JPH0160765B2 - - Google Patents

Info

Publication number
JPH0160765B2
JPH0160765B2 JP7599283A JP7599283A JPH0160765B2 JP H0160765 B2 JPH0160765 B2 JP H0160765B2 JP 7599283 A JP7599283 A JP 7599283A JP 7599283 A JP7599283 A JP 7599283A JP H0160765 B2 JPH0160765 B2 JP H0160765B2
Authority
JP
Japan
Prior art keywords
measured
measurement
charge
parallel light
ccds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7599283A
Other languages
Japanese (ja)
Other versions
JPS59200907A (en
Inventor
Takemitsu Takizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIIENSU KK
Original Assignee
KIIENSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIIENSU KK filed Critical KIIENSU KK
Priority to JP7599283A priority Critical patent/JPS59200907A/en
Publication of JPS59200907A publication Critical patent/JPS59200907A/en
Publication of JPH0160765B2 publication Critical patent/JPH0160765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は、受光素子に照射する光束中に被測
定物を配置させ、被測定物の光束遮蔽量によつて
被測定物の寸法を測定する光学式外寸測定方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical outer dimension measuring method in which the object to be measured is placed in a beam of light irradiating a light receiving element, and the dimensions of the object are measured based on the amount of light beam shielded by the object. Regarding.

光学式外寸測定方法には、通常、平行光束を受
光する受光部の受光素子として電荷結合素子(以
下、CCDという。)が用いられ、このCCDの感光
領域が被測定物測定範囲となる。したがつて、従
来、この感光領域を越える被測定物の外寸を測定
する場合には、第1図に示すように直線状の感光
領域1a,2aを延長する方向に同一のCCD1,
2を直線的に配置して測定していた。ところが第
2図に示すようにCCD1,2のそれぞれの感光
領域1a,2aの長さl1は、CCDのパツケー
ジの全長l2よりも短いため、CCD1,2の互
いの端面を接触させて接合させても平行光束φを
感知できない不感領域1b,2bが存在する。第
1図に示すように大径の被測定物3が不感領域1
b,2bを覆うように配置されたときは、平行光
束φを不感領域1b,2bで感知する必要が生じ
ないため大径の被測定物3の外径は演算処理によ
つて測定可能であるが、第3図の一点鎖線で示す
ような小径の被測定物3aが不感領域1b,2b
中に配置されたときは測定不能となる。このとき
は一点鎖線で示す被測定物3aをCCD1,2の
いずれか一方の感光領域に移動してやらなければ
ならず、第3図ではCCD1の感光領域1aの範
囲内である位置に実線で示す被測定物3aのよう
に移動して配置し、CCD1のみの測定方式にレ
ンジを切換えて測定していた。
In the optical external dimension measurement method, a charge-coupled device (hereinafter referred to as CCD) is usually used as a light-receiving element of a light-receiving section that receives parallel light beams, and the photosensitive area of this CCD becomes the object measurement range. Therefore, conventionally, when measuring the outer dimensions of a workpiece that exceeds this photosensitive area, the same CCD 1,
2 was placed in a straight line for measurement. However, as shown in FIG. 2, the length l1 of the photosensitive areas 1a and 2a of the CCDs 1 and 2 is shorter than the total length l2 of the CCD package, so the end surfaces of the CCDs 1 and 2 are brought into contact with each other and bonded. There are also blind regions 1b and 2b in which the parallel light beam φ cannot be sensed. As shown in Fig. 1, the large diameter object 3 is in the dead area 1
When arranged so as to cover the objects 1b and 2b, there is no need to sense the parallel light beam φ in the insensitive regions 1b and 2b, so the outer diameter of the large diameter object 3 can be measured by calculation processing. However, the small-diameter measured object 3a as shown by the dashed line in FIG.
When placed inside, measurement becomes impossible. In this case, the object to be measured 3a indicated by the dashed line must be moved to the photosensitive area of either CCD 1 or 2, and in FIG. The object to be measured was moved and placed like object 3a, and the range was switched to the CCD1 only measurement method.

しかしながら以上のように複数のCCDの互い
の端面を単に接合させて感光領域を延長させた従
来の測定方法では、不感領域が存在するため、被
測定物(ケーブル、ホース等)が振動を伴つて押
し出されてくる状態から被測定物を配置する場合
には被測定物の測定端縁が不感領域に位置するお
それがあつたり、小径の被測定物は両方のCCD
を使用する測定レンジで測定できない不都合があ
つた。
However, as described above, in the conventional measurement method in which the end surfaces of multiple CCDs are simply joined together to extend the photosensitive area, there is a dead area, which causes the object to be measured (cable, hose, etc.) to vibrate. If you place the object to be measured while it is being pushed out, there is a risk that the measurement edge of the object will be located in the dead area, and if the object is small, both CCDs
There was an inconvenience that measurements could not be taken using the measurement range that uses the .

この発明は上記の欠点に鑑みなされたもので、
被測定物の測定長さ方向に連続した感光領域を構
成して、その範囲内であれば小径の被測定物から
大径の被測定物まで配置位置を移動することなく
直接測定できるようにした光学式外寸測定方法の
提供を目的とする。
This invention was made in view of the above drawbacks.
Measurement of the object to be measured A continuous photosensitive area is configured in the length direction, and within this range, it is possible to directly measure objects from small to large diameters without having to move the installation position. The purpose is to provide an optical external dimension measurement method.

この発明は要約すれば、複数の電荷結合素子を
それぞれの直線状感光領域が被測定物の測定長さ
方向に略平行な面上で連続するように被測定物の
幅方向にずらせた位置に配置し、平行光束を複数
方向から照射して被測定物の測定点で交差させた
ことを特徴とする。
In summary, the present invention can be summarized by placing a plurality of charge-coupled devices at positions shifted in the width direction of the object to be measured so that their respective linear photosensitive areas are continuous on a plane substantially parallel to the length direction of the object to be measured. The device is characterized in that parallel light beams are irradiated from multiple directions and intersect at the measurement point of the object to be measured.

以下、図面を参照してこの発明の実施例につい
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図はこの発明の光学式外寸測定方法を実施
する測定装置の模式図、第5図はその上面図、第
6図はその側面図を示す。
FIG. 4 is a schematic diagram of a measuring device for carrying out the optical outer dimension measuring method of the present invention, FIG. 5 is a top view thereof, and FIG. 6 is a side view thereof.

受光部4は、一平面上の二個所に直線状の感光
領域を有する同一のCCD1,2を、互いに平行
配置となるように被測定物3の幅方向にずらせた
位置で底面を固着して構成されている。
The light receiving section 4 has the same CCDs 1 and 2 having linear photosensitive areas at two locations on one plane, and their bottom surfaces are fixed at positions shifted in the width direction of the object to be measured 3 so that they are arranged parallel to each other. It is configured.

第6図の側面図から明らかなように、被測定物
3の測定長さ方向には、CCD1の不感領域1b
はCCDの感光領域2aの一部に、CCD2の不感
領域2bはCCD1の感光領域1aの一部によつ
てカバーできるように配置されている。すなわ
ち、直線状の二つの感光領域1a,2aが被測定
物3の測定長さ方向に平行な面上で連続するよう
に、CCD1,2は配置されている。したがつて、
CCD1個のときと比べて略2倍に延長された感光
領域は、被測定物3を任意に配置できる許容範囲
であり、測定できる被測定物3の最大径である。
As is clear from the side view of FIG. 6, the dead area 1b of the CCD 1 is
is arranged so that it can be covered by a part of the photosensitive area 2a of the CCD, and the insensitive area 2b of the CCD2 can be covered by a part of the photosensitive area 1a of the CCD1. That is, the CCDs 1 and 2 are arranged so that the two linear photosensitive regions 1a and 2a are continuous on a plane parallel to the measurement length direction of the object 3. Therefore,
The photosensitive area, which is approximately twice as long as when using one CCD, is an allowable range in which the object to be measured 3 can be placed arbitrarily, and is the maximum diameter of the object to be measured 3 that can be measured.

この実施例では二つの光路系を有しており、
CCD1,2のそれぞれの感光領域1a,2aに
向けて照射される平行光束φ1,φ2は、被測定
物3の測定長さ方向に光束を有し、被測定物3の
寸法測定点で角度θで交差するように照射され
る。すなわち、2つの平行光束φ1,φ2は、第
5図、第6図の上面図および側面図で示すよう
に、被測定物3の測定長さの投影方向から見た場
合互いに平行となり、且つ、被測定物3の測定点
でθの角度(0゜<θ<180゜)を有して交差するよ
うに設定されている。
This embodiment has two optical path systems,
The parallel light beams φ1 and φ2 irradiated toward the respective photosensitive regions 1a and 2a of the CCDs 1 and 2 have light beams in the measurement length direction of the object 3, and are at an angle θ at the dimension measurement point of the object 3. The beams are irradiated in an intersecting manner. That is, as shown in the top and side views of FIGS. 5 and 6, the two parallel light beams φ1 and φ2 are parallel to each other when viewed from the direction in which the measured length of the object to be measured 3 is projected, and They are set to intersect at the measurement point of the object to be measured 3 at an angle of θ (0°<θ<180°).

以上のようにして構成された装置において、第
4図で示すような円柱形状の被測定物3が配置さ
れた場合、第5図に示すように平行光束φ1,φ
2の測定長さ方向の感光領域の長さをl3とすれ
ば、CCD1,2に計測される受光長さはl4,
l5となり、結局被測定物3の直径Lは、 L=l3−l4−l5 として求められる。そして、被測定物3はCCD1
個の単独の場合と比べて略2倍の大きさまで測定
できるとともに、第1図で示した従来の測定方法
と異なつて不感領域がカバーされているので、被
測定物3は測定長さ方向に連続する両感光領域1
a,2aの範囲内であればどこでも任意に配置し
て測定できる。また、従来の測定方法では、不感
領域1b,2bが大径の被測定物3の測定長さの
一部として演算処理されるようにセツトしてある
ので、第3図に示したように小径の被測定物3a
を測定するときは測定器のレンジを切換えて
CCD1のみを応当させて測定する必要があつた
が、この装置では小径の被測定物3aでも不感領
域がないため同一レンジで直接測定できる。しか
も、この装置では寸法測定点でθの角度を有して
交差する二系の平行光束φ1,φ2を用いている
ため、被測定物が測定長さ方向に傾いてもその光
束の交差する部分の測定長さの変動は少ないた
め、測定誤差を減少させることができる。
In the apparatus configured as described above, when the cylindrical measured object 3 as shown in FIG. 4 is arranged, the parallel light beams φ1 and φ
If the length of the photosensitive area in the measurement length direction of 2 is l3, the light receiving length measured by CCDs 1 and 2 is l4,
l5, and the diameter L of the object to be measured 3 is finally determined as L=l3-l4-l5. The object to be measured 3 is CCD1
It is possible to measure up to approximately twice the size compared to the case of a single object, and unlike the conventional measurement method shown in Fig. 1, the dead area is covered, so the object to be measured 3 is Continuous double sensitive area 1
It can be arbitrarily placed and measured anywhere within the range of a and 2a. In addition, in the conventional measurement method, the dead areas 1b and 2b are set to be calculated as part of the measurement length of the large-diameter object 3. object to be measured 3a
When measuring, change the range of the measuring instrument.
It used to be necessary to make measurements using only the CCD 1, but with this device, even small-diameter objects 3a can be directly measured in the same range because there is no dead area. Moreover, since this device uses two systems of parallel light beams φ1 and φ2 that intersect at an angle of θ at the dimension measurement point, even if the object to be measured is tilted in the measurement length direction, the area where the light beams intersect will be Since there is little variation in the measured length, measurement errors can be reduced.

なお、以上の装置では受光部4に配置する2個
のCCD1,2を一平面上に配置したが、CCD1,
2の受光感度を向上させるため、第7図に示すよ
うに平行光束φ1,φ2を垂直に受光する角度に
傾けても良い。また、測定点で交差する平行光束
を二方向から2個のCCDに向けて照射したが、
CCDを増設して第8図、第9図に示すように3
方向から寸法測定点で交差する平行光束を照射し
てやれば、被測定物の傾きや捩れに起因する測定
誤差をより一層減少させることができる。すなわ
ち第8図に示すように3個のCCD10〜12を
交互にずらせた状態で平行配置し、まずCCD1
0,11の受光長さを測定してその平均値を求
め、次にその平均値とCCD12の受光長さとか
ら被測定物3の外寸を測定するようにすれば、上
記平均値がCCD12に連続する仮想CCD13に
よつて測定した受光長さに略等しくなるため、被
測定物3が傾いているときには2個のCCD10,
12または11,12によつて測定するよりも外
寸測定精度はさらに向上する。
In addition, in the above device, the two CCDs 1 and 2 arranged in the light receiving section 4 are arranged on one plane, but the CCDs 1 and 2 are arranged on one plane.
In order to improve the light receiving sensitivity of 2, the parallel light beams φ1 and φ2 may be tilted to an angle at which they are vertically received, as shown in FIG. In addition, parallel light beams that intersect at the measurement point were irradiated from two directions toward two CCDs.
By adding more CCDs, three
By irradiating parallel light beams that intersect at the dimension measurement point from different directions, measurement errors caused by inclination or twisting of the object to be measured can be further reduced. That is, as shown in Fig. 8, three CCDs 10 to 12 are arranged parallel to each other in an alternately shifted manner.
If you measure the light receiving lengths of 0 and 11 and find their average value, then measure the outer dimensions of the object 3 from that average value and the light receiving length of CCD 12, the above average value will be calculated by CCD 12. Since it is approximately equal to the light reception length measured by continuous virtual CCDs 13, when the object to be measured 3 is tilted, two CCDs 10,
12 or 11, 12, the external dimension measurement accuracy is further improved.

以上のようにこの発明によれば、複数のCCD
をそれぞれの直線状の感光領域が被測定物の測定
長さ方向に略平行な面上で連続するように被測定
物の幅方向にずらせた位置に配置し、平行光束を
複数方向から照射して被測定物の寸法測定点で交
差させたので、連続した感光領域内であれば小径
の被測定物から大径の被測定物まで配置位置を移
動することなく同一の測定レンジで直接測定でき
るため、絶対値比較は一目瞭然となるとともに測
定器本体の演算回路を大幅に簡略化できる利点を
有する。また平行光束を被測定物の寸法測定点で
交差させた状態で測定するようにしたため、被測
定物が傾いていてもあるいは捩れていても測定誤
差を小さくすることができる。
As described above, according to the present invention, multiple CCDs
are placed at positions shifted in the width direction of the object to be measured so that each linear photosensitive area is continuous on a plane substantially parallel to the length direction of the object to be measured, and parallel light beams are irradiated from multiple directions. Since they intersect at the measurement point of the object to be measured, it is possible to directly measure objects from small diameter objects to large diameter objects within the same measurement range, without having to change the placement position, as long as they are within a continuous photosensitive area. Therefore, the absolute value comparison becomes obvious at a glance, and the arithmetic circuit of the main body of the measuring instrument can be greatly simplified. Furthermore, since measurement is performed with the parallel light beams intersecting at the dimension measurement point of the object to be measured, measurement errors can be reduced even if the object to be measured is tilted or twisted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図はそれぞれ従来の光学式外寸測
定方法を説明する図、第2図はCCDの上面図を
示す。第4図はこの発明の測定方法を実施した装
置の概略斜視図、第5図はその上面図、第6図は
その側面図を示す。第7図は受光感度を向上する
ためのCCDの配置例を示す図である。また第8
図、第9図は測定精度を向上するためのCCDの
配置例を示し、第8図は正面配置図、第9図は上
面配置図である。 1,2…CCD(電荷結合素子)、1a,2a…
感光領域、1b,2b…不感領域、3,3a…被
測定物、4…受光部、φ,φ1,φ2…平行光
束。
FIGS. 1 and 3 are diagrams for explaining a conventional optical external dimension measuring method, respectively, and FIG. 2 is a top view of a CCD. FIG. 4 is a schematic perspective view of an apparatus implementing the measuring method of the present invention, FIG. 5 is a top view thereof, and FIG. 6 is a side view thereof. FIG. 7 is a diagram showing an example of arrangement of CCDs for improving light receiving sensitivity. Also the 8th
9 show an example of the arrangement of CCDs for improving measurement accuracy, FIG. 8 is a front arrangement view, and FIG. 9 is a top arrangement view. 1, 2...CCD (charge coupled device), 1a, 2a...
Photosensitive area, 1b, 2b... Insensitive area, 3, 3a... Measured object, 4... Light receiving section, φ, φ1, φ2... Parallel light beam.

Claims (1)

【特許請求の範囲】 1 直線状の感光領域を有する複数の電荷結合素
子を併設した受光部の前方に被測定物を配置した
状態で、その前方から被測定物に対して平行光束
を照射して前記複数の電荷結合素子の受光長さか
ら被測定物の寸法を測定する光学式外寸測定方法
において、前記複数の電荷結合素子をそれぞれの
直線状の感光領域が被測定物の測定長さ方向に略
平行な面上で連続するように被測定物の幅方向に
ずらせた位置に配置し、前記被測定物の測定長さ
方向に光束を有する複数の平行光束を各々前記複
数の電荷結合素子の感光領域に向けて前記被測定
物の寸法測定点で交差するように複数方向から照
射し、前記複数の電荷結合素子の受光長さに基づ
いて被測定物の寸法を測定することを特徴とする
光学式外寸測定方法。 2 前記複数の電荷結合素子を、複数方向から照
射される前記平行光束を垂直に受光する角度に傾
けた特許請求の範囲第1項記載の光学式外寸測定
方法。
[Scope of Claims] 1. A method in which a parallel light beam is irradiated from the front of the object to be measured, with the object to be measured being placed in front of a light-receiving section that includes a plurality of charge-coupled devices having linear photosensitive areas. In the optical external dimension measuring method of measuring the dimension of the object to be measured from the light receiving length of the plurality of charge-coupled devices, the linear photosensitive area of each of the plurality of charge-coupled devices A plurality of parallel light beams having a luminous flux in the measurement length direction of the object to be measured are connected to each other by charge coupling. It is characterized by irradiating a photosensitive area of the device from a plurality of directions so as to intersect at a dimension measurement point of the object to be measured, and measuring the dimensions of the object to be measured based on the light receiving length of the plurality of charge-coupled devices. Optical external dimension measurement method. 2. The optical external dimension measuring method according to claim 1, wherein the plurality of charge-coupled devices are tilted at an angle to perpendicularly receive the parallel light beams irradiated from a plurality of directions.
JP7599283A 1983-04-28 1983-04-28 Optical method for measuring external size Granted JPS59200907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7599283A JPS59200907A (en) 1983-04-28 1983-04-28 Optical method for measuring external size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7599283A JPS59200907A (en) 1983-04-28 1983-04-28 Optical method for measuring external size

Publications (2)

Publication Number Publication Date
JPS59200907A JPS59200907A (en) 1984-11-14
JPH0160765B2 true JPH0160765B2 (en) 1989-12-25

Family

ID=13592275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7599283A Granted JPS59200907A (en) 1983-04-28 1983-04-28 Optical method for measuring external size

Country Status (1)

Country Link
JP (1) JPS59200907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013538A (en) * 2010-06-30 2012-01-19 Union Tool Co Measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530084Y2 (en) * 1988-06-28 1993-08-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013538A (en) * 2010-06-30 2012-01-19 Union Tool Co Measurement device

Also Published As

Publication number Publication date
JPS59200907A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
JPH10253351A (en) Range finder
US4947202A (en) Distance measuring apparatus of a camera
JPH02236108A (en) Solar sensor
JPH0160765B2 (en)
JPH0444204B2 (en)
JPH0626857A (en) Solar sensor for z-axis
JPH0926318A (en) Distance measuring apparatus
JPH0571914B2 (en)
JPH0348530B2 (en)
JPS6236510A (en) Detecting sensor for bend of lead
JPH11304703A (en) Gloss measuring apparatus
JP3196861B2 (en) Object position detection method and object position detection device
JP3357452B2 (en) Measuring device using laser light
JPS589361B2 (en) Cable height
RU2095753C1 (en) Device for measuring the relative angular position of reflectors
JPS63229306A (en) Linear light receiving device
JP2904591B2 (en) Two-dimensional laser spot position detection sensor
JP3501500B2 (en) Distance measuring device and camera
JPH055608A (en) Method and apparatus for measuring position of circular cross-section object
JPH04145311A (en) Height measuring device
JP3039623U (en) Distance measuring device
JPH0254107A (en) Solar sensor
JPH0412402B2 (en)
JPS6312903A (en) Detector for tip position of lead
JP2555852Y2 (en) Light beam receiver