JP3196861B2 - Object position detection method and object position detection device - Google Patents

Object position detection method and object position detection device

Info

Publication number
JP3196861B2
JP3196861B2 JP34015192A JP34015192A JP3196861B2 JP 3196861 B2 JP3196861 B2 JP 3196861B2 JP 34015192 A JP34015192 A JP 34015192A JP 34015192 A JP34015192 A JP 34015192A JP 3196861 B2 JP3196861 B2 JP 3196861B2
Authority
JP
Japan
Prior art keywords
distance
reflectors
distance measuring
measuring device
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34015192A
Other languages
Japanese (ja)
Other versions
JPH06186332A (en
Inventor
忠義 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP34015192A priority Critical patent/JP3196861B2/en
Publication of JPH06186332A publication Critical patent/JPH06186332A/en
Application granted granted Critical
Publication of JP3196861B2 publication Critical patent/JP3196861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Aerials With Secondary Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は物体位置検出方法及び物
体位置検出装置に関し、例えば、いわゆるタッチパネル
入力装置等の物体位置を簡易に検出するものに適用し得
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object position detecting method and an object position detecting apparatus, and can be applied to a method for easily detecting an object position such as a so-called touch panel input device.

【0002】[0002]

【従来の技術】検出位置の分解能に対する要求が厳しく
ない状況で、ほぼ矩形状領域内に存在する物体の位置を
検出する方法としては、従来、タッチパネル入力装置に
採用されている次のようなものを挙げることができる。
2. Description of the Related Art As a method for detecting the position of an object existing in a substantially rectangular area in a situation where the demand for the resolution of a detection position is not strict, there are the following methods conventionally used in a touch panel input device. Can be mentioned.

【0003】第1の検出方法は、図6に示すように、複
数の発光素子11を一定間隔で並設させると共に、各発
光素子11に対応した受光素子12を同一間隔でしかも
発光素子11の並設線と平行になるように並設させ、発
光素子11からの射出光線を被検出物体10の遮光によ
って受光できない受光素子12の位置から、被検出物体
10についての上記発光素子11の並設線方向の位置を
検出し、このような検出を2方向について行なうことで
被検出物体10の位置を検出する方法である。
In a first detection method, as shown in FIG. 6, a plurality of light emitting elements 11 are juxtaposed at a fixed interval, and light receiving elements 12 corresponding to the respective light emitting elements 11 are arranged at the same interval. The light emitting elements 11 are juxtaposed with respect to the detected object 10 from the position of the light receiving element 12 which cannot receive the emitted light from the light emitting element 11 due to the light shielding of the detected object 10. This is a method of detecting the position of the detected object 10 by detecting the position in the line direction and performing such detection in two directions.

【0004】また、第2の検出方法は、図7に示すよう
に、単位面積当りの抵抗値が均一な2枚の抵抗板21及
び22を僅かに離間して設け、被検出物体20による押
圧力によって両抵抗板21及び22が接触した状態で、
一方の抵抗板21の線状端子21aから他方の抵抗板2
2の線状端子22aへ電流を流して抵抗値(又は電流
値)を検出し、この抵抗値測定を入出力の線状端子を変
えながら複数回繰返し、得られた複数の抵抗値から演算
によって被検出物体20の位置を検出する方法である。
In a second detection method, as shown in FIG. 7, two resistance plates 21 and 22 having a uniform resistance value per unit area are provided slightly apart from each other, With the two resistance plates 21 and 22 in contact with each other by pressure,
From the linear terminal 21a of one resistance plate 21 to the other resistance plate 2
A current is passed to the second linear terminal 22a to detect a resistance value (or a current value), and this resistance value measurement is repeated a plurality of times while changing the input / output linear terminals, and an arithmetic operation is performed from the obtained plurality of resistance values. This is a method of detecting the position of the detected object 20.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た2種類の物体位置の検出方法は共に、信頼性が低いも
のであった。すなわち、第1の方法によれば、いずれか
の発光素子又は受光素子が故障した場合には、その素子
に係るXY座標の一方の値を得ることができなくなり、
このような不都合な状態が発生する確率は素子数が多い
ためかなり高く、その結果、信頼性が低いものであっ
た。また、第2の方法によれば、抵抗板21及び22が
押圧力が解除された状態でも変形やごみの存在などによ
って短絡を続けたりすることが生じ易く信頼性が低いも
のであった。
However, both of the two types of object position detection methods described above have low reliability. That is, according to the first method, when one of the light emitting element or the light receiving element fails, one of the XY coordinates of the element cannot be obtained,
The probability of occurrence of such an inconvenient state is considerably high due to the large number of elements, and as a result, the reliability is low. In addition, according to the second method, even when the resistance plates 21 and 22 are released from the pressing force, short-circuiting is likely to occur due to deformation or the presence of dust, and the reliability is low.

【0006】また、第1の検出方法は多数の素子を必要
とするものであるため、構成の複雑化や上述した信頼性
の面から、物体位置の検出領域が広い場合に適用し難い
ものであり、そのため、検出領域が狭いタッチパネル入
力装置のような用途に適用が限定されていた。また、第
2の検出方法も、2枚の抵抗板21及び22を僅かに離
間して設けることが前提となっているため、抵抗板21
及び22を大きくすることが難しく、そのため、この検
出方法も、検出領域が狭いタッチパネル入力装置のよう
な用途に適用が限定されていた。すなわち、従来の検出
方法は共に、物体位置の検出領域に対する自由度が低い
ものであった。
Further, the first detection method requires a large number of elements, and is difficult to be applied to a case where the detection area of the object position is wide due to the complicated structure and the reliability described above. Therefore, its application has been limited to applications such as touch panel input devices having a narrow detection area. Also, the second detection method is based on the premise that the two resistance plates 21 and 22 are provided slightly apart from each other.
It is difficult to increase the size of the touch panel and the size of the touch panel, and therefore, the application of this detection method is also limited to applications such as a touch panel input device having a narrow detection area. That is, both of the conventional detection methods have a low degree of freedom with respect to the detection area of the object position.

【0007】ところで、タッチパネル入力装置は、通
常、表示装置の表示面の前側に設けられ、表示内容を透
過させるように用いられるものである。上述した第2の
検出方法では、抵抗板21及び22が透光性を有するよ
うに構成している。しかし、抵抗板21及び22を介す
る以上光量の減少は避けることができず、表示内容の多
少の劣化を避けることができない。また、抵抗板21及
び22が存在する以上、物体検出面の垂直方向に物体を
移動できる量が規制され、物体検出面の垂直方向に横切
るような物体を検出する用途に適用がし難いものであ
る。さらに、押圧力を前提としており、自然に存在する
物体を検出するような用途には適用がし難いものであっ
た。
[0007] The touch panel input device is usually provided in front of the display surface of the display device, and is used to transmit display contents. In the above-described second detection method, the resistance plates 21 and 22 are configured to have a light transmitting property. However, a decrease in the amount of light cannot be avoided beyond the resistance plates 21 and 22, and some deterioration of the display content cannot be avoided. Further, as long as the resistance plates 21 and 22 are present, the amount by which the object can be moved in the vertical direction of the object detection surface is restricted, so that it is difficult to apply to applications for detecting an object that crosses the object detection surface in the vertical direction. is there. Furthermore, it is premised on the pressing force, and it is difficult to apply it to an application for detecting a naturally existing object.

【0008】本発明は、以上の点を考慮してなされたも
のであり、信頼性及び汎用性が高い物体位置検出方法及
び物体位置検出装置を提供しようとしたものである。
The present invention has been made in view of the above points, and has as its object to provide an object position detecting method and an object position detecting device having high reliability and versatility.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決するた
め、第1の本発明による物体位置検出方法は、反射面が
互いに対向するように平行に設置された2枚の反射板
と、測距装置とを備え、前記2枚の反射板間に挾まれた
領域にある被検出物体からの空間伝送波が、前記2枚の
反射板においてn回の反射(但し、n≧0)を繰り返し
て前記測距装置に到達するとき、前記測距装置が測定し
た距離と、前記測距装置の測定方向と、前記2枚の反射
板の間の距離とより、前記被検出物体の仮想の物体位置
と、前記反射回数nとを求め、 前記被検出物体の仮想
の物体位置と、前記反射回数とより、前記2枚の反射板
間に挾まれた領域にある被検出物体の位置を決定するこ
ととした。
In order to solve such a problem, a first object position detecting method according to the present invention is a method for detecting an object position, comprising: two reflectors installed in parallel so that their reflection surfaces face each other; A spatial transmission wave from an object to be detected in an area sandwiched between the two reflectors is reflected n times (where n ≧ 0) by the two reflectors. When arriving at the distance measurement device, the distance measured by the distance measurement device, the measurement direction of the distance measurement device, and the distance between the two reflectors, the virtual object position of the detected object, The number of reflections n is obtained, and the position of the detected object in an area sandwiched between the two reflectors is determined from the virtual object position of the detected object and the number of reflections. .

【0010】また、第2の本発明による物体位置検出装
置は、反射面が互いに対向するように平行に設置された
2枚の反射板と、測距装置とを備え、前記2枚の反射板
間に挾まれた領域にある被検出物体からの空間伝送波
が、前記2枚の反射板においてn回の反射(但し、n≧
0)を繰り返して前記測距装置に到達するとき、前記測
距装置が測定した距離と、前記測距装置の測定方向と、
前記2枚の反射板の間の距離とより、前記被検出物体の
仮想の物体位置と、前記反射回数nとを求め、前記被検
出物体の仮想の物体位置と、前記反射回数とより、前記
2枚の反射板間に挾まれた領域にある被検出物体の位置
を決定する距離・位置変換手段で構成されている。
A second object position detecting device according to the present invention comprises two reflectors installed in parallel so that the reflecting surfaces face each other, and a distance measuring device, wherein the two reflectors are provided. The spatially transmitted wave from the object to be detected in the region sandwiched between the two reflectors is reflected n times (where n ≧
0) is repeated to reach the distance measuring device, the distance measured by the distance measuring device, the measurement direction of the distance measuring device,
The virtual object position of the detected object and the number of reflections n are obtained from the distance between the two reflectors, and the virtual object position of the detected object and the number of reflections are used to obtain the two object positions. And a distance / position converting means for determining the position of the detected object in the area sandwiched between the reflectors.

【0011】[0011]

【作用】本発明は2次元位置を距離という1次元情報と
して検出し、それを2次元情報に変換することにし、従
来の課題を解決することを意図している。なお、測距方
法としては、電磁波(好ましくは光)を利用したものだ
けでなく、超音波等を利用をしたものであっても良い。
The present invention aims to solve the conventional problems by detecting a two-dimensional position as one-dimensional information called distance and converting it to two-dimensional information. In addition, as a distance measuring method, not only a method using an electromagnetic wave (preferably light) but also a method using an ultrasonic wave or the like may be used.

【0012】本発明において、検出領域を2枚の平行反
射板で挾み、検出領域にある被検出物体からの電磁波や
超音波等をこれら反射板で反射させるようにした。従っ
て、測距装置は、被検出物体までの距離を各反射板によ
る反射を利用しながら測定することができる。測距装置
及び被検出物体間の測定された距離とその測定の際の測
定方向との対情報は、被検出物体の2次元位置と1対1
に対応しており、測定距離及び測定方向から被検出物体
の2次元位置を決定する。
In the present invention, the detection area is sandwiched between two parallel reflectors, and electromagnetic waves, ultrasonic waves, and the like from an object to be detected in the detection area are reflected by these reflectors. Therefore, the distance measuring device can measure the distance to the detected object while utilizing the reflection from each reflector. The pair information of the measured distance between the distance measuring device and the detected object and the measurement direction at the time of the measurement is one-to-one with the two-dimensional position of the detected object.
The two-dimensional position of the detected object is determined from the measurement distance and the measurement direction.

【0013】[0013]

【実施例】以下、本発明による物体位置検出装置の一実
施例を図面を参照しながら詳述する。ここで、図1がこ
の実施例の構成を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the object position detecting device according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment.

【0014】図1において、被検出物体1が位置するこ
とが許容されている検出領域(検出面)2は、反射面が
互いに対向するように平行に設置された2枚の反射板3
及び4によって挾み込まれている。
In FIG. 1, a detection area (detection surface) 2 in which an object to be detected 1 is allowed to be positioned is composed of two reflection plates 3 installed in parallel so that the reflection surfaces face each other.
And 4.

【0015】この実施例の場合、反射板3の一方の端部
近傍に、光学的な測距装置5が設けられている。この測
距装置5による測定方向は、検出領域(検出面)2の面
上であって、しかも、反射板3とのなす角度が90度よ
り小さい、検出領域2の方向に向いた角度θ(以下、こ
の角度θを測定方向と呼ぶ)を有するようになされてい
る。従って、測距装置5は、検出領域2内に位置する被
検出物体1までの直接の距離を測定しているのではなく
(このような場合もあるが)、入射角θでなる反射が数
回(0回を含む)繰返された経路上で被検出物体1まで
の距離を測定している。なお、この実施例の場合、測距
装置5として測定方向θを可変できるものを適用してい
る。
In this embodiment, an optical distance measuring device 5 is provided near one end of the reflecting plate 3. The direction of measurement by the distance measuring device 5 is on the surface of the detection region (detection surface) 2, and the angle θ with respect to the reflection plate 3 is smaller than 90 degrees and is directed to the direction of the detection region 2. Hereinafter, this angle θ is referred to as a measurement direction). Therefore, the distance measuring device 5 does not measure the direct distance to the detected object 1 located in the detection area 2 (although in such a case), and the number of reflections at the incident angle θ is several. The distance to the object to be detected 1 is measured on a path repeated (including 0 times). In this embodiment, a distance measuring device 5 that can change the measuring direction θ is applied.

【0016】ここで、光学的な測距装置5としては、周
知の種々の装置を適用することができ、限定されるもの
ではない。検出領域2の大きさがタッチパネル入力装置
程度の場合には、カメラの自動焦点装置に利用されてい
る各種のものを適用することができ、特に、測距装置5
からの光線射出がないものが好適である。また、反射板
3及び4間の距離dが十分に大きく検出領域2も大きい
ような場合には、測距装置5としてレーザを射出してそ
の反射光情報によって測距するものを適用することがで
きる。この場合には、被検出物体1もいわゆるコーナキ
ューブ体を表面に備えるような入射された光線を180
度偏向して戻すようなものを適用することを要する。
Here, as the optical distance measuring device 5, various well-known devices can be applied and are not limited. When the size of the detection area 2 is about the size of a touch panel input device, various types used for an automatic focusing device of a camera can be applied.
It is preferable that there is no light emission from the lens. When the distance d between the reflection plates 3 and 4 is sufficiently large and the detection area 2 is large, it is possible to apply a distance measuring device 5 that emits a laser and measures the distance based on the reflected light information. it can. In this case, the detection target object 1 also emits an incident light beam having a so-called corner cube body on its surface.
It is necessary to apply something that is deflected by degrees.

【0017】測距装置5は、測定によって得られた被検
出物体1までの距離L、及び、そのときの測定方向θを
距離・位置変換手段6に与える。
The distance measuring device 5 gives the distance L to the detected object 1 obtained by the measurement and the measuring direction θ at that time to the distance / position converting means 6.

【0018】距離・位置変換手段6は、例えば、マイク
ロコンピュータ等によって実現されているものであり、
与えられた距離Lと測定方向θとの情報から、後述する
ようにして、例えば、光学的な測距装置5の位置を原点
位置とした被検出物体1の2次元座標(x0 ,y0 )を
求めて出力する。
The distance / position conversion means 6 is realized by, for example, a microcomputer or the like.
From the information on the given distance L and the measurement direction θ, as will be described later, for example, the two-dimensional coordinates (x0, y0) of the detected object 1 with the position of the optical distance measuring device 5 as the origin position are determined. Find and output.

【0019】図2及び図3はそれぞれ、距離・位置変換
手段6が実行する変換処理の説明図であり、図2は、反
射板3及び4による反射回数が偶数回(2n回:nは
0、1、2、…)の場合に対するものであり、図3は、
反射板3及び4による反射回数が奇数回(2n+1回)
の場合に対するものである。
FIGS. 2 and 3 are explanatory diagrams of the conversion processing executed by the distance / position conversion means 6, respectively. FIG. 2 shows that the number of reflections by the reflectors 3 and 4 is an even number (2n times: n is 0). , 1, 2,...), And FIG.
Odd number of reflections by reflectors 3 and 4 (2n + 1)
It is for the case of.

【0020】測距装置5が反射を利用して被検出物体1
の距離Lを測定することは、図2及び図3に示すよう
に、測定方向θに測距装置5から距離Lだけ隔てた位置
1aにある被検出物体を反射を利用しないで直接測定す
ることと等価である。
The distance measuring device 5 uses the reflection to detect the object 1 to be detected.
Is to directly measure the object to be detected at the position 1a which is separated from the distance measuring device 5 by the distance L in the measurement direction θ without using reflection, as shown in FIGS. Is equivalent to

【0021】このような仮想の物体位置1aのx座標x
1 及びy座標y1 は、被検出物体1のx座標x0 及びy
座標y0 を用いて、反射が偶数回数の場合には、(1) 式
及び(2) 式のように表すことができ、反射が奇数回数の
場合には、(3) 式及び(4) 式のように表すことができ
る。
The x coordinate x of such a virtual object position 1a
1 and y coordinate y1 are x coordinates x0 and y of object 1 to be detected.
Using the coordinate y0, when the reflection is an even number of times, it can be expressed as in Equations (1) and (2), and when the reflection is an odd number of times, Equations (3) and (4) Can be expressed as

【0022】反射が偶数回 x1 =2nd+x0 …(1) y1 =y0 …(2) 反射が奇数回 x1 =(2n+2)d−x0 …(3) y1 =y0 …(4) また、仮想の物体位置1aのx座標x1 及びy座標y1
は、測定されて既知となった距離L及び測定方向θを用
いて、反射が偶数回数の場合、及び、反射が奇数回数の
場合共に、(5) 式及び(6) 式のように表すことができ
る。
Even number of reflections x1 = 2nd + x0 (1) y1 = y0 (2) Odd number of reflections x1 = (2n + 2) d-x0 (3) y1 = y0 (4) Also, virtual object position X coordinate x1 and y coordinate y1 of 1a
Is expressed using the distance L and the measurement direction θ that have been measured and known, when the number of reflections is an even number, and when the number of reflections is an odd number, as expressed by Equations (5) and (6). Can be.

【0023】 x1 =L sinθ …(5) y1 =L cosθ …(6) 従って、これら(1) 式〜(6) 式を整理することで、被検
出物体1のx座標x0及びy座標y0 はそれぞれ、反射
が偶数回数の場合には、(7) 式及び(8) 式のように表す
ことができ、反射が奇数回数の場合には、(9) 式及び(1
0)式のように表すことができる。
X 1 = L sin θ (5) y 1 = L cos θ (6) Accordingly, by rearranging the expressions (1) to (6), the x coordinate x 0 and the y coordinate y 0 of the detected object 1 can be obtained. When the number of reflections is an even number, they can be expressed as in Equations (7) and (8), and when the number of reflections is an odd number, Equations (9) and (1)
It can be expressed as equation (0).

【0024】反射が偶数回 x0 =L sinθ−2nd …(7) y0 =L cosθ …(8) 反射が奇数回 x0 =−L sinθ+(2n+2)d …(9) y0 =L cosθ …(10) ここで、x0 は0≦x0 ≦dを満足する値であるので、
(7) 式及び(9) 式から、L sinθは、反射が偶数回数の
場合には(11)式の不等式を満足し、反射が奇数回数の場
合には(12)式の不等式を満足するものであることが分か
る。
Even number of reflections x0 = L sin θ-2nd (7) y0 = L cos θ (8) Odd number of reflections x0 = -L sin θ + (2n + 2) d (9) y0 = L cos θ (10) Here, since x0 is a value satisfying 0 ≦ x0 ≦ d,
From equations (7) and (9), L sin θ satisfies the inequality in equation (11) when the reflection is an even number, and satisfies the inequality in equation (12) when the reflection is an odd number. It turns out to be something.

【0025】反射が偶数回 2nd≦L sinθ<(2n+1)d …(11) 反射が奇数回 (2n+1)d≦L sinθ<(2n+2)d …(12) 従って、既知の距離L及び測定方向θで求められるL s
inθが既知の値(反射板3及び4間の距離)dの何倍か
を求め、その倍数の整数部分の値によって、反射回数2
n又は(2n+1)を求めることができ、当然に反射回
数が偶数回か奇数回かも決定することができる。そし
て、決定された反射回数の情報を、(7) 式及び(8) 式、
又は、(9) 式及び(10)式に適用することで、被検出物体
1の座標(x0 ,y0 )を決定することができる。
Even number of reflections 2nd ≦ L sin θ <(2n + 1) d (11) Odd number of reflections (2n + 1) d ≦ L sin θ <(2n + 2) d (12) Therefore, the known distance L and measurement direction θ L s required by
The value of the integral part of the multiple of the known value (distance between the reflectors 3 and 4) d is determined by calculating the number of reflections 2
n or (2n + 1) can be obtained, and it is naturally possible to determine whether the number of reflections is even or odd. Then, information of the determined number of reflections is expressed by Expressions (7) and (8),
Alternatively, by applying to equations (9) and (10), the coordinates (x0, y0) of the detected object 1 can be determined.

【0026】以上のように、上記実施例によれば、1組
の平行反射板3、4、測距装置5及び距離・位置変換手
段6で物体位置検出装置を構成しており、構成要素数が
少ないだけ信頼性が高いものであり、また、経済的に構
成できる可能性が高いものである。
As described above, according to the above embodiment, the object position detecting device is constituted by the set of parallel reflectors 3, 4, the distance measuring device 5, and the distance / position converting means 6, and the number of components , The reliability is high, and the possibility of economical construction is high.

【0027】また、上記実施例によれば、検出領域2が
大きい場合にも、新たな構成要素を必要とせずに物体位
置検出装置を構成でき、検出領域に対する自由度が大き
いものである。
Further, according to the above embodiment, even when the detection area 2 is large, the object position detection device can be configured without requiring any new components, and the degree of freedom with respect to the detection area is large.

【0028】さらに、上記実施例によれば、検出領域2
の垂直方向には物体位置を検出するための構成が存在し
ないため、検出領域2の垂直方向になんらかの機能が行
われる装置にも適用可能なものである。例えば、この実
施例の物体位置検出装置をタッチパネル入力装置に適用
した場合に、表示装置による表示内容が位置検出構成に
よって見難くなったりすることはない。
Further, according to the above embodiment, the detection area 2
Since there is no configuration for detecting the object position in the vertical direction, the present invention can be applied to an apparatus that performs some function in the vertical direction of the detection area 2. For example, when the object position detecting device of this embodiment is applied to a touch panel input device, the display content of the display device does not become difficult to see due to the position detecting configuration.

【0029】さらにまた、上記実施例によれば、測距装
置5として測距方向θを可変できるものを適用したの
で、検出領域2の全域に渡って、物体位置を検出するこ
とができる。
Furthermore, according to the above-described embodiment, since the distance measuring device 5 that can change the distance measuring direction θ is applied, the object position can be detected over the entire detection area 2.

【0030】なお、本発明は上記実施例のものに限定さ
れるものではない。他の実施例を数例挙げると、以下の
通りである。
The present invention is not limited to the above embodiment. Some other examples are as follows.

【0031】(1) 測距装置5の測定方向θを固定しても
良い。被検出物体1が大きく、測定方向θが90度に近
い値の場合には、測距装置5の測定方向θを固定して
も、検出領域2のほぼ全域で物体1を検出できる。
(1) The measuring direction θ of the distance measuring device 5 may be fixed. When the detected object 1 is large and the measurement direction θ is a value close to 90 degrees, the object 1 can be detected in almost the entire detection area 2 even if the measurement direction θ of the distance measuring device 5 is fixed.

【0032】(2) 測距装置5による距離測定を測定方向
θを変えて2回以上行ない、距離測定毎に得られた物体
位置座標の平均値を出力座標とする。このようにする
と、出力座標の精度を高めることができる。
(2) The distance measurement by the distance measuring device 5 is performed twice or more while changing the measurement direction θ, and the average value of the object position coordinates obtained for each distance measurement is set as the output coordinate. By doing so, the accuracy of the output coordinates can be improved.

【0033】(3) 測距装置5を次の観点から2台以上適
用する。例えば、測距装置の測定可能距離に上限があっ
て検出領域2の全域を1台の測距装置5でカバーできな
い場合は、図4に示すように、2台以上の測距装置5
a、5bがそれぞれ検出領域2の一部2a、2bを担当
する。この場合でも、反射板3及び4は2台以上の測距
装置5に共通に用いられる。また、3台以上の測距装置
5を適用する場合には、反射板3又は4の一部に開口を
設けてその開口から測距装置が距離を測定するようにし
ても良い。
(3) Two or more distance measuring devices 5 are applied from the following viewpoints. For example, when there is an upper limit on the measurable distance of the distance measuring device and the entire detection area 2 cannot be covered by one distance measuring device 5, as shown in FIG.
a and 5b are responsible for parts 2a and 2b of the detection area 2, respectively. Also in this case, the reflectors 3 and 4 are commonly used by two or more distance measuring devices 5. When three or more distance measuring devices 5 are applied, an opening may be provided in a part of the reflector 3 or 4, and the distance measuring device may measure the distance from the opening.

【0034】(4) 測距装置5を次の観点から2台以上適
用する。例えば、測定方向θが固定された測距装置を2
台以上適用し、図5に示すように、測定方向θとの関係
で1台の測距装置では測定することが難しい位置の測定
を2台以上の測距装置5a、5bが相補う。
(4) Two or more distance measuring devices 5 are applied from the following viewpoints. For example, a distance measuring device having a fixed measurement direction θ
As shown in FIG. 5, two or more distance measuring devices 5a and 5b complement the measurement of a position that is difficult to measure with one distance measuring device in relation to the measurement direction θ.

【0035】(5) 測距装置5を、測定精度の向上を期し
て2台以上適用する。各測距装置の測定座標の平均値を
出力座標とする。
(5) Two or more distance measuring devices 5 are applied in order to improve measurement accuracy. The average value of the measured coordinates of each distance measuring device is set as the output coordinate.

【0036】(6) 反射板3及び4に挾まれた領域を、検
出領域2より反射板の延長方向に大きくなるようにす
る。測距装置5の多くは、測定可能距離に下限があって
ある値以下の距離を測定することができず、この下限距
離に応じて、反射板3及び4に挾まれた領域の一部を非
検出領域とする。
(6) The area between the reflectors 3 and 4 is made larger than the detection area 2 in the direction in which the reflectors extend. Many of the distance measuring devices 5 have a lower limit of the measurable distance and cannot measure a distance less than a certain value. According to the lower limit distance, a part of the area sandwiched by the reflectors 3 and 4 is removed. This is a non-detection area.

【0037】(7) 測距装置5として光学的なものに変
え、超音波や、光以外の電磁波等の反射し得る性格を有
する空間伝搬波を適用したものを用いることができる。
(7) The distance measuring device 5 may be replaced with an optical one, and may be a device to which a spatially propagating wave such as an ultrasonic wave or an electromagnetic wave other than light, which has a property of being reflected, is used.

【0038】[0038]

【発明の効果】以上のように、本発明によれば、反射面
が互いに対向するように平行に設置された2枚の反射板
と、測距装置とを備え、各反射板による反射を利用しな
がら2枚の反射板間に挾まれた検出領域にある被検出物
体までの距離を測定し、この測定された距離及びその測
定方向から、被検出物体の位置を決定するようにしたの
で、信頼性及び汎用性が高い物体位置検出方法及び物体
位置検出装置を実現できる。
As described above, according to the present invention, there are provided two reflectors provided in parallel so that the reflecting surfaces face each other, and a distance measuring device, and the reflection by each reflector is utilized. While measuring the distance to the object to be detected in the detection area sandwiched between the two reflectors, the position of the object to be detected is determined from the measured distance and the measurement direction. An object position detection method and an object position detection device with high reliability and versatility can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of an embodiment.

【図2】実施例の距離及び位置座標の変換原理(その
1)の説明図である。
FIG. 2 is an explanatory diagram of a conversion principle (part 1) of distance and position coordinates in the embodiment.

【図3】実施例の距離及び位置座標の変換原理(その
2)の説明図である。
FIG. 3 is an explanatory diagram of a conversion principle (part 2) of distance and position coordinates according to the embodiment.

【図4】他の実施例(その1)の説明図である。FIG. 4 is an explanatory diagram of another embodiment (part 1).

【図5】他の実施例(その2)の説明図である。FIG. 5 is an explanatory diagram of another embodiment (part 2).

【図6】第1の従来方法の説明図である。FIG. 6 is an explanatory diagram of a first conventional method.

【図7】第2の従来方法の説明図である。FIG. 7 is an explanatory diagram of a second conventional method.

【符号の説明】 1…被検出物体、2…検出領域、3、4…反射板、5…
光学的測距装置、6…距離・位置変換手段。
[Description of Signs] 1 ... detected object, 2 ... detection area, 3, 4 ... reflector, 5 ...
Optical distance measuring device, 6... Distance / position conversion means.

フロントページの続き (56)参考文献 特開 昭57−60204(JP,A) 特開 昭49−74050(JP,A) 特開 昭63−157003(JP,A) 特開 昭59−119206(JP,A) 特開 昭58−132832(JP,A) 特開 昭59−14082(JP,A) 特開 平1−295214(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01S 7/48 - 7/51 G01S 17/00 G01B 11/00 - 11/30 G06F 3/03 Continuation of the front page (56) References JP-A-57-60204 (JP, A) JP-A-49-74050 (JP, A) JP-A-63-157003 (JP, A) JP-A-59-119206 (JP, A) JP-A-58-13328 (JP, A) JP-A-59-14082 (JP, A) JP-A-1-295214 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB G01S 7/48-7/51 G01S 17/00 G01B 11/00-11/30 G06F 3/03

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反射面が互いに対向するように平行に設
置された2枚の反射板と、測距装置とを備え、 前記2枚の反射板間に挾まれた領域にある被検出物体か
らの空間伝送波が、前記2枚の反射板においてn回の反
射(但し、n≧0)を繰り返して前記測距装置に到達す
るとき、前記測距装置が測定した距離と、前記測距装置
の測定方向と、前記2枚の反射板の間の距離とより、前
記被検出物体の仮想の物体位置と、前記反射回数nとを
求め、 前記被検出物体の仮想の物体位置と、前記反射回数とよ
り、前記2枚の反射板間に挾まれた領域にある被検出物
体の位置を決定することを特徴とした物体位置検出方
法。
An object is provided with two reflectors, which are installed in parallel so that their reflection surfaces face each other, and a distance measuring device, and detects an object to be detected in an area sandwiched between the two reflectors. When the spatial transmission wave reaches the distance measuring device by repeatedly reflecting n times (where n ≧ 0) on the two reflectors, the distance measured by the distance measuring device and the distance measuring device From the measurement direction and the distance between the two reflectors, the virtual object position of the detected object and the number of reflections n are obtained, and the virtual object position of the detected object and the number of reflections are calculated. Determining the position of the object to be detected in the area sandwiched between the two reflectors.
【請求項2】 反射面が互いに対向するように平行に設
置された2枚の反射板と、測距装置とを備え、 前記2枚の反射板間に挾まれた領域にある被検出物体か
らの空間伝送波が、前記2枚の反射板においてn回の反
射(但し、n≧0)を繰り返して前記測距装置に到達す
るとき、前記測距装置が測定した距離と、前記測距装置
の測定方向と、前記2枚の反射板の間の距離とより、前
記被検出物体の仮想の物体位置と、前記反射回数nとを
求め、 前記被検出物体の仮想の物体位置と、前記反射回数とよ
り、前記2枚の反射板間に挾まれた領域にある被検出物
体の位置を決定する距離・位置変換手段を備えたことを
特徴とした物体位置検出装置。
2. A device comprising two reflectors, which are installed in parallel so that their reflection surfaces face each other, and a distance measuring device, wherein the object to be detected is located in a region sandwiched between the two reflectors. When the spatial transmission wave reaches the distance measuring device by repeatedly reflecting n times (where n ≧ 0) on the two reflectors, the distance measured by the distance measuring device and the distance measuring device From the measurement direction and the distance between the two reflectors, the virtual object position of the detected object and the number of reflections n are obtained, and the virtual object position of the detected object and the number of reflections are calculated. An object position detecting apparatus, further comprising a distance / position converting means for determining a position of an object to be detected in an area sandwiched between the two reflectors.
JP34015192A 1992-12-21 1992-12-21 Object position detection method and object position detection device Expired - Lifetime JP3196861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34015192A JP3196861B2 (en) 1992-12-21 1992-12-21 Object position detection method and object position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34015192A JP3196861B2 (en) 1992-12-21 1992-12-21 Object position detection method and object position detection device

Publications (2)

Publication Number Publication Date
JPH06186332A JPH06186332A (en) 1994-07-08
JP3196861B2 true JP3196861B2 (en) 2001-08-06

Family

ID=18334221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34015192A Expired - Lifetime JP3196861B2 (en) 1992-12-21 1992-12-21 Object position detection method and object position detection device

Country Status (1)

Country Link
JP (1) JP3196861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738006B2 (en) * 2005-02-03 2011-08-03 株式会社神戸製鋼所 Velocity measurement method using Doppler effect and Doppler velocimeter
JP6819161B2 (en) * 2016-09-09 2021-01-27 日産自動車株式会社 Coordinate calculation method and coordinate calculation device

Also Published As

Publication number Publication date
JPH06186332A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP3830121B2 (en) Optical unit for object detection and position coordinate input device using the same
US20040001197A1 (en) Position measurement apparatus and method using laser
US6654007B2 (en) Coordinate input and detection device and information display and input apparatus
US4947202A (en) Distance measuring apparatus of a camera
JPS61132818A (en) Detector for position of surface
JPH04115108A (en) Three-dimensional scanner
KR100905382B1 (en) Method for processing optical signals in a computer mouse
US20220003852A1 (en) Lidar target simulator, lidar testing system as well as method of testing a lidar device
EP2793042B1 (en) Positioning device comprising a light beam
EP0041146A1 (en) Method and apparatus for determination of angle incidence of electromagnetic energy
US7764358B2 (en) Distance measuring system
JP3196861B2 (en) Object position detection method and object position detection device
EP1485678B1 (en) Chromatic diffraction range finder
US4771181A (en) Method for detecting dripping droplet with refracted and reflected light
US4871910A (en) Method and apparatus for measuring the size of wire rod with laser beam and reference rod
US6710765B1 (en) Input device of 3-D translation and rotation and its method and recording medium
JPH05149809A (en) Optical type tactile sensor
JP3107411B2 (en) Rotary laser light output device
JP3567039B2 (en) Ultrasonic transducer and ultrasonic measuring device
JPH0240506A (en) Distance measuring apparatus
JPH08146051A (en) Eo probe
IT8948505A1 (en) OPTICAL SENSOR.
JPH03192419A (en) Optical two-dimensional coordinate input device and pen for inputting coordinate
JPH0566263A (en) Laser radar device
JP2885703B2 (en) Optical distance measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12