JPH0158695B2 - - Google Patents

Info

Publication number
JPH0158695B2
JPH0158695B2 JP4719179A JP4719179A JPH0158695B2 JP H0158695 B2 JPH0158695 B2 JP H0158695B2 JP 4719179 A JP4719179 A JP 4719179A JP 4719179 A JP4719179 A JP 4719179A JP H0158695 B2 JPH0158695 B2 JP H0158695B2
Authority
JP
Japan
Prior art keywords
circuit
temperature
transistor
ref0
margin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4719179A
Other languages
Japanese (ja)
Other versions
JPS55140329A (en
Inventor
Kyoshi Ueda
Yasuaki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4719179A priority Critical patent/JPS55140329A/en
Publication of JPS55140329A publication Critical patent/JPS55140329A/en
Publication of JPH0158695B2 publication Critical patent/JPH0158695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/082Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using bipolar transistors
    • H03K19/086Emitter coupled logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Logic Circuits (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)

Description

【発明の詳細な説明】 本発明は簡易な補償回路で周囲依存性マージン
増大を図つたコレクタ・ドツト回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a collector dot circuit which aims to increase the ambient dependency margin using a simple compensation circuit.

従来のコレクタ・ドツト回路を第1図A,Bに
示す。第1図において1,2,3,4は信号入力
端子、Vputはドツト出力、Qはクランプ用トラン
ジスタ、R0,R1はクランプ用トランジスタQの
ベースに基準電位を与える為の分割抵抗である。
通常クランプ用トランジスタQのベース電位とし
ては信号レベルの関係から−0.1V〜−0.2V程度
を設定し、又電源電圧VEEは−5.2Vであるから分
割抵抗R0,R1の抵抗比R0/R1は0.03≦R0/R1
0.1となる。さて、出力LOWレベル状態ではドツ
ト出力側に1コのトランジスタか2コのトランジ
スタに流れるゲート電流が生じ、従つてドツト出
力側に1コのトランジスタを介して流れる場合、
即ちドツト出力のon電流1コの場合は、出力レ
ベルVputが基準出力レベルよりも上昇し、切換基
準電位Vref(又はVref1)とのマージンが減少する
ことと、またクランプ用トランジスタの温度依存
性が露わに出力レベル周囲依存性に現われるとい
う欠点があつた。
Conventional collector dot circuits are shown in FIGS. 1A and 1B. In Figure 1, 1, 2, 3, and 4 are signal input terminals, V put is a dot output, Q is a clamping transistor, and R 0 and R 1 are dividing resistors for applying a reference potential to the base of the clamping transistor Q. be.
Normally, the base potential of the clamping transistor Q is set to about -0.1V to -0.2V from the relationship of the signal level, and since the power supply voltage V EE is -5.2V, the resistance ratio R of the dividing resistors R 0 and R 1 is 0 /R 1 is 0.03≦R 0 /R 1
It becomes 0.1. Now, in the output LOW level state, a gate current flows through one or two transistors on the dot output side, and therefore, when it flows through one transistor on the dot output side,
That is, in the case of one dot output ON current, the output level V put rises above the reference output level, the margin with the switching reference potential V ref (or V ref1 ) decreases, and the temperature of the clamping transistor increases. There was a drawback that the dependence clearly appeared in the output level surrounding dependence.

本発明の目的は、これらの欠点を除去するた
め、コレクタ・ドツト回路にVref0基準電位発生
周囲マージン補償回路を付加したもので以下詳細
に説明する。第2図A,Bはドツト数2の場合の
コレクタ・ドツト回路で、クランプ用トランジス
タのベースに基準電位Vref0を供給した回路構成
になつている。第3図は本発明の補償回路の一実
施例を示す回路図である。本実施例では出力レベ
ルを下げたこと、また電源VEE(=−5.2V)とト
ランジスタのVBEの温度特性を利用して切換基準
電位Vrefと4個のトランジスタ及びダイオードの
温度特性によつて、総合的特性を改善したことで
ある。かかる効果を一般の場合について説明す
る。正の温度係数をもつ基準電位VrefとN個のト
ランジスタ及びダイオードの温度特性を用いて、
電源VEE間に生じる電位差によつて、抵抗R1に生
じる電流が抵抗R0の電圧降下Vref0を発生する。
Vref0基準電位と、ドツト出力レベルを一般式で
表わすと、以下第(1)、(2)式の様になる。
In order to eliminate these drawbacks, the object of the present invention is to add a V ref0 reference potential generation peripheral margin compensation circuit to the collector dot circuit, which will be described in detail below. FIGS. 2A and 2B show collector dot circuits with two dots, and have a circuit configuration in which a reference potential V ref0 is supplied to the base of a clamping transistor. FIG. 3 is a circuit diagram showing one embodiment of the compensation circuit of the present invention. In this example, the output level is lowered, and the temperature characteristics of the power supply V EE (=-5.2V) and the transistor V BE are used to set the switching reference potential V ref and the temperature characteristics of the four transistors and diodes. In other words, the overall characteristics have been improved. This effect will be explained in a general case. Using a reference potential V ref with a positive temperature coefficient and the temperature characteristics of N transistors and diodes,
Due to the potential difference between the power supplies VEE , the current generated in the resistor R1 generates a voltage drop Vref0 across the resistor R0 .
When the V ref0 reference potential and the dot output level are expressed in general formulas, the following formulas (1) and (2) are obtained.

Vref0=−αR0/R1(Vref−NVBE−VEE) …(1) Vput=Vref0−VBE ……(2) α(≒1)は電流増幅率である。 V ref0 = −αR 0 /R 1 (V ref −NV BE −V EE ) …(1) V put =V ref0 −V BE …(2) α (≒1) is the current amplification factor.

Vref0およびVputの温度依存性を求めるために、
上記第(1)式と第(2)式を夫々温度Tで微分すると、
抵抗比の項は温度依存性をもたないとして、 ここでdVBE/dT<0、dVref/dT>0である
から、第(3)式の第項,第項は共に温度係数と
なり、dVref0/dTは負の温度係数となり、これ
は第(4)式の第項に相当し、第(4)式の第項の正
の温度係数を減少させる効果として働き、特性改
善の効果を発揮する。
To find the temperature dependence of V ref0 and V put ,
Differentiating the above equations (1) and (2) with respect to temperature T, we get
Assuming that the resistance ratio term has no temperature dependence, Here, since dV BE /dT<0 and dV ref /dT>0, both the first and second terms in equation (3) are temperature coefficients, and dV ref0 /dT is a negative temperature coefficient, which is It corresponds to the term in equation (4), acts as an effect to reduce the positive temperature coefficient of the term in equation (4), and exhibits the effect of improving characteristics.

かかる効果を第1の実施例、ECL10K電源VEE
を用いた場合、具体的数値を用いて本発明である
第3図の補償回路を用いて比較すると以下の様に
なる。トランジスタTR1のベースに切換基準電
位を加え、トランジスタVBE1段,ダイオードD1
〜D3によるVBE3段シフトした点と、電源VEE
の電位差によつて生じる電流と抵抗R0により基
準電位Vref0を発生している。この基準電位Vref0
のベース点供給により、ドツト出力はON電流1
コの場合、基準出力レベルに設定することができ
る。また、周囲依存性も改善され、マージンが増
大する方向に動作する。
This effect can be seen in the first example, ECL10K power supply V EE
When using the compensation circuit of FIG. 3, which is the present invention, using specific numerical values, the comparison is as follows. Add switching reference potential to the base of transistor TR1, transistor V BE 1 stage, diode D 1
A reference potential V ref0 is generated by a point shifted by three steps of V BE by ~D 3 , a current generated by a potential difference between the power source V EE , and a resistor R 0 . This reference potential V ref0
By supplying the base point of , the dot output is ON current 1
In this case, it can be set to the standard output level. Additionally, the dependence on the surroundings is improved, and the margin increases.

基準電位Vref0およびドツト出力レベルVputは次
式(5)、(6)で表わすことができる。
The reference potential Vref0 and the dot output level Vput can be expressed by the following equations (5) and (6).

Vref0=−αR0/R1(Vref−(VBE1+VBE2+VBE3+VBE4
)−VEE)……(5) Vput=Vref0−VBE ……(6) Vref0およびVputの温度依存性を求めるために、
上記第(5)式と第(6)式を夫々温度Tで微分すると、
抵抗比の項は温度依存性をもたないとして、 dVref0/dT=−αR0/R1(dVref/dT−(dVBE1/dT+dV
BE2/dT+dVBE3/dT+dVBE4/dT))……(7) dVput/dT=dVref0/dT−dVBE/dT ……(8) 第(7)式,第(8)式に於いてdVBE/dTの値は、エ
ミツタ電流の関数となるが、略dVBE/dT=
dVBE1 /dT=………=dVBE4/dT=−1.6mV/℃の値
と考えられる。また、dVref/dT=1.3mV/℃,
基準電位値設定からR0/R1=0.1とすると、第(7)
式、第(8)式は次式(9)、(10)の値となる。
V ref0 = −αR 0 /R 1 (V ref −(V BE1 +V BE2 +V BE3 +V BE4
) −V EE )……(5) V put =V ref0 −V BE ……(6) To find the temperature dependence of V ref0 and V put ,
Differentiating equations (5) and (6) above with respect to temperature T, we get
Assuming that the resistance ratio term has no temperature dependence, dV ref0 /dT=-αR 0 /R 1 (dV ref /dT-(dV BE1 /dT+dV
BE2 /dT+dV BE3 /dT+dV BE4 /dT))……(7) dV put /dT=dV ref0 /dT−dV BE /dT ……(8) In equations (7) and (8), dV The value of BE /dT is a function of the emitter current, but approximately dV BE /dT=
The value is considered to be dV BE1 /dT = dV BE4 /dT = -1.6mV/°C. Also, dV ref /dT=1.3mV/℃,
If R 0 /R 1 = 0.1 from the reference potential value setting, then (7)
The equation (8) becomes the value of the following equations (9) and (10).

dVref0/dT=−0.1(1.3−4×(−1.6))=−0.77mV
/ ℃ ……(9) dVput/dT=−0.77−(−1.6)=0.83mV/℃ …(10) 次に、基準電圧Vref0をクランプ用トランジス
タに用いない従来の場合と比較すると、第1図A
の場合は、 Vput=R0/R0+R1(VEE+2VBE)−VBE ……(11) 上記第(11)式を温度Tで微分し、抵抗比の項は温
度依存性をもたないとすると、 dVput/dT=R0/R0+R1・2dVBE/dT−dVBE/dT=R0−R
1/R0+R1・dVBE/dT=R0/R1 -1/R0/R1 +1・dVBE/dT
……(12) ここでdVBE/dT=−1.6mV/℃、R0/R1
0.1とすると dVput/dT≧0.1−1/0.1+1(−1.6)≧1.31mV/℃ ……(13) 第1図Bの場合は、Vput=−VBEと考えられ、
その温度依存性は、 dVput/dT=−dVBE/dT=−(−1.6)=1.6mV/℃ ……(14) 第(10)式と、第(13)式及び第(14)式との比較
から明らかな様に本発明回路の場合は、従来回路
A及びBに比べ、40%〜50%と大巾な温度依存性
の改善が達成されている。本来Vref或はVref1はい
ずれもある範囲で温度依存性をもつ結果、Vput
限りなく“0”に近ずけるべく設定出来るのが好
ましい。故に本発明回路は従来の回路に比べ温度
依存余裕度が2倍近く改善できる結果、動作温度
範囲が広がること或は周囲温度変化に対する誤動
作防止上、極めて有利である。
dV ref0 /dT=-0.1(1.3-4×(-1.6))=-0.77mV
/ °C ... (9) dV put /dT = -0.77 - (-1.6) = 0.83 mV / °C ... (10) Next, when comparing with the conventional case in which the reference voltage V ref0 is not used for the clamping transistor, the Figure 1A
In the case of V put = R 0 / R 0 + R 1 (V EE + 2V BE ) − V BE ……(11) Differentiate the above equation (11) with respect to the temperature T, and the resistance ratio term takes into account the temperature dependence. If it does not hold, dV put /dT=R 0 /R 0 +R 1・2dV BE /dT−dV BE /dT=R 0 −R
1 /R 0 +R 1・dV BE /dT=R 0 /R 1 -1 /R 0 /R 1 +1・dV BE /dT
...(12) Here, dV BE /dT=-1.6mV/℃, R 0 /R 1
If it is 0.1, then dV put /dT≧0.1-1/0.1+1 (-1.6)≧1.31mV/℃... (13) In the case of Figure 1B, V put = -V BE ,
Its temperature dependence is: dV put /dT = -dV BE /dT = - (-1.6) = 1.6mV/℃ ... (14) Equation (10), Equation (13) and Equation (14) As is clear from the comparison, in the case of the circuit of the present invention, compared to the conventional circuits A and B, a wide improvement in temperature dependence of 40% to 50% has been achieved. Since both V ref and V ref1 originally have temperature dependence within a certain range, it is preferable that V put be set as close to "0" as possible. Therefore, the circuit of the present invention can improve the temperature dependence margin by nearly twice as much as that of the conventional circuit, which is extremely advantageous in terms of widening the operating temperature range and preventing malfunctions due to changes in ambient temperature.

以上説明した例は、ドツト数が2コの場合であ
るが、ドツト数が3コ以上の場合にも同様な効果
が期待できる。
Although the example explained above is for the case where the number of dots is two, similar effects can be expected when the number of dots is three or more.

本発明ドツト出力のON電流1ケの場合に特に
利点があるので、マルチプレクサー等の回路方式
には効果が大であるので利用することができる。
また、この方式はLCML及びCML両回路形式に
適用可能である。
The present invention is particularly advantageous in the case of one ON current for dot output, so it can be used in circuit systems such as multiplexers because it is highly effective.
Additionally, this method is applicable to both LCML and CML circuit formats.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは従来のコレクタドツト回路図、
第2図A,Bは本発明を用いたコレクタドツト回
路、第3図は本発明の補償回路図である。 5,6,7,8…入力信号端子、Vput…ドツト
出力、Vref0…基準設定電位、Vref,Vref1…切換
基準電位、Q…クランプ用トランジスタ、TR1
…トランジスタ、D1,D2,D3,…ダイオード。
Figures 1A and 1B are conventional collector dot circuit diagrams,
2A and 2B are collector dot circuits using the present invention, and FIG. 3 is a compensation circuit diagram of the present invention. 5, 6, 7, 8...Input signal terminal, V put ...Dot output, V ref0 ...Reference setting potential, V ref , V ref1 ...Switching reference potential, Q...Clamp transistor, TR1
...transistor, D 1 , D 2 , D 3 , ... diode.

Claims (1)

【特許請求の範囲】[Claims] 1 コレクタ・ドツト回路のクランプ用トランジ
スタのベースに温度補償回路を接続して成る
ECL回路に於て、前記温度補償回路は、マージ
ン補償用トランジスタと、このマージン補償用ト
ランジスタのエミツタ側に直列接続された複数個
のダイオードと、このダイオードと第1の電源と
の間に接続された第1の抵抗と、前記マージン補
償用トランジスタのコレクタと第2の電源との間
に接続された第2の抵抗とから成り、前記マージ
ン補償用トランジスタのベースに正の温度係数を
有する基準電流を与え、このマージン補償用トラ
ンジスタのコレクタと前記第2の抵抗との接続点
を温度補償回路の出力としたことを特徴とする論
理回路。
1 Consists of a temperature compensation circuit connected to the base of the clamping transistor of the collector dot circuit.
In the ECL circuit, the temperature compensation circuit includes a margin compensation transistor, a plurality of diodes connected in series to the emitter side of the margin compensation transistor, and a first power supply connected between the diode and the first power supply. and a second resistor connected between the collector of the margin compensation transistor and a second power supply, and a reference current having a positive temperature coefficient at the base of the margin compensation transistor. , and a connection point between the collector of the margin compensation transistor and the second resistor is an output of a temperature compensation circuit.
JP4719179A 1979-04-19 1979-04-19 Logical operation circuit Granted JPS55140329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4719179A JPS55140329A (en) 1979-04-19 1979-04-19 Logical operation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4719179A JPS55140329A (en) 1979-04-19 1979-04-19 Logical operation circuit

Publications (2)

Publication Number Publication Date
JPS55140329A JPS55140329A (en) 1980-11-01
JPH0158695B2 true JPH0158695B2 (en) 1989-12-13

Family

ID=12768211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4719179A Granted JPS55140329A (en) 1979-04-19 1979-04-19 Logical operation circuit

Country Status (1)

Country Link
JP (1) JPS55140329A (en)

Also Published As

Publication number Publication date
JPS55140329A (en) 1980-11-01

Similar Documents

Publication Publication Date Title
US4112314A (en) Logical current switch
EP0083208B1 (en) A bias circuit for an emitter coupled logic circuit
US4644257A (en) Band gap circuit
EP0181017A1 (en) Simulated transistor/diode
JPH0473806B2 (en)
EP0411657B1 (en) Constant voltage circuit
JP3347896B2 (en) Constant voltage source circuit
US4103220A (en) Low dissipation voltage regulator
JPH0158695B2 (en)
EP0442391B1 (en) Circuit arrangement for protecting an input of an integrated circuit fed from a supply voltage source from overvoltages
EP0104777A1 (en) A constant current source circuit
EP0110720B1 (en) Current mirror circuit
JP3178716B2 (en) Maximum value output circuit, minimum value output circuit, maximum value minimum value output circuit
US4843302A (en) Non-linear temperature generator circuit
JPH0334096B2 (en)
JPH0784658A (en) Current source
US5012136A (en) High speed ECL to CMOS translator having reduced power consumption
JPH07146727A (en) Low-voltage reference voltage generation circuit
JP2650390B2 (en) Comparison device
JP2829773B2 (en) Comparator circuit
JP2740650B2 (en) Constant current generation circuit
JP2545374B2 (en) Differential amplifier circuit having constant current source circuit
EP0332714A1 (en) Temperature compensated current source
JPH05250055A (en) Voltage/current conversion circuit
JPS6347011B2 (en)