JPH0159544B2 - - Google Patents

Info

Publication number
JPH0159544B2
JPH0159544B2 JP60005677A JP567785A JPH0159544B2 JP H0159544 B2 JPH0159544 B2 JP H0159544B2 JP 60005677 A JP60005677 A JP 60005677A JP 567785 A JP567785 A JP 567785A JP H0159544 B2 JPH0159544 B2 JP H0159544B2
Authority
JP
Japan
Prior art keywords
sonic
sample
lens
capacitance
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60005677A
Other languages
Japanese (ja)
Other versions
JPS60166857A (en
Inventor
Kyoshi Ishikawa
Hiroshi Kanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60005677A priority Critical patent/JPS60166857A/en
Publication of JPS60166857A publication Critical patent/JPS60166857A/en
Publication of JPH0159544B2 publication Critical patent/JPH0159544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高周波音波エネルギーを利用する顕
微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microscope that utilizes high frequency sonic energy.

〔発明の背景〕[Background of the invention]

近年、1GPHに及ぶ高周波音波の発生、検出が
可能となつているために、水中での音波波長とし
て約1ミクロンが得られ、したがつて音波エネル
ギーを利用した顕微鏡が検討されるようになつて
きた。
In recent years, it has become possible to generate and detect high-frequency sound waves of up to 1 GPH, resulting in a sound wave wavelength of approximately 1 micron underwater, and therefore, microscopes that utilize sound wave energy have been considered. Ta.

第1図は、従来もちいられている機械走査型反
射超音波顕微鏡装置の構成を示す。極めて細く絞
つた超音波ビームによつて、試料を2次元に走査
し、試料からの反射音波を集音して電気的に変換
し、CRT上に機械走査と同期して表示すること
により超音波顕微像を得るものである。
FIG. 1 shows the configuration of a conventional mechanical scanning type reflection ultrasound microscope apparatus. The sample is scanned two-dimensionally with an ultrasonic beam focused very narrowly, and the reflected sound waves from the sample are collected and electrically converted, and displayed on the CRT in synchronization with the mechanical scanning. It is used to obtain microscopic images.

1はRF信号の送信回路であり、こゝで発生し
た高圧パルスは、弁別器2を経て、センサ部であ
る球面レンズ3の上面に取りつけてある圧電薄膜
部4に印加される。この球面レンズ3は円柱状の
熔融石英からなり、その一面は光学的に研摩さ
れ、その上に圧電薄膜(ZnO)を上下電極(Au)
で鋏んだサンドウイツチ構造の圧電薄膜4が形成
されている。また他端面は図に示すように曲率半
径が0.05〜0.3mm程度の凹面状の半球穴が形成さ
れており、この半球穴と試料5との間には流体
(例えば水)7が満されている。圧電薄膜部4に
印加された高圧パルスにより、圧電薄膜部4は結
晶内に超音波6を放射する。この超音波は半球穴
に達すると石英結晶と水との音速の差により屈折
集束し試料5の面上に照射する。
Reference numeral 1 designates an RF signal transmission circuit, and the high voltage pulse generated here passes through a discriminator 2 and is applied to a piezoelectric thin film section 4 attached to the upper surface of a spherical lens 3, which is a sensor section. This spherical lens 3 is made of cylindrical fused silica, one surface of which is optically polished, and a piezoelectric thin film (ZnO) is placed on top and bottom electrodes (Au).
A piezoelectric thin film 4 having a sandwich structure is formed. As shown in the figure, a concave hemispherical hole with a radius of curvature of approximately 0.05 to 0.3 mm is formed on the other end surface, and a fluid (e.g., water) 7 is filled between this hemispherical hole and the sample 5. There is. Due to the high voltage pulse applied to the piezoelectric thin film section 4, the piezoelectric thin film section 4 emits ultrasonic waves 6 into the crystal. When this ultrasonic wave reaches the hemispherical hole, it is refracted and focused due to the difference in sound speed between the quartz crystal and water, and is irradiated onto the surface of the sample 5.

つぎに試料から反射されてきた超音波は球面穴
により集音整相されて圧電薄膜4に達し、RF信
号に変換される。このRF信号は弁別器2を経て
受信器8に送られる。
Next, the ultrasonic waves reflected from the sample are collected and phased by the spherical hole, reach the piezoelectric thin film 4, and are converted into an RF signal. This RF signal is sent to the receiver 8 via the discriminator 2.

一方、走査部9は試料台10を焦点面内に沿つ
て2次元に機械走査する。この走査と同期して受
信器8からの信号をCRT11に表示することに
より超音波顕微像を得るものである。
On the other hand, the scanning unit 9 mechanically scans the sample stage 10 two-dimensionally along the focal plane. An ultrasonic microscopic image is obtained by displaying the signal from the receiver 8 on the CRT 11 in synchronization with this scanning.

このように構成された装置において、顕微鏡像
撮影に際し、球面レンズの軸調整、および焦点の
微調整などの操作を行わなければならないが、こ
のような操作は、CRT画面上に表示されている
像を観察しながら、その最適条件を探す方法を用
いているが、この操作は、作業者の経験的な感覚
で定性的な判断のもとにその条件を決めているた
めに、再現性にとぼしく、かつ信頼性にかけてい
る。その上、調整に長時間を必要とする問題があ
つた。
When taking microscopic images with a device configured in this way, operations such as axis adjustment of the spherical lens and fine adjustment of the focus must be performed, but these operations require that the image displayed on the CRT screen The method uses a method to find the optimal conditions while observing the conditions, but this operation has poor reproducibility because the conditions are determined based on qualitative judgment based on the worker's empirical sense. , and depend on reliability. In addition, there was a problem in that adjustment required a long time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は球面レンズの軸の方向、すなわ
ち試料の機械的走査の面に対する軸の角度を容易
に調整することができる音波顕微鏡を提供するに
ある。
An object of the present invention is to provide a sonic microscope in which the direction of the axis of the spherical lens, that is, the angle of the axis with respect to the plane of mechanical scanning of the sample, can be easily adjusted.

〔発明の概要〕[Summary of the invention]

本発明の特徴は音波レンズと試料台の複数個所
での静電容量の検出により音波レンズの軸の方向
を知るようにした構成にある。
The feature of the present invention is that the direction of the axis of the sonic lens is determined by detecting capacitance at multiple locations on the sonic lens and the sample stage.

〔発明の実施例〕[Embodiments of the invention]

第2図aは本考案の要部の構成を示した平面図
である。球面レンズ3の周囲に試料台10との間
の静電容量を検出器13(第2図bに示す)検出
することが可能なように配置された複数個の電極
板12が設けてある。球面レンズ3の軸中心が試
料台10の面上に対して垂直に配置されていると
きの状態で、それぞれの電極板12から検出され
る静電容量C1 C2 C3…Cnはすべてほぼ等しい値
を示すよう、形状や、取り付け精度等を規定して
ある。
FIG. 2a is a plan view showing the configuration of the main parts of the present invention. A plurality of electrode plates 12 are arranged around the spherical lens 3 so that the electrostatic capacitance between the spherical lens 3 and the sample stage 10 can be detected by a detector 13 (shown in FIG. 2b). When the axial center of the spherical lens 3 is arranged perpendicularly to the surface of the sample stage 10, the capacitances C 1 C 2 C 3 ...Cn detected from each electrode plate 12 are all approximately The shape, mounting accuracy, etc. are specified so that the values are equal.

したがつて、装置調整時において、各電極12
から検出される静電容量を測定した場合、その値
が等しくないときには球面レンズ3の軸は試料面
と垂直に設定されていないと断定できるために図
では省略したが、球面レンズ3の取付具に装備さ
れている傾斜角調整機構を調接して、各静電容量
が等しくなるようにする。この結果球面レンズ3
は試料に対して理想的な配置となり最適条件で試
料からの反射信号を検出することができる。
Therefore, when adjusting the device, each electrode 12
If the values are not equal, it can be concluded that the axis of the spherical lens 3 is not perpendicular to the sample surface. Adjust the tilt angle adjustment mechanism installed in the device so that each capacitance is equal. As a result, spherical lens 3
is ideally placed relative to the sample, and the reflected signal from the sample can be detected under optimal conditions.

静電容量の検出ならびに傾斜角度の調節は、第
2図bにおいてスイツチSを切換えながら各々の
静電容量が等しくなる位置を探す方法があるが、
この操作を自動的に行うことが可能な回路構成を
第3図に示す。
To detect the capacitance and adjust the inclination angle, there is a method of finding a position where each capacitance is equal while switching the switch S in Fig. 2b.
FIG. 3 shows a circuit configuration that can automatically perform this operation.

図において、X軸方法の傾きを検出する電極1
2の容量C1、C3、Y軸方向の傾きを検出する電
極12の容量C2、C4とでそれぞれ独立したブリ
ツジ回路において、C1とC3とが等しい場合にお
いては、これから検出される信号量は最小値とな
る。若し、X軸に関して検出される信号量が設定
値以上の値であつた場合にはこの信号はビデオア
ンプ14で増幅されたのち検波器15およびロー
パスフイルター16を経て直流に変換される。こ
の電流をさらにパワーアンプ18により増幅し
て、傾斜機構19を駆動させて最小の信号量にな
るように球面レンズ3の傾きを変える。このこと
はY軸に関して同様なことが云える。なお、21
は、交流電源である。
In the figure, electrode 1 detecting the inclination of the X-axis method
In a bridge circuit in which the capacitances C 1 and C 3 of the electrodes 12 and the capacitances C 2 and C 4 of the electrode 12 that detect the inclination in the Y-axis direction are respectively independent, if C 1 and C 3 are equal, the current will be detected. The signal amount will be the minimum value. If the amount of signal detected on the X-axis is greater than the set value, this signal is amplified by the video amplifier 14, passed through the detector 15 and the low-pass filter 16, and is converted into direct current. This current is further amplified by the power amplifier 18, and the tilting mechanism 19 is driven to change the tilt of the spherical lens 3 so that the amount of signal becomes the minimum. The same can be said about the Y axis. In addition, 21
is an AC power supply.

上述のことは、X軸、Y軸をそれぞれ独立して
駆動させることについてのべたが、これを同時に
操作し、球面レンズ3の傾きを自動的に最適条件
に設定するためにはX、Y両軸の出力を加算器1
7により加算した場合、その値の絶対値が最小に
なる点が球面レンズ3の最適な設定条件となるた
めにレベルコンパレーター20より傾斜機構19
の駆動をストツプさせる信号が送られ停止する。
The above was about driving the X and Y axes independently, but in order to operate them simultaneously and automatically set the tilt of the spherical lens 3 to the optimal condition, it is necessary to drive both the X and Y axes. Axis output to adder 1
7, the point where the absolute value of the value is the minimum becomes the optimum setting condition for the spherical lens 3.
A signal is sent to stop the drive.

以上は、試料からの反射信号を試料面に対して
垂直方向から検出する場合について述べたが、上
述の如く、球面レンズ3の傾斜の角度を静電容量
を使つて精度よく検出できることは、逆に試料面
に対して特定の角度から精度よく照射することも
可能であることを意味するものであり、これによ
り、試料面からの反射信号の角度依存性を求める
ことも容易に行われる。
The above has described the case where the reflected signal from the sample is detected from the direction perpendicular to the sample surface, but as mentioned above, the angle of inclination of the spherical lens 3 can be detected accurately using capacitance. This means that it is also possible to irradiate the sample surface with high precision from a specific angle, which makes it easy to determine the angle dependence of the reflected signal from the sample surface.

また試料面の特定の方向に左右対象に傾斜さ
せ、それぞれの傾斜時での信号をメモリ蓄積して
おき、のちに両信号を時系列に交互に同一画面上
に表示することにより、立体視像も得ることがで
きる。
In addition, by tilting the sample surface symmetrically in a specific direction, storing the signals at each tilt in memory, and later displaying both signals alternately in time series on the same screen, stereoscopic images can be obtained. You can also get

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば音波レンズの軸の
方向を所望の方向に、代表的には試料の走査面と
垂直に調整することが可能となり、音波顕微鏡の
操作性向上に利するところ大である。
As described above, according to the present invention, it is possible to adjust the direction of the axis of the sonic lens in a desired direction, typically perpendicular to the scanning plane of the sample, which greatly benefits the improvement of the operability of the sonic microscope. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の音波顕微鏡の概略構成を示す
図、第2図a及びbは本発明の要部の一実施例の
構成を示す図、第3図は本発明で用いるブリツジ
回路の一例を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a conventional sonic microscope, FIGS. 2 a and b are diagrams showing the configuration of an embodiment of the main part of the present invention, and FIG. 3 is an example of a bridge circuit used in the present invention. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 一端部に圧電素子を設け、他端部に球面穴を
形成した音波レンズと、前記音波レンズの焦点近
傍に設けられた試料台とよりなり、試料台上に載
置した試料に対し前記音波レンズより放射された
後に前記試料によつてじよう乱された超音波を受
信することにより、前記試料を撮像する音波顕微
鏡において、音波レンズの周囲に複数の静電容量
検出器を音波レンズと一体に動くように設け、そ
れらの静電容量検出器と試料台との距離に応じて
変化する静電容量を検出し、それらの検出値の差
により試料に対する音波レンズの軸の方向を検出
することを特徴とする音波顕微鏡。
1 Consists of a sonic lens with a piezoelectric element installed at one end and a spherical hole formed at the other end, and a sample stage installed near the focal point of the sonic lens. In a sonic microscope that images the sample by receiving ultrasonic waves emitted from the lens and then disturbed by the sample, a plurality of capacitance detectors are integrated with the sonic lens around the sonic lens. Detect the capacitance that changes depending on the distance between the capacitance detector and the sample stage, and detect the direction of the axis of the sonic lens relative to the sample based on the difference between these detected values. A sonic microscope featuring:
JP60005677A 1985-01-18 1985-01-18 Acoustic microscope Granted JPS60166857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005677A JPS60166857A (en) 1985-01-18 1985-01-18 Acoustic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005677A JPS60166857A (en) 1985-01-18 1985-01-18 Acoustic microscope

Publications (2)

Publication Number Publication Date
JPS60166857A JPS60166857A (en) 1985-08-30
JPH0159544B2 true JPH0159544B2 (en) 1989-12-18

Family

ID=11617724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005677A Granted JPS60166857A (en) 1985-01-18 1985-01-18 Acoustic microscope

Country Status (1)

Country Link
JP (1) JPS60166857A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855850A (en) * 1986-12-27 1989-08-08 Copal Company Limited Disk drive apparatus with disk rotating means
CN101770068B (en) * 2009-12-31 2015-05-20 马宇尘 Method capable of realizing automatic adjustment of camera and system thereof

Also Published As

Publication number Publication date
JPS60166857A (en) 1985-08-30

Similar Documents

Publication Publication Date Title
US4459852A (en) Acoustic microscope using line-focus acoustic beam
JP2541012B2 (en) Ultrasonic spectrum microscope
US5099693A (en) Apparatus for investigating a sample with ultrasound
US4510810A (en) Ultrasonic microscope
US8626468B2 (en) MEMS device comprising oscillations measurements means
US4694699A (en) Acoustic microscopy
JPH0421139B2 (en)
US6470752B2 (en) Ultrasonic detection method and apparatus and ultrasonic diagnostic apparatus
JPH0159544B2 (en)
US4614410A (en) Ultrasonic microscope with optical microscope incorporated therein
SU832449A1 (en) Scanning acoustic microscope
JPS61223551A (en) Ultrasonic microscope
JPS61200461A (en) Ultrasonic microscope
JPS6222838Y2 (en)
JPH06100585B2 (en) Ultrasound microscope probe
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young's modulus and/or poisson ratio measuring instrument using the device
JPH07181169A (en) Ultrasonic microscope
JPS6318919Y2 (en)
JPH06281634A (en) Ultrasonic probe
JPH0359380B2 (en)
JPS6097268A (en) Focus aligning apparatus of ultrasonic microscope
JPH0233984B2 (en)
JPH05273183A (en) Ultrasonic probe
JPS6188144A (en) Ultrasonic microscope
JPH0412824B2 (en)