JPH055608A - Method and apparatus for measuring position of circular cross-section object - Google Patents

Method and apparatus for measuring position of circular cross-section object

Info

Publication number
JPH055608A
JPH055608A JP15863091A JP15863091A JPH055608A JP H055608 A JPH055608 A JP H055608A JP 15863091 A JP15863091 A JP 15863091A JP 15863091 A JP15863091 A JP 15863091A JP H055608 A JPH055608 A JP H055608A
Authority
JP
Japan
Prior art keywords
coil
image
axis
circular cross
slit light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15863091A
Other languages
Japanese (ja)
Inventor
Takayuki Naoi
孝之 直井
Hitoshi Aizawa
均 相澤
Yutaka Naruse
豊 成瀬
Akiyuki Iwatani
明之 岩谷
Toshio Onishi
寿雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15863091A priority Critical patent/JPH055608A/en
Publication of JPH055608A publication Critical patent/JPH055608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable highly accurate measuement with a single operation by projecting slit light wide in the direction orthogonal to a strip coil axis line and narrow in the direction of the axis line on the outer circumferential surface of the coil to determined the center position of the coil from an oval circular arc image. CONSTITUTION:Slit light 5 which is emitted from a light source 2 and wide in the direction orthogonal to an axis line Sc of a strip coil 1 and narrow in the direction of the axis line Sc is projected onto the outer circumferential surface of the coil 1 so that the optical axis thereof is skewed upward from below to the axis line Sc. Then, an image 4 of the slit light 5 appearing in a semi-elliptic arc projecting downward is taken with an automatically focusing CCD camera 3 and an image processing is performed with a microcomputer 10 or the like. A deviation value from a specified position of the center position of the coil 1 is calculated from the semi-elliptic image. This enables highly accurate measurement with a single operation thereby achieving a simple construction and a low cost free from environment and conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の円形断面物体の位置測定
方法及びその測定装置は、例えば圧延鋼板等の帯状鋼板
をうず巻き状に巻き付けてなるストリップコイルを把持
して搬送したり移載したりする際に使用されるものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the position of a circular cross-section object and a measuring apparatus therefor. For example, a strip coil formed by winding a strip steel plate such as a rolled steel plate in a spiral shape is gripped and transported or transferred. It is used when doing.

【0002】[0002]

【従来の技術】ストリップコイルを前記のように自動で
把持するためには、該コイルの外径やその位置の情報が
必要である。このうち、該コイルの外径は、通常の生産
ラインでは前記搬送・移載行程以前に正確に測定する行
程があるので、その情報を転用すればよいが、位置の測
定はその都度行わなければならない。また、熱間圧延さ
れた鋼板のコイルでは測定子を直接接触させることが困
難であるため、できるだけ非接触で測定できるものが望
ましい。
2. Description of the Related Art In order to automatically grip a strip coil as described above, information on the outer diameter of the coil and its position is required. Of these, the outer diameter of the coil has a process to be accurately measured before the carrying and transferring process in a normal production line, so the information may be diverted, but the position must be measured each time. I won't. Further, since it is difficult to directly contact the tracing stylus with a coil of hot-rolled steel sheet, it is desirable to use a coil that can be measured as non-contact as possible.

【0003】この非接触測定方法及び測定装置の主なも
のとしては光電管を用いたものが広く使用されており、
その例として特開昭52−73274号公報、特開昭5
3−118071号公報に記載されるものや、特開昭4
9−103655号公報に記載されるものなどがある。
このうち前者はストリップコイルの長手方向両側に発光
体と受光体とを対向させ、該コイルの外周により発光体
からの光が遮断されたことをもってその位置を検出する
ものである。また後者はストリップコイルの長手方向一
方に発光体と受光体とを設け、該コイルの長手方向他方
には反射板を設け、発光体から反射板に反射した光がス
トリップコイルの外周により遮断されたことをもってそ
の位置を検出するものである。
As a main one of the non-contact measuring method and measuring apparatus, one using a photoelectric tube is widely used.
As examples thereof, Japanese Patent Laid-Open Nos. 52-73274 and 5
And those disclosed in JP-A No.
For example, there are those described in Japanese Patent Publication No. 9-103655.
In the former, the light emitting body and the light receiving body are opposed to each other on both sides in the longitudinal direction of the strip coil, and the position is detected when the light from the light emitting body is blocked by the outer circumference of the coil. In the latter, a light emitter and a light receiver are provided on one side of the strip coil in the longitudinal direction, and a reflector is provided on the other side of the coil in the longitudinal direction so that the light reflected from the light emitter to the reflector is blocked by the outer circumference of the strip coil. The position is detected accordingly.

【0004】また、特開昭59−230994号公報で
はストリップコイルの長手方向端面をTVカメラで撮像
し、その撮像情報を画像処理して該コイルの位置及び外
径を測定することが開示されている。
Further, Japanese Patent Application Laid-Open No. 59-230994 discloses that a longitudinal end face of a strip coil is imaged by a TV camera and the imaged information is image-processed to measure the position and outer diameter of the coil. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記従来
のストリップコイルの位置測定方法及びその測定装置の
うち光電管を用いるものは、いずれも該コイルの長手方
向に挟んで装置の部材や機器を設置する必要があり、そ
の分だけ装置が大掛かりになる。また、装置をストリッ
プコイルに接近して設置しないと測定精度が低下すると
いう問題もある。更に、これらの測定方法及び測定装置
は原理的に一回の測定で外周面の一個所の位置を検出す
るものであるため、例えばコイルのほぼ円形である長手
方向端面を二軸方向に測定して中心位置を測定するため
には、少なくとも測定装置を二個所に設置するか、二回
以上の測定を行わなければならないという問題もある。
However, in any of the conventional strip coil position measuring methods and measuring devices thereof using a photoelectric tube, it is necessary to install the members and equipment of the device so as to be sandwiched in the longitudinal direction of the coil. Therefore, the device becomes large in size. There is also a problem in that the measurement accuracy is reduced unless the device is installed close to the strip coil. Further, since these measuring methods and measuring devices are intended to detect the position of one part of the outer peripheral surface by one measurement in principle, for example, the substantially circular longitudinal end face of the coil is measured in two axial directions. In order to measure the center position by using at least two measuring devices, it is necessary to install at least two measuring devices or perform the measurement twice or more.

【0006】また、後者の測定方法及び測定装置ではコ
イルの長手方向端面とその背景とにコントラストをつけ
て撮像するのが実施上困難であり、適用条件が厳しいと
いう問題がある。本発明はこれらの課題を鑑みて開発さ
れたものであり、装置自体の構造が簡潔で、一度の測定
でコイルの位置を高い精度で測定でき、また適用範囲の
広い円形断面物体の位置測定方法及びその測定装置を提
供するものである。
Further, in the latter measuring method and measuring apparatus, it is difficult in practice to make an image with contrast between the longitudinal end face of the coil and its background, and the application conditions are severe. The present invention has been developed in view of these problems, the structure of the device itself is simple, the position of the coil can be measured with high accuracy in a single measurement, and the position measuring method for a circular cross-section object with a wide range of application. And a measuring device therefor.

【0007】[0007]

【課題を解決するための手段】本発明の円形断面物体の
位置測定方法は、軸線に対する横断面外形が円形である
円形断面物体の所定位置からの位置ずれ量を測定する円
形断面物体の位置測定方法において、前記円形断面物体
の軸線に対して直交方向に幅広で該軸線方向に幅狭のス
リット光を光源から該物体の外周面に投射し、該物体の
外周面に現れるスリット光の像を楕円弧状に撮像し、こ
の撮像された楕円弧状の像から該物体の中心位置を求め
ることを特徴とするものである。
A position measuring method for a circular cross-section object according to the present invention is a method for measuring a position of a circular cross-section object from a predetermined position for measuring the position of a circular cross-section object whose cross-section contour is circular with respect to an axis. In the method, a slit light that is wide in the direction orthogonal to the axis of the circular cross-section object and narrow in the axis direction is projected from the light source onto the outer peripheral surface of the object, and an image of the slit light that appears on the outer peripheral surface of the object is obtained. It is characterized in that an elliptic arc is imaged and the center position of the object is determined from the imaged elliptic arc.

【0008】本発明の円形断面物体の位置測定装置は、
軸線に対する横断面外形が円形である円形断面物体の所
定位置からの位置ずれ量を測定する円形断面物体の位置
測定装置において、前記円形断面物体の軸線に対して直
交方向に幅広で該軸線方向に幅狭のスリット光を該物体
の外周面に投射する光源と、該物体の外周面に現れるス
リット光の像を、前記スリット光の光軸と前記所定位置
の点とを含む平面内で且つスリット光の光源と異なる位
置で楕円弧状に撮像する撮像手段と、撮像された画像処
理手段とを備えたことを特徴とするものである。
The position measuring device for a circular cross-section object of the present invention comprises:
In a position measuring device of a circular cross-section object for measuring a displacement amount from a predetermined position of a circular cross-section object having a circular cross-section outer shape with respect to an axis, in a direction orthogonal to the axis of the circular cross-section object, the width is wide in the axial direction. A light source for projecting narrow slit light onto the outer peripheral surface of the object, and an image of the slit light appearing on the outer peripheral surface of the object, in a plane including the optical axis of the slit light and the point at the predetermined position, and the slit. It is characterized by comprising an image pickup means for picking up an elliptical arc at a position different from the light source of light and an image processing means for picked up image.

【0009】[0009]

【作用】本発明の円形断面物体の位置測定方法及びその
測定装置では、例えばストリップコイルの軸線に対して
直交方向に幅広で該軸線方向に幅狭のスリット光を、光
源からストリップコイルの外周面に投射し、前記スリッ
ト光の光軸と前記所定位置の点とを含む平面内で且つス
リット光の光源と異なる位置で観察すると前記スリット
光は外周面上に半楕円弧状に現れる。この半楕円弧状の
スリット光の像を前記光源と異なる位置で撮像装置によ
り撮像し、該楕円弧の短軸又は長軸方向の極点を求める
ことにより該コイルの外周面のうち撮像側に最も近い点
が算出される。このストリップコイルの外周面のうち撮
像側に最も近い点から光源と該コイルの外周面との最短
距離が算出されるので、この最短距離と、前記それ以前
の行程で得られたストリップコイルの外径とに基づいて
該コイルの中心位置の所定位置からのずれ量が算出され
る。
In the method and apparatus for measuring the position of a circular cross-section object according to the present invention, for example, slit light having a wide width in the direction orthogonal to the axis of the strip coil and a narrow width in the axial direction is emitted from the light source to the outer peripheral surface of the strip coil. When observed on a plane including the optical axis of the slit light and the point at the predetermined position and at a position different from the light source of the slit light, the slit light appears as a semi-elliptic arc on the outer peripheral surface. The image of this semi-elliptic arc slit light is taken by an image pickup device at a position different from that of the light source, and the pole in the short axis or long axis direction of the elliptic arc is obtained to find the point closest to the image pickup side on the outer peripheral surface of the coil. Is calculated. Since the shortest distance between the light source and the outer peripheral surface of the coil is calculated from the point closest to the imaging side on the outer peripheral surface of the strip coil, this shortest distance and the outside of the strip coil obtained in the preceding strokes are calculated. The amount of deviation of the center position of the coil from the predetermined position is calculated based on the diameter.

【0010】[0010]

【実施例】図1は本発明の円形断面物体の位置測定方法
及びその測定装置の一実施例を示すものであり、これは
垂直方向(アップエンド)に設置されたストリップコイ
ル1の軸線が所定位置Pからどの程度位置ずれしている
かを測定するためのものである。
FIG. 1 shows an embodiment of a method for measuring the position of a circular cross-section object and a measuring apparatus therefor according to the present invention, in which the axis of a strip coil 1 installed in the vertical direction (up end) is predetermined. This is for measuring how much the position P deviates.

【0011】同図において光源2から発光された、スト
リップコイル2の軸線Scに対して直交方向に幅広で該
軸線Sc方向に幅狭のスリット光5は、その光軸が該コ
イル1の軸線Scに対して下方から上方に向けて斜めに
なるようにして、ストリップコイル1の外周面に投射さ
れる。そして撮像手段である自動焦点CCDカメラ3
は、前記光軸と所定位置の点Pとを含む平面上で且つス
トリップコイル1の軸線Scと直交する撮像軸Fが形成
される位置に設けられており、前記ストリップコイル1
の外周面に投射されて、下方に突出する半楕円弧状に現
れるスリット光5の像(以下半楕円像と記す)4を撮像
するようにしてある。そしてこの自動焦点CCDカメラ
3の撮像情報はマイクロコンピュータ10等によって構
成される画像処理手段へと伝送される。
In FIG. 1, the slit light 5 emitted from the light source 2 and having a wide width in the direction orthogonal to the axis Sc of the strip coil 2 and a narrow width in the direction of the axis Sc has its optical axis as the axis Sc of the coil 1. It is projected on the outer peripheral surface of the strip coil 1 so as to be oblique from the lower side toward the upper side. And an autofocus CCD camera 3 which is an image pickup means
Is provided on a plane including the optical axis and a point P at a predetermined position and at a position where an imaging axis F orthogonal to the axis Sc of the strip coil 1 is formed.
An image (hereinafter referred to as a semi-elliptic image) 4 of the slit light 5 projected on the outer peripheral surface of the and appearing in the shape of a semi-elliptical arc protruding downward is captured. Then, the image pickup information of the autofocus CCD camera 3 is transmitted to the image processing means constituted by the microcomputer 10 or the like.

【0012】次にこの実施例における装置の各諸元及び
その算出決定方法を図2に従って説明する。なお、この
実施例に適用されるストリップコイル1の諸元は外径d
が1500〜3000mm、高さ(幅)h1 が600〜
1800mmである。まず、スリット光5の光源2とス
トリップコイル1との間の距離Lは手作業のスペースを
考えて該コイル1の最大外径が3000mmでも150
0mm以上とする。これにより光源2と該コイル1との
間の距離Lを1500mm〜3000mmとした。
Next, various specifications of the apparatus in this embodiment and a calculation and determination method thereof will be described with reference to FIG. The specifications of the strip coil 1 applied to this embodiment are the outer diameter d.
Is 1500 to 3000 mm, and the height (width) h 1 is 600 to
It is 1800 mm. First, the distance L between the light source 2 of the slit light 5 and the strip coil 1 is 150 even if the maximum outer diameter of the coil 1 is 3000 mm in consideration of a space for manual work.
It should be 0 mm or more. Thereby, the distance L between the light source 2 and the coil 1 was set to 1500 mm to 3000 mm.

【0013】次に、スリット光5の光源2の水平レベル
(高さ)H2 は後述する画像処理を考えるとできるだけ
ストリップコイル1の設置される高さと同じレベル、即
ち0mmとするのが望ましいが、必要に応じて正方向に
設定してもよいし、或いは負方向に設定してもよい。こ
の実施例では0mmとした。次に、光軸とストリップコ
イルの軸線とのなす角度θ1 を設定するにあたり、光源
2と該コイル1との間の距離が最も大きくなるとき、即
ちストリップコイル1の外径dが1500mmで光源2
と該コイル1間の距離Lが3000mmとなっても、半
楕円像4の最下点が該コイル1の最小高さh1 600m
mより低い位置である必要がある。このため光軸とスト
リップコイルの軸線とのなす角度θ1 は、該光軸が水平
軸となす角度θを用いて下記1式により79°と設定し
た。
Next, it is desirable that the horizontal level (height) H 2 of the light source 2 of the slit light 5 is at the same level as the height at which the strip coil 1 is installed, that is, 0 mm, considering image processing described later. The positive direction may be set or the negative direction may be set as necessary. In this embodiment, it is set to 0 mm. Next, in setting the angle θ 1 formed by the optical axis and the axis of the strip coil, when the distance between the light source 2 and the coil 1 becomes the maximum, that is, when the outer diameter d of the strip coil 1 is 1500 mm, Two
Even if the distance L between the coil 1 and the coil 1 is 3000 mm, the lowest point of the semi-ellipse image 4 is the minimum height h 1 600 m of the coil 1.
It must be lower than m. Therefore, the angle θ 1 formed by the optical axis and the axis of the strip coil is set to 79 ° by the following formula 1 using the angle θ formed by the optical axis and the horizontal axis.

【0014】 3000×tan(90−θ1 )=3000×tanθ<600……… (1) ∴θ<11.3° ∴θ1 =79° この光源の位置を設定する際に、前記光軸とストリップ
コイルの軸線とのなす角度θ1 の制約から自由度は比較
的小さく、また光源を遠ざけ過ぎるとスリット光が拡散
して精度が低下することに着目すべきである。
3000 × tan (90−θ 1 ) = 3000 × tan θ <600 (1) ∴θ <11.3 ° ∴θ 1 = 79 ° When setting the position of this light source, the optical axis is set. It should be noted that the degree of freedom is relatively small due to the restriction of the angle θ 1 formed by the axis of the strip coil with the axis of the strip coil, and that the slit light diffuses and the accuracy decreases when the light source is moved too far away.

【0015】次に自動焦点CCDカメラの撮像範囲及び
撮像角度の決定方法について説明する。自動焦点CCD
カメラ3の光源2を基準とする設置高さH1は、できる
だけ前記半楕円像4の最下点の正面であることが望まし
い。この半楕円像4の最下点の高さhは下記2式により
算出される。
Next, a method of determining the image pickup range and the image pickup angle of the autofocus CCD camera will be described. Auto focus CCD
The installation height H 1 of the camera 3 with respect to the light source 2 is preferably as close to the front of the lowest point of the semi-ellipse image 4 as possible. The height h of the lowest point of this semi-ellipse image 4 is calculated by the following two equations.

【0016】 h=L×tanθ+H2 ……… (2) 前記2式より半楕円像4の最下点の高さhは約300〜
600mmとなるので、自動焦点CCDカメラ3の設置
高さH1 は前記高さhの略中央値である450mmと設
定した。ちなみにこの実施例におけるCCDカメラ3の
地上高さH0 は光源2の設置高さH2 が0mmであるた
め、前記設置高さH1 に等しい。
H = L × tan θ + H 2 (2) From the above equation 2, the height h of the lowest point of the semi-ellipse image 4 is about 300-.
Since the height is 600 mm, the installation height H 1 of the autofocus CCD camera 3 is set to 450 mm which is the approximate center value of the height h. Incidentally, the ground height H 0 of the CCD camera 3 in this embodiment is equal to the installation height H 1 because the installation height H 2 of the light source 2 is 0 mm.

【0017】自動焦点CCDカメラ3の上下方向の撮像
範囲は前記2式より少なくとも300mm以上必要であ
る。一方、ストリップコイル1をクレーン等で降下する
場合、水平方向に±100mm程度の誤差に抑えること
が可能である。従って、自動焦点CCDカメラ3の撮像
範囲はストリップコイル1とCCDカメラ3との距離が
最短(1500mm)になるときに300mm×300
mm程度でよい。従って、自動焦点カメラ3の撮像角度
ψは下記3式より約12°と設定した。
The vertical image pickup range of the autofocus CCD camera 3 is required to be at least 300 mm or more according to the above two formulas. On the other hand, when the strip coil 1 is lowered by a crane or the like, it is possible to suppress the error in the horizontal direction to about ± 100 mm. Therefore, the imaging range of the autofocus CCD camera 3 is 300 mm × 300 when the distance between the strip coil 1 and the CCD camera 3 becomes the shortest (1500 mm).
It may be about mm. Therefore, the imaging angle ψ of the autofocus camera 3 is set to about 12 ° from the following three equations.

【0018】 ψ=tan-1(300/1500)=11.3°≒12° ……… (3) 次にこの自動焦点CCDカメラの検出精度について検討
する。一般にCCDカメラの素子数は512×512の
ものが多い。例えば水平方向の位置ずれが50mmであ
ると仮定すると、この50mmは下記4式に基づいて画
像の水平方向の素子数80.3ビットに相当する。従っ
て、水平方向の検出精度は水平方向の素子1ビット当た
り50/80=0.625mmとなる。
Ψ = tan −1 (300/1500) = 11.3 ° ≈12 ° (3) Next, the detection accuracy of this autofocus CCD camera will be examined. Generally, many CCD cameras have 512 × 512 elements. For example, assuming that the positional deviation in the horizontal direction is 50 mm, this 50 mm corresponds to the number of elements in the horizontal direction of the image of 80.3 bits based on the following four equations. Therefore, the detection accuracy in the horizontal direction is 50/80 = 0.625 mm per bit in the horizontal direction.

【0019】 50/(1500×tan12°)×512=80.3 ……… (4) 一方、遠近方向の位置ずれが50mmであると仮定する
と前記半楕円像の最下点の位置は下記5式により凡そ
9.7mm変化する。 50×tan11°≒9.7 ……… (5) この時の垂直方向の素子数は9.7×0.625=6.
06ビットとなるので、遠近方向の検出精度は垂直方向
の素子1ビット当たり、50/6.06=8.3mmと
なる。
50 / (1500 × tan 12 °) × 512 = 80.3 (4) On the other hand, assuming that the displacement in the perspective direction is 50 mm, the position of the lowest point of the semi-ellipse image is as follows: It changes by about 9.7 mm depending on the formula. 50 × tan 11 ° ≈9.7 (5) The number of elements in the vertical direction at this time is 9.7 × 0.625 = 6.
Since it is 06 bits, the detection accuracy in the perspective direction is 50 / 6.06 = 8.3 mm per 1-bit element in the vertical direction.

【0020】このCCDカメラの位置を設定する際に
は、該カメラを遠ざけるほど画角が小さくなり、スリッ
ト光の像はより楕円に近く撮像されるが、その分だけ焦
点深度が浅くなり、且つ該カメラを設置する設置部の機
械的誤差が大きく影響するようになることに着目すべき
である。次に本実施例の測定装置の作用について説明す
る。測定に関するディメンジョンを図1に示すように、
撮像軸方向をz軸、該撮像軸に直交する水平軸をx軸、
垂直軸をy軸と定義する。
When the position of the CCD camera is set, the angle of view becomes smaller as the camera is farther away, and the slit light image is imaged closer to an ellipse, but the depth of focus becomes correspondingly shallower, and It should be noted that the mechanical error of the installation unit for installing the camera has a great influence. Next, the operation of the measuring apparatus of this embodiment will be described. The dimensions of the measurement are as shown in Figure 1.
The imaging axis direction is the z-axis, the horizontal axis orthogonal to the imaging axis is the x-axis,
The vertical axis is defined as the y-axis.

【0021】まず図3aのように画面に撮像された半楕
円像4を輝度の違いから検出し、その像を図3bのよう
に連続する点に分析し、各点を座標(x,y)で指示す
る。このとき、座標(x,y)は予め距離の遠近に伴う
像の長短或いは大小を補正した実寸座標として捉えられ
るように、適宜の縮小率を加えてある。また、図3a,
図3bでは便宜上、CCDカメラの画像にストリップコ
イルの全景と前記半楕円弧状の像の全景が撮像されてい
るが、前述のようにこの実施例では該カメラにより30
0mm×300mmの撮像範囲を撮像するだけであり、
この範囲に撮像された楕円像の各点の座標を楕円方程式
に代入して近似延長するようにしてある。
First, the semi-ellipse image 4 imaged on the screen as shown in FIG. 3a is detected from the difference in luminance, and the image is analyzed into continuous points as shown in FIG. 3b, and each point is coordinate (x, y). Instruct. At this time, an appropriate reduction ratio is added to the coordinates (x, y) so that the coordinates (x, y) can be grasped in advance as the actual size coordinates in which the length or the size of the image is corrected in accordance with the distance. Also, FIG.
In FIG. 3b, for the sake of convenience, the entire view of the strip coil and the semi-elliptic arc-shaped image is captured in the image of the CCD camera.
It only takes an image of the 0 mm x 300 mm imaging range,
The coordinates of each point of the elliptic image imaged in this range are substituted into the elliptic equation to be approximately extended.

【0022】この座標系は本発明の画像処理手段と演算
手段とを兼備するマイクロコンピュータ10に伝送され
る。このマイクロコンピュータ10には図4に示すよう
なプログラムが予め記憶されており、このプログラムに
従って以下のようにして各種数値の算出が行われる。ま
ず、ステップS1では前述のようにして近似延長された
半楕円像の両端の点の座標(x1 ,y1 )(x2
2 )(但し原理上はy1 =y2 )を読み込み、次にス
テップS2に移行してこのうち両x座標から下記6式に
基づいて両端点の中央値xc を算出し、更にこの中央値
c に対応するy座標yc を読み込む。
This coordinate system is transmitted to the microcomputer 10 having both the image processing means and the arithmetic means of the present invention. A program as shown in FIG. 4 is stored in advance in the microcomputer 10, and various numerical values are calculated according to the program as follows. First, in step S1, the coordinates (x 1 , y 1 ) (x 2 ,
y 2 ) (however, in principle y 1 = y 2 ) is read, then the process proceeds to step S2, in which the median value x c of both end points is calculated from both x coordinates based on the following equation 6, and Read the y-coordinate y c corresponding to the median x c .

【0023】 xc =(x1 +x2 ) ……… (6) この中央値(xc ,yc )は前記半楕円像の短軸の最下
極点を示すので、即ちその位置がストリップコイルの外
周面のうち撮像側に最も近い点となり、同時に該コイル
のx軸方向の中心軸座標ともなる。次にステップS3に
移行して、下記7式に基づいて光源から前記ストリップ
コイルの外周面のうち撮像側に最も近い点までの距離L
を算出する。
X c = (x 1 + x 2 ) ... (6) This median (x c , y c ) represents the lowest pole of the short axis of the semi-ellipse image, that is, its position is the strip coil. Of the outer peripheral surface of the coil is closest to the image pickup side, and at the same time, it also serves as the central axis coordinate of the coil in the x-axis direction. Next, in step S3, the distance L from the light source to the point closest to the imaging side on the outer peripheral surface of the strip coil is calculated based on the following equation (7).
To calculate.

【0024】 L=(yc +H1 )/tanθ ……… (7) 次いでステップS4に移行して、この行程以前に計測さ
れたストリップコイルの外径dを入力して、その半径r
を算出する。次にステップS5に移行して、前記中央値
のx座標xc からストリップコイルのx軸方向への位置
ずれ量dxを算出する。この実施例では前記x=0軸、
即ちy軸がストリップコイルを設置すべき所定位置を通
る垂直軸となるので、このx座標xc がそのまま該コイ
ルの軸線のずれの方向と量を示す。
L = (y c + H 1 ) / tan θ (7) Next, in step S4, the outer diameter d of the strip coil measured before this step is input and the radius r thereof is input.
To calculate. Next, the process proceeds to step S5, and the positional deviation amount dx of the strip coil in the x-axis direction is calculated from the x-coordinate x c of the median value. In this embodiment, the x = 0 axis,
That is, since the y-axis is a vertical axis that passes through a predetermined position where the strip coil is to be installed, the x-coordinate x c indicates the direction and amount of the axis deviation of the coil as it is.

【0025】次にステップS6に移行して、前記ストリ
ップコイルまでの距離Lと該コイルの半径rとから該コ
イルのz軸方向への位置ずれ量dzを算出する。この実
施例ではこの距離Lと半径rの和から、光源と所定位置
との間の距離3000mmを減ずることによりずれの方
向と量を得られるようにした。このプログラムのうちス
テップS1〜S3が本発明の画像処理手段に相当し、ス
テップS4〜S6が演算手段に相当する。
Next, in step S6, the positional displacement amount dz of the coil in the z-axis direction is calculated from the distance L to the strip coil and the radius r of the coil. In this embodiment, the direction and amount of deviation can be obtained by subtracting the distance 3000 mm between the light source and the predetermined position from the sum of the distance L and the radius r. In this program, steps S1 to S3 correspond to the image processing means of the present invention, and steps S4 to S6 correspond to the computing means.

【0026】そしてこの位置測定装置を用いて、実測外
径1658mmの実際のストリップコイルを測定したと
ころ、x軸方向への実測位置ずれ量14mmに対してd
x=15.1mm、z軸方向への実測位置ずれ量39m
mに対してdz=42.5mmなる数値を得た。これら
の数値の誤差はクレーン等の移載装置の把持部の許容誤
差が25mmであることを考えあわせれば十分に許容範
囲内であることがわかる。
When an actual strip coil having an actually measured outer diameter of 1658 mm was measured using this position measuring device, d was measured with respect to an actually measured position displacement amount of 14 mm in the x-axis direction.
x = 15.1 mm, measured position shift amount 39 m in z-axis direction
A numerical value of dz = 42.5 mm with respect to m was obtained. It can be understood that the error of these numerical values is sufficiently within the allowable range, considering that the allowable error of the grip portion of the transfer device such as a crane is 25 mm.

【0027】この実施例では前記半楕円像の長軸方向の
両端点の中央値を短軸方向の極点座標としたが、この極
点座標の算出方法はこれに限定されるものではなく、例
えば該半楕円像と水平線との交点が一つになる点を該極
点とし、その座標を極点座標とする等してもよい。ま
た、光軸がコイルの軸線に対して下方から上方に向けて
斜めになるように設定したが、この光軸はコイル軸線に
対して上方から下方に向けて斜めになるようにしてもよ
い。また、前記撮像軸がコイルの軸線に対して直交する
ように設定したが、この撮像軸は光軸と一致せず、且つ
前記楕円像が撮像できる範囲で、しかも光軸と所定位置
の点を含む平面内であればどのようであってもよい。即
ち、前記スリット光をストリップコイルの外周面に投射
して、その像を光源と異なる位置から撮像すれば、該像
は必ず楕円弧状に現れるはずであり、この楕円像を撮像
することができれば、例えばスリット光をコイルの軸線
と直交するように該コイルの外周面に投射し、その像を
斜め下方(図1において光源のある位置)から撮像して
も前記と同様な効果を得ることができる。但し、前述し
た焦点深度、機械的誤差の影響を十分に考慮する必要が
ある。
In this embodiment, the median value of both end points in the long axis direction of the semi-ellipse image is the pole coordinates in the short axis direction. However, the method of calculating the pole coordinates is not limited to this, and for example, The point at which the half-ellipse image and the horizontal line intersect at one point may be the pole point, and its coordinates may be the pole point coordinates. Further, although the optical axis is set to be inclined from the lower side to the upper side with respect to the axis of the coil, the optical axis may be inclined from the upper side to the lower side with respect to the coil axis. Further, although the imaging axis is set to be orthogonal to the axis of the coil, the imaging axis does not coincide with the optical axis, and the ellipse image can be captured within a range where the optical axis and a point at a predetermined position are located. Any shape may be used as long as it is within the plane including the above. That is, if the slit light is projected on the outer peripheral surface of the strip coil and the image is picked up from a position different from the light source, the image should always appear in an elliptic arc shape. If this elliptic image can be picked up, For example, the same effect as described above can be obtained by projecting slit light on the outer peripheral surface of the coil so as to be orthogonal to the axis of the coil and capturing the image obliquely from below (the position where the light source is in FIG. 1). .. However, it is necessary to sufficiently consider the effects of the depth of focus and mechanical error described above.

【0028】また更に、この実施例ではストリップコイ
ルの位置ずれ測定についてのみ詳述したが、本発明はそ
の他の光を完全吸収しないあらゆる円形断面物体にも同
様にして使用することができる。
Furthermore, although only the measurement of the displacement of the strip coil is described in detail in this embodiment, the present invention can be similarly used for any other circular cross-section objects which do not completely absorb light.

【0029】[0029]

【発明の効果】以上説明したように、本発明の円形断面
物体の位置測定方法及びその測定装置によれば、例えば
ストリップコイルの軸線に対して直交方向に幅広で該軸
線方向に幅狭のスリット光を、光源からストリップコイ
ルの外周面に投射し、その像を前記光源と異なる位置で
撮像装置により半楕円弧状に撮像して、その半楕円像か
らコイルの中心位置の所定位置からのずれ量を算出する
ようにしたので、従来のようにコイルの外周面の二点或
いは二回の測定を行う必要がなく、しかも環境や条件を
選ばずにどこでも使用でき、更には構造が簡潔でコスト
の安価なものとなる。
As described above, according to the method for measuring the position of a circular cross-section object and the measuring apparatus for the same according to the present invention, for example, a slit having a wide width in the direction orthogonal to the axis of the strip coil and a narrow width in the axial direction. The light is projected from the light source onto the outer peripheral surface of the strip coil, the image thereof is imaged in a semi-elliptic arc shape at a position different from the light source, and the deviation amount of the center position of the coil from the predetermined position is obtained from the semi-elliptic image. Since it is calculated, it is not necessary to measure two points or two times on the outer peripheral surface of the coil as in the conventional method, and it can be used anywhere regardless of the environment and conditions. Furthermore, the structure is simple and the cost is low. It will be cheap.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定方法及び測定装置の概略構成を示
す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a measuring method and a measuring apparatus of the present invention.

【図2】本発明の測定方法及び測定装置の原理説明図で
あり、(a)は正面図、(b)は側面図である。
2A and 2B are explanatory views of the principle of the measuring method and the measuring apparatus of the present invention, in which FIG. 2A is a front view and FIG. 2B is a side view.

【図3】本発明の測定方法及び測定装置における画像解
析の説明図である。
FIG. 3 is an explanatory diagram of image analysis in the measuring method and the measuring apparatus of the present invention.

【図4】本発明の測定方法及び測定装置に使用されたプ
ログラムの一例を示すフローチャート図である。
FIG. 4 is a flowchart showing an example of a program used in the measuring method and the measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1はストリップコイル 2は光源 3はCCDカメラ(撮像手段) 10はマイクロコンピュータ(画像処理手段) 1 is a strip coil 2 is a light source 3 is a CCD camera (imaging means) 10 is a microcomputer (image processing means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成瀬 豊 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 岩谷 明之 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 大西 寿雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Naruse 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no address) Inside the Mizushima Steel Works, Kawasaki Steel Co., Ltd. Chome (No street number) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works (72) Inventor Toshio Onishi 1st street, Mizushima Kawasaki Road, Kurashiki City, Okayama Prefecture (No street) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works

Claims (1)

【特許請求の範囲】 【請求項1】 軸線に対する横断面外形が円形である円
形断面物体の所定位置からの位置ずれ量を測定する円形
断面物体の位置測定方法において、前記円形断面物体の
軸線に対して直交方向に幅広で該軸線方向に幅狭のスリ
ット光を光源から該物体の外周面に投射し、該物体の外
周面に現れるスリット光の像を楕円弧状に撮像し、この
撮像された楕円弧状の像から該物体の中心位置を求める
ことを特徴とする円形断面物体の位置・外径測定方法。 【請求項2】 軸線に対する横断面外形が円形である円
形断面物体の所定位置からの位置ずれ量を測定する円形
断面物体の位置測定装置において、前記円形断面物体の
軸線に対して直交方向に幅広で該軸線方向に幅狭のスリ
ット光を該物体の外周面に投射する光源と、該物体の外
周面に現れるスリット光の像を、前記スリット光の光軸
と前記所定位置の点とを含む平面内で且つスリット光の
光源と異なる位置で楕円弧状に撮像する撮像手段と、撮
像された画像処理手段とを備えたことを特徴とする円形
断面物体の位置測定装置。
Claim: What is claimed is: 1. A method of measuring a position of a circular cross-section object, wherein a displacement amount from a predetermined position of a circular cross-section object having a circular cross-section outline with respect to the axis is measured. On the other hand, a slit light having a wide width in the orthogonal direction and a narrow width in the axial direction is projected from the light source onto the outer peripheral surface of the object, and an image of the slit light appearing on the outer peripheral surface of the object is imaged in an elliptic arc shape. A method for measuring the position and outer diameter of an object having a circular cross section, wherein the center position of the object is obtained from an elliptic arc image. 2. A position measuring device for a circular cross-section object for measuring the amount of displacement of a circular cross-section object from a predetermined position, the cross-section of which is circular in cross-section with respect to the axis, and which is wide in a direction orthogonal to the axis of the circular cross-section object. A light source that projects narrow slit light in the axial direction onto the outer peripheral surface of the object, and an image of the slit light that appears on the outer peripheral surface of the object, including the optical axis of the slit light and the point at the predetermined position. A position measuring device for a circular cross-section object, comprising: an image pickup means for picking up an elliptical arc at a position different from the light source of the slit light in a plane and an image processing means for picking up the image.
JP15863091A 1991-06-28 1991-06-28 Method and apparatus for measuring position of circular cross-section object Pending JPH055608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15863091A JPH055608A (en) 1991-06-28 1991-06-28 Method and apparatus for measuring position of circular cross-section object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15863091A JPH055608A (en) 1991-06-28 1991-06-28 Method and apparatus for measuring position of circular cross-section object

Publications (1)

Publication Number Publication Date
JPH055608A true JPH055608A (en) 1993-01-14

Family

ID=15675912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15863091A Pending JPH055608A (en) 1991-06-28 1991-06-28 Method and apparatus for measuring position of circular cross-section object

Country Status (1)

Country Link
JP (1) JPH055608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993367A (en) * 1997-07-15 1999-11-30 Mitsubishi Heavy Industries, Ltd. Method and system for the determination of a quality of bonded area in a boxmaking blank
CN106813570A (en) * 2015-11-30 2017-06-09 中国科学院沈阳自动化研究所 Based on the elongated cylindrical object dimensional identification of line-structured light scanning and localization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993367A (en) * 1997-07-15 1999-11-30 Mitsubishi Heavy Industries, Ltd. Method and system for the determination of a quality of bonded area in a boxmaking blank
CN106813570A (en) * 2015-11-30 2017-06-09 中国科学院沈阳自动化研究所 Based on the elongated cylindrical object dimensional identification of line-structured light scanning and localization method
CN106813570B (en) * 2015-11-30 2019-04-09 中国科学院沈阳自动化研究所 The identification of elongated cylindrical object dimensional and localization method based on line-structured light scanning

Similar Documents

Publication Publication Date Title
US7202957B2 (en) Three-dimensional visual sensor
US6539330B2 (en) Method and apparatus for measuring 3-D information
TW201443827A (en) Camera image calibrating system and method of calibrating camera image
US5311289A (en) Picture processing method in optical measuring apparatus
JPH055608A (en) Method and apparatus for measuring position of circular cross-section object
US6384911B1 (en) Apparatus and method for detecting accuracy of drill holes on a printed circuit board
JP2020020657A (en) Stereo camera device, stereo camera system, and moving object
JPH11132763A (en) Distance measuring method
JP3178283B2 (en) Road curve measurement method
JP2006349443A (en) Camera calibration device
JPH09126759A (en) Range finding method by on-vehicle camera and range finder using the camera
JPH06281411A (en) Measuring method for hole position
JPH08110206A (en) Method and apparatus for detecting position and posture
JPH06313705A (en) Apparatus and method for detecting shape of billet
JP3414231B2 (en) Coil position detection device
JP2600567B2 (en) Pipe end processing section size measurement device
JP3414230B2 (en) Coil position detection device
JP2737045B2 (en) How to measure gaps and steps
JPH10281734A (en) Dimension measuring equipment and production system for long corrugated flexible tube
JPS59135511A (en) Optical detector for obstacle
JPH09101124A (en) Inspection method for hole chamfer amount
JPH10185515A (en) Coil position detector
JP2519187B2 (en) Through-hole three-dimensional position measuring device
JP2007057437A (en) Vehicle moving distance detector, and on-vehicle camera system with range finding function
JP3201297B2 (en) Coil position detection device