ところで、前記発電機7は固定子巻線を直接冷
却水で冷却する冷却装置を備えるもので、この冷
却装置の故障を検出するために圧力スイツチある
いは温度スイツチ等で構成された故障検出器11
が設けれている。一方、電流検出器10は発電機
7の冷却装置に依らない自冷容量相当の負荷電流
値以上で動作する様に設定されている。
By the way, the generator 7 is equipped with a cooling device that directly cools the stator windings with cooling water, and in order to detect a failure of this cooling device, a failure detector 11 consisting of a pressure switch, a temperature switch, etc. is installed.
is provided. On the other hand, the current detector 10 is set to operate at a load current value equal to or higher than the self-cooling capacity of the generator 7 that does not depend on the cooling device.

以上述べた如く、発電機7の固定子巻線の直接
冷却方式を採用するタービン発電機プラントにお
いては、冷却系統が故障すると、固定子巻線導体
内を流れる冷却水が断水あるいは減水したり、冷
却水が十分冷えないうちに導体に供給されたりす
る等の事故の起こる事がある。この様な状態では
もはや冷却不能となるため、固定子巻線導体は異
常に高温となり、発電機7を危険状態に至らせる
ため、速やかに負荷電流を減少させる動作が必要
となる。この様な動作は一般に負荷ランバツク動
作と呼ばれている。
As mentioned above, in a turbine generator plant that employs a direct cooling method for the stator winding of the generator 7, if the cooling system fails, the cooling water flowing inside the stator winding conductor may stop or decrease. Accidents may occur such as cooling water being supplied to conductors before it is sufficiently cooled. In such a state, cooling is no longer possible, and the stator winding conductor becomes abnormally high in temperature, putting the generator 7 in a dangerous state, so it is necessary to quickly reduce the load current. Such an operation is generally called a load runback operation.

この様な負荷ランバツクは、発電機7の冷却装
置の故障を検出する故障検出器11が動作した時
に、発電機7の負荷電流が自冷容量以上あること
を検出する電流検出器10の出力がなされている
間、加減弁3に閉指令を出すことにより行なわれ
る。同時に、許容時間内に負荷が自冷容量まで下
るかどうかを負荷ランバツク指令が出ている時間
を検出するタイマにより監視し、下らなければ発
電機7をトリツプさせる。一方、許容時間内に負
荷が自冷容量まで下がれば、電流検出器10の出
力が無くなり、負荷ランバツクは終了することと
なる。
Such a load runback occurs when the failure detector 11, which detects a failure in the cooling system of the generator 7, is activated, and the output of the current detector 10, which detects that the load current of the generator 7 is greater than its self-cooling capacity, is While this is being done, a closing command is issued to the regulating valve 3. At the same time, a timer that detects the time during which the load runback command is issued monitors whether the load drops to the self-cooling capacity within the allowable time, and if the load does not drop, the generator 7 is tripped. On the other hand, if the load falls to the self-cooling capacity within the allowable time, the output of the current detector 10 disappears, and the load runback ends.

第2図は従来の負荷ランバツク装置の一例を示
すブロツク図で、同図中、ANDはアンド回路、
Aは前記アンド回路ANDの出力信号、3Mは加減
弁3の制御装置、14はタイマーをそれぞれ示す
ものである。
Figure 2 is a block diagram showing an example of a conventional load runback device, in which AND is an AND circuit;
A indicates an output signal of the AND circuit AND, 3M indicates a control device for the regulating valve 3, and 14 indicates a timer.

かかる構成に於いて、故障検出器11の出力が
有り、かつ電流検出器10の出力が有るという条
件で信号Aが出力される。この信号Aはランバツ
ク指令として加減弁3の制御装置3Mに与えら
れ、加減弁3の閉操作を行う。この後、負荷電流
が発電機7の自冷容量の相当値より下がれば、電
流検出器10の出力が無くなる為、信号Aが復帰
し、加減弁3の閉操作が停止する。一方、信号A
が発生した時点でランバツク許容時間を設定した
タイマ14がタイムカウントを開始し、設定時間
内に信号Aが復帰しなければタイマ14の出力信
号により発電機7をトリツプさせる。
In this configuration, signal A is output under the conditions that there is an output from the failure detector 11 and an output from the current detector 10. This signal A is given to the control device 3M of the regulating valve 3 as a runback command, and the regulating valve 3 is closed. After this, when the load current falls below a value equivalent to the self-cooling capacity of the generator 7, the output of the current detector 10 disappears, so the signal A is restored and the closing operation of the control valve 3 is stopped. On the other hand, signal A
When this occurs, the timer 14 which has set the allowable runback time starts counting, and if the signal A does not return within the set time, the generator 7 is tripped by the output signal of the timer 14.

以上述べた如く、従来の負荷ランバツク装置
は、冷却水圧力低、あるいは冷却水温度高などの
いわゆる冷却水断といわれる故障が発生すると、
タービンの加減弁に負荷減少指令を出し、発電機
7が冷却水断状態で運転できる自冷容量負荷(定
格の26又は30%)まで許容時間内に負荷減少する
ように制御し、もし許容時間内に自冷容量負荷ま
で下らなかつた場合は、負荷ランバツク失敗と判
断し、直ちに発電機7をトリツプさせるものであ
る。
As mentioned above, in conventional load runback devices, when a failure called cooling water cutoff occurs due to low cooling water pressure or high cooling water temperature,
A load reduction command is issued to the turbine control valve, and the generator 7 is controlled to reduce the load within the allowable time to the self-cooling capacity load (26 or 30% of the rating) that can be operated without cooling water. If the load does not reach the self-cooling capacity load within a certain period of time, it is determined that the load runback has failed, and the generator 7 is immediately tripped.

さて、上述した負荷ランバツクは、加減弁3で
タービン4への蒸気量を絞り込む方法で行なわれ
ているが、これはボイラ1への出力指冷を降下さ
せる方法ではボイラ1の熱保有量が大きいため急
速に負荷を下げることが出来ないためである。と
ころが、特に最近の大容量火力発電所に用いられ
る貫流ボイラにおいては、負荷ランバツクを行う
場合、給水流量を加減弁3と協調しながら絞る必
要が有る。つまり加減弁3の絞り込みに対して給
水流量の方が絞り足りないボイラ1が火炉圧高と
なり、逆に給水流量を絞りすぎるとボイラ1が火
炉圧低となる。いずれの場合にも、ボイラ1にと
つては危険であり、ボイラトリツプに至ることも
有る。このため加減弁3を絞る速度は給水側の制
御性から等速度が要求される事となる。
Now, the load runback mentioned above is carried out by reducing the amount of steam to the turbine 4 using the regulating valve 3, but this is because the amount of heat retained in the boiler 1 is large if the output cooling to the boiler 1 is reduced. This is because the load cannot be lowered rapidly. However, especially in once-through boilers used in recent large-capacity thermal power plants, when carrying out load runback, it is necessary to reduce the water supply flow rate in cooperation with the regulating valve 3. In other words, the furnace pressure in the boiler 1 where the feed water flow rate is insufficiently throttled compared to the throttle valve 3 will result in high furnace pressure, and conversely, if the feed water flow rate is throttled too much, the furnace pressure in the boiler 1 will be low. In either case, it is dangerous for the boiler 1 and may even lead to boiler trip. Therefore, the speed at which the regulating valve 3 is throttled is required to be constant from the viewpoint of controllability on the water supply side.

また、一般に蒸気タービン4においては、蒸気
入力と発電機7の出力との間の出力時定数が有
り、特に再熱タービンでは、再熱器の保有蒸気量
によりその時定数は大きい。このため、負荷ラン
バツク時の加減弁3の等速絞り込みに対して発電
機7の出力は遅れて減少することになる。
Further, in general, the steam turbine 4 has an output time constant between the steam input and the output of the generator 7, and in particular, in a reheat turbine, the time constant is large depending on the amount of steam held in the reheater. For this reason, the output of the generator 7 decreases with a delay with respect to constant speed throttling of the regulator valve 3 during load runback.

第3図は定格負荷で運転しているタービン発電
機に上述した負荷ランバツクが発生した時の加減
弁開度Pおよび発電機7の負荷電流Iと時間Tと
の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the regulating valve opening P, the load current I of the generator 7, and the time T when the above-mentioned load runback occurs in the turbine generator operating at the rated load.

第3図から明らかな如く、時間T0にて負荷ラ
ンバツクが開始されれば直ちに加減弁3は一定速
度で絞り込みを始めるが、負荷電流は遅れを減少
しはじめる。時間t1にて加減弁3は発電機自冷容
量相当の開度P1まで絞り込まれるが、この時、
負荷電流はまだ自冷容量相当電流I1に達しないた
め負荷ランバツクは更に進み、時間t2にて負荷電
流がI1に達した状態で負荷ランバツクは停止す
る。この時加減弁3はP2の開度まで絞り込まれ
ており、したがつて負荷電流は負荷ランバツク停
止後もさらに降下を続け、開度P2に相当する負
荷電流I2の値まで降下する。
As is clear from FIG. 3, as soon as the load runback is started at time T0 , the regulator valve 3 starts throttling at a constant speed, but the load current starts to reduce the delay. At time t 1 , the regulating valve 3 is narrowed down to the opening P 1 corresponding to the generator's self-cooling capacity, but at this time,
Since the load current has not yet reached the self-cooling capacity equivalent current I 1 , the load runback continues, and at time t 2 the load runback stops when the load current reaches I 1 . At this time, the regulating valve 3 has been throttled down to the opening degree P2 , so the load current continues to decrease even after the load runback is stopped, and drops to the value of the load current I2 corresponding to the opening degree P2 .

以上述べた如く、発電機7の自冷容量相当の電
流以下なつた時点で負荷ランバツクを停止すると
いう従来の負荷ランバツク装置では、加減弁3の
絞りすぎにより最終整定負荷が下がりすぎてしま
うこととなる。この様な場合、ボイラの制御性、
給水流量の制御性等が悪くなるため、従来より冷
却装置故障による負荷ランバツクはほとんど成功
せずにトリツプに至つている。
As described above, with the conventional load runback device that stops load runback when the current drops below the self-cooling capacity of the generator 7, the final set load may drop too much due to excessive throttling of the regulator valve 3. Become. In such cases, boiler controllability,
Since the controllability of the water supply flow rate, etc. deteriorates, load runbacks due to failure of the cooling system have almost never been successful and have led to tripping.

従つて、本発明の目的は上記従来技術の欠点を
無くし、負荷ランバツク時の制御特性を改善し
て、確実な負荷ランバツクを終了復帰動作を可能
ならしめた負荷ランバツク装置を提供するにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a load runback device that eliminates the drawbacks of the prior art described above, improves the control characteristics during load runback, and enables reliable completion of load runback and return operation.

更に詳細には、本発明は負荷ランバツク時に、
一旦絞り込んだ加減弁を発電機出力電流が自冷容
量に相当する電流よりさらに下がつて来たことを
検出して再度加減弁を開くことにより、負荷ラン
バツク後の整定負荷の下がりすぎを無くし、負荷
ランバツク時の制御特性を改良した新規の負荷ラ
ンバツク装置を提供するものである。
More specifically, during load runback, the present invention provides
By detecting that the generator output current has fallen further below the current corresponding to the self-cooling capacity and opening the regulating valve once again, which has been throttled down, the regulating valve is opened again to prevent the settling load from dropping too much after load runback. The present invention provides a new load runback device with improved control characteristics during load runback.

以下、図面に従つて本発明の負荷ランバツク装
置を更に詳細に説明する。
Hereinafter, the load runback device of the present invention will be explained in more detail with reference to the drawings.

第4図は本発明の一実施例に係る負荷ランバツ
ク装置のブロツク図で、同図中15は第2の電流
検出器、AND2はアンド回路、8は前記アンド
回路AND2の出力信号、3M−1は加減弁3の
閉制御器、3M−2は前記加減弁3の開制御器で
ある。ところで、前記第2の電流検出器15は第
5図の部分回路構成図に示す如く、第1図の電流
変成器9に対して付加されるもので、発電機7の
自冷容量相当の電流より少し低い設定値以下で出
力を出す様に設定されるものである。
FIG. 4 is a block diagram of a load runback device according to an embodiment of the present invention, in which 15 is a second current detector, AND2 is an AND circuit, 8 is an output signal of the AND circuit AND2, and 3M-1 3M-2 is a closing controller for the regulating valve 3, and 3M-2 is an opening controller for the regulating valve 3. By the way, as shown in the partial circuit diagram of FIG. 5, the second current detector 15 is added to the current transformer 9 of FIG. It is set so that the output is output below a slightly lower set value.

以上述べた如き構成に於いて、以下その動作を
第6図の特性図に従つて説明する。第6図中、P
は加減弁開度、Iは負荷電流をそれぞれ示すもの
である。
The operation of the configuration as described above will be explained below with reference to the characteristic diagram shown in FIG. In Figure 6, P
is the opening degree of the adjusting valve, and I is the load current.

今、発電機7の冷却装置に故障が発生し、故障
検出器11が動作した時、負荷電流が発電機7の
自冷容量相当の電流値以上であれば、第1の電流
検出器10が動作して出力を出しているため、ア
ンド回路ANDから信号Aがランバツク指令とし
て出力され、加減弁3の制御装置3Mに与えられ
る。その結果、閉制御器3M−1が動作して前記
加減弁3を一定速度で閉操作する。かかる動作の
結果、負荷電流が発電機7の自冷容量相当より下
がれば電流検出器10の出力が無くなり、信号A
が復帰し、加減弁3の閉操作が停止する。一方、
信号Aが発生した時点までランバツク許容時間を
設定したタイマ14がカウントを開始し、設定時
間内に信号Aが復帰しなければタイマ14の出力
信号により発電機7をトリツプさせる事となる。
Now, when a failure occurs in the cooling system of the generator 7 and the failure detector 11 is activated, if the load current is equal to or greater than the current value equivalent to the self-cooling capacity of the generator 7, the first current detector 10 is activated. Since it is operating and outputting an output, a signal A is output from the AND circuit AND as a runback command and is given to the control device 3M of the regulating valve 3. As a result, the closing controller 3M-1 operates to close the regulating valve 3 at a constant speed. As a result of this operation, if the load current falls below the self-cooling capacity of the generator 7, the output of the current detector 10 disappears, and the signal A
is restored, and the closing operation of the regulating valve 3 is stopped. on the other hand,
The timer 14, which has a set runback allowable time, starts counting until the time when the signal A is generated, and if the signal A does not return within the set time, the output signal of the timer 14 causes the generator 7 to trip.

なお、上述の負荷ランバツク動作がタイマ14
で規定される許容時間内に完了した後も、前に述
べた様に負荷が下がつていくが、負荷電流が発電
機7の自冷容量相当の電流値より少し低い値以下
になると、第2の電流検出器15が動作して出力
を出す。前記第2の電流検出器15の出力はアン
ド回路AND2に与えられるが、その結果、前記
アンド回路AND2からは信号Bが出力される。
前記信号Bは加減弁3の制御装置3Mに与えら
れ、開制御器3M−2により加減弁3の開操作が
行なわれる。この為、加減弁3が開き、負荷電流
が増加するが、この負荷電流が第2の電流検出器
15の設定値以上になれば信号Bが復帰し、第1
図の加減弁3の開操作は停止する。この後に、さ
らに負荷電流が減少すれば、上述の操作をくりか
えし、発電機の負荷電流は自冷容量相当の電流値
より少し低い値に調整され、最終的に整定され
る。この場合、電流検出器のオン、オフの設定値
に少し幅を持たせておけばハンチングすることは
ない。また、給水制御は一旦絞り込みが終了すれ
ば、主蒸気流量、燃料流量、負荷等により自動的
に行なわれるため問題はない。
Note that the load runback operation described above is performed by the timer 14.
Even after the load is completed within the allowable time stipulated by The current detector 15 of No. 2 operates and outputs an output. The output of the second current detector 15 is given to an AND circuit AND2, and as a result, a signal B is output from the AND circuit AND2.
The signal B is given to the control device 3M of the control valve 3, and the control valve 3 is opened by the opening controller 3M-2. Therefore, the regulating valve 3 opens and the load current increases, but when this load current exceeds the set value of the second current detector 15, the signal B returns and the first
The opening operation of the control valve 3 shown in the figure is stopped. After this, if the load current decreases further, the above-described operation is repeated, and the load current of the generator is adjusted to a value slightly lower than the current value corresponding to the self-cooling capacity, and is finally settled. In this case, hunting will not occur if the on/off setting values of the current detector are set a little wider. Further, once the narrowing down is completed, water supply control is automatically performed based on the main steam flow rate, fuel flow rate, load, etc., so there is no problem.

以上の動作の間の、加減弁3の開度Pおよび負
荷電流Iの関係は、第6図に示す通りであるが、
時間t0にて負荷ランバツクが開始されれば、直ち
に加減弁3は一定速度で絞り込みを始め、負荷電
流Iは少し遅れて減少しはじめる。時間t1にて加
減弁3は発電機自冷容量相当の開度P1まで絞り
込まれるが、この時負荷電流Iはまだ自冷容量相
当電流I1に達していないため負荷ランバツクは更
に進み、時間t2にて負荷電流IがI1に達してラン
バツクは停止する。この時、加減弁3はP2の位
置まで絞り込まれている。このため、負荷電流I
はランバツク停止後もさらに降化するが、すぐに
自冷容量相当の電流値の少し下に設定された電流
値I3に達し、この時点t3で加減弁3に開指令が出
されるため、電流値はI3以下には下がらない。そ
して、加減弁3は前に述べた様に、開閉操作を繰
り返し、最終的に自冷容量相当の開度P3に整定
する事となる。
The relationship between the opening degree P of the regulating valve 3 and the load current I during the above operation is as shown in FIG.
When the load runback starts at time t0 , the regulator valve 3 immediately starts throttling down at a constant speed, and the load current I starts to decrease after a short delay. At time t1 , the regulating valve 3 is narrowed down to the opening P1 corresponding to the generator's self-cooling capacity, but at this time the load current I has not yet reached the current I1 corresponding to the self-cooling capacity, so the load runback continues. At time t2 , load current I reaches I1 and runback stops. At this time, the control valve 3 has been narrowed down to the P2 position. Therefore, the load current I
decreases further after the runback stops, but soon reaches the current value I3 , which is set slightly below the current value equivalent to the self-cooling capacity, and at this point t3 , an opening command is issued to the control valve 3. The current value does not fall below I3 . Then, as described above, the regulating valve 3 repeats opening and closing operations, and finally settles to the opening degree P 3 corresponding to the self-cooling capacity.

以上述べた如く、本発明によれば、冷却装置を
有する発電機の冷却系統が故障した場合の負荷ラ
ンバツクを行う場合において、負荷の下げすぎが
なく、アクセントの他の機器との協調のとれた安
定な制御が可能であり、成功率の高い負荷ランバ
ツクを可能ならしめた負荷ランバツク装置を得る
事が出来るものである。
As described above, according to the present invention, when carrying out a load runback when the cooling system of a generator equipped with a cooling device fails, the load is not lowered too much and coordination with other Accent equipment is maintained. It is possible to obtain a load runback device that allows stable control and enables load runback with a high success rate.

なお、上記実施例に於いては、発電機固定子巻
線を水冷却する場合を例示したが、本発明は水冷
却の代わりに他の冷却媒体を用いて冷却するよう
にした発電機に於いても同様に適用することがで
きる事は勿論である。また、上記実施例では許容
時間内に負荷が自冷容量まで下がるかどうかの監
視回路が1系統の場合を例示したが、複数の電流
検出器とタイマの組合せによる複数の監視回路を
設けてもよく、同様の効果を得る事ができるもの
である。
In addition, in the above embodiment, the case where the generator stator winding is water-cooled is illustrated, but the present invention is applicable to a generator that is cooled using another cooling medium instead of water cooling. Of course, it can also be applied in the same way. Furthermore, in the above embodiment, the case where there is one monitoring circuit for checking whether the load is reduced to the self-cooling capacity within the allowable time is exemplified, but it is also possible to provide multiple monitoring circuits using a combination of multiple current detectors and timers. It is possible to obtain similar effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なタービン発電機プラントの概
略構成図、第2図は従来の負荷ランバツク装置の
一例を示すブロツク図、第3図は第2図の構成の
動作を説明する特性図、第4図は本発明の一実施
例に係る負荷ランバツク装置のブロツク図、第5
図は第4図の第2の電流検出器の配置を説明する
部分回路構成図、第6図は第4図の構成の動作を
説明する特性図である。 1……ボイラ、2……主蒸気止め弁、3……加
減弁、4……タービン、7……発電機、10,1
5……電流検出器、11……故障検出器、14…
…タイマー、3M……制御装置。
Fig. 1 is a schematic configuration diagram of a general turbine generator plant, Fig. 2 is a block diagram showing an example of a conventional load runback device, Fig. 3 is a characteristic diagram explaining the operation of the configuration shown in Fig. Figure 4 is a block diagram of a load runback device according to an embodiment of the present invention;
This figure is a partial circuit configuration diagram explaining the arrangement of the second current detector of FIG. 4, and FIG. 6 is a characteristic diagram explaining the operation of the configuration of FIG. 4. 1... Boiler, 2... Main steam stop valve, 3... Control valve, 4... Turbine, 7... Generator, 10,1
5...Current detector, 11...Failure detector, 14...
...Timer, 3M...control device.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却装置を有する発電機の前記冷却装置の故
障を検出する故障検出器と、前記発電機の負荷電
流を検出して、発電機の自冷容量相当より以上の
設定値で第1の出力を行い、前記自冷容量相当よ
り少し低い設定値で第2の出力を行う電流検出器
と、前記故障検出器出力並びに前記第1の出力に
基いて、前記発電機を駆動する原動機に負荷ラン
バツク指令を出力する第1の負荷制御回路と、前
記故障検出器出力並びに前記第2の出力に基い
て、前記原動機に負荷増加を指令する第2の負荷
制御回路と、前記負荷ランバツク指令の出力時間
を監視して前記発電機をトリツプさせる監視回路
を備える事を特徴とする負荷ランバツク装置。
1 A failure detector for detecting a failure of the cooling device of a generator having a cooling device; and a current detector that outputs a second output at a set value slightly lower than the self-cooling capacity, and a load runback command to the prime mover that drives the generator based on the failure detector output and the first output. a first load control circuit that outputs a load runback command; a second load control circuit that commands the prime mover to increase the load based on the failure detector output and the second output; and a second load control circuit that commands the prime mover to increase the load, and outputs the load runback command. A load runback device comprising a monitoring circuit that monitors and trips the generator.
JP645079A 1979-01-23 1979-01-23 Load runback system Granted JPS55100100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP645079A JPS55100100A (en) 1979-01-23 1979-01-23 Load runback system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP645079A JPS55100100A (en) 1979-01-23 1979-01-23 Load runback system

Publications (2)

Publication Number Publication Date
JPS55100100A JPS55100100A (en) 1980-07-30
JPH0161036B2 true JPH0161036B2 (en) 1989-12-26

Family

ID=11638751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP645079A Granted JPS55100100A (en) 1979-01-23 1979-01-23 Load runback system

Country Status (1)

Country Link
JP (1) JPS55100100A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196297A (en) * 1982-05-12 1983-11-15 ア−ス製薬株式会社 Bath boiler detergent

Also Published As

Publication number Publication date
JPS55100100A (en) 1980-07-30

Similar Documents

Publication Publication Date Title
JPS6149907A (en) Controller for level of boiler drum
US5305234A (en) Thermal protection apparatus for a synchronous machine
JPS5870006A (en) Steam turbine equipment bypass system
JPH0161036B2 (en)
JPH0221558B2 (en)
US4053786A (en) Transducer out of range protection for a steam turbine generator system
JP3404480B2 (en) Turbine control device
JPS6120684B2 (en)
JP2686259B2 (en) Operating method of once-through boiler
US2175874A (en) Turbine protective arrangement
JPS6239653B2 (en)
JPS6239655B2 (en)
JPH0429921B2 (en)
JPH0559903A (en) Load runback device
JPH0539901A (en) Method and device for automatically controlling boiler
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method
JPH076605B2 (en) Reactor feedwater flow controller
JP2007177665A (en) Steam turbine plant
JPS5915000B2 (en) Computer-based load runback control method for power generation plants
JPS6134115B2 (en)
JP2000131480A (en) Reactor recirculation pump control system and power supply device
JPH0122521B2 (en)
JPS62210205A (en) Turbine control device
JPH0514878B2 (en)
JPH0410597B2 (en)