JPH0157899B2 - - Google Patents

Info

Publication number
JPH0157899B2
JPH0157899B2 JP7266382A JP7266382A JPH0157899B2 JP H0157899 B2 JPH0157899 B2 JP H0157899B2 JP 7266382 A JP7266382 A JP 7266382A JP 7266382 A JP7266382 A JP 7266382A JP H0157899 B2 JPH0157899 B2 JP H0157899B2
Authority
JP
Japan
Prior art keywords
surface layer
layer
selenium
alloy
layer made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7266382A
Other languages
Japanese (ja)
Other versions
JPS58189644A (en
Inventor
Susumu Honma
Katsuhiro Sato
Kimio Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7266382A priority Critical patent/JPS58189644A/en
Publication of JPS58189644A publication Critical patent/JPS58189644A/en
Publication of JPH0157899B2 publication Critical patent/JPH0157899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特にレーザプリンタなどに用いられる
セレン系材料からなる感光層を有する電子写真用
感光体に関する。 レーザプリンタ用の感光体は特に長波長光感度
が必要であり、そのような要求をセレン・テルル
合金で満たすためには濃度25重量%以上のTeの
含有が必要である。そのような高Te濃度のSe合
金は暗抵抗が小さく電荷保持能力からこの電荷発
生層の厚さは約2μm以下に制限される。しかしこ
のような薄層だけでは電子写真プロセスに必要な
暗電位500V以上を得ることができないので、電
位保持のためにはよりTe濃度の低いSe−Te合
金、あるいは純Seからなる電荷移動層を電荷発
生層と導電性基体との間に設けている。さらにこ
の電荷発生層の上に、その保護と電荷保持能力の
向上のためのSe表面層を設けることが知られて
いる。この表面層は感光体の寿命を決定する。す
なわち感光体を長寿命にするには、耐熱性の向上
と表面硬度の増大を図る必要がある。そのために
Te、As、SbなどをSe表面層に添加することが行
われるが、これらの元素の表面層への添加は表面
層への電荷(電子)の走行性を悪化させ、特に長
波長光に対する電荷発生層から表面層への電子の
注入効率が悪くなり、繰返し印刷時の帯電電位変
動が大きくなる欠点がある。 本発明はこの欠点を除去し、機能分離型感光層
を有する感光体の寿命を長くするとともに、繰返
しコピー時の帯電電位変動を少なくすることを目
的とする。 この目的は電子写真用感光体を導電性基体上に
純セレンからなる電荷輸送層とセレン・テルル合
金からなる電荷発生層がこの順に積層され、その
上に純セレン層からなる第2表面層と1原子%以
上のTeまたはGeのいずれか一方を含むセレン合
金層からなる第1表面層とがこの順でさらに積層
されたものとすることにより達成される。 以下図と比較試験結果とを引用して本発明の実
施例について説明する。第1図に示すように、本
発明による電子写真用感光体は、導電性基体1の
上に電荷移動層2、電荷発生層3、第二表面層
4、第一表面層5が順次積層されている。第二表
面層4は場合によつては第一表面層にくらべて微
量の不純物が含まれることがある純セレン層であ
り、第一表面層5は耐熱性や硬度を向上させるた
めの元素を1原子%以上添加したセレン合金層で
ある。 実施例 1 基体1としての直径120mm、長さ340mmのアルミ
ニウム円筒を65℃に保持し、その上に純Seを
60μmの厚さに蒸着して電荷移動層2を形成した。
次いで22.5重量%のTeを含むSe合金を350℃で蒸
発させ、長波長光に対する電荷発生層3を0.7μm
の厚さで蒸着した。その時、この層の最表面の
Te濃度は40〜50重量%になつていた。この上に
純Seをフラツシユ蒸着して1.2μmの厚さの第二表
面層4を、さらに5.5重量%Te−Se合金のフラツ
シユ蒸着して同じく1.2μmの厚さの第一表面層5
を順次形成した。 実施例 2 導電性基体1、電荷移動層2、電荷発生層3、
第二表面層4は実施例と同一であり、第一表面層
5として7重量%Te−Se合金を1.5μmの厚さに
フラツシユ蒸着した。 比較例 1 第二表面層4を省略した以外は実施例1と同様
に作成した。 比較例 2 第二表面層4を省略した以外は実施例2と同様
に作成した。 以上4種の感光体を用い、14rpmの回転数で回
転させながら、コロナ帯電し、コロナ帯電器より
30゜の位置で780nmの単色光により露光、コロナ
帯電器より100゜の位置で表面電位を検出した。除
電は色温度2800Kの白色光を各感光体の半減衰露
光量の10倍だけ露光することにより行つた。最初
の25回転は露光をしないで暗部電位を測定し、次
の25回転は露光を与え、再び25回転は露光を止
め、この様に25回転後に露光をオン、オフして合
計250サイクルを繰り返し、露光停止時の電位変
動を室温で測定した。この結果を第1表に示す。
The present invention particularly relates to an electrophotographic photoreceptor having a photosensitive layer made of a selenium-based material and used in laser printers and the like. Photoreceptors for laser printers particularly require long-wavelength light sensitivity, and in order to meet such requirements with a selenium-tellurium alloy, it is necessary to contain Te at a concentration of 25% by weight or more. The thickness of this charge generation layer is limited to about 2 μm or less because of the low dark resistance and charge retention ability of such Se alloys with a high Te concentration. However, it is not possible to obtain the dark potential of 500 V or more necessary for the electrophotographic process with only such a thin layer, so in order to maintain the potential, a charge transfer layer made of a Se-Te alloy with a lower Te concentration or pure Se is required. It is provided between the charge generation layer and the conductive substrate. Furthermore, it is known to provide a Se surface layer on this charge generation layer to protect it and improve its charge retention ability. This surface layer determines the life of the photoreceptor. That is, in order to extend the life of a photoreceptor, it is necessary to improve heat resistance and increase surface hardness. for that
Te, As, Sb, etc. are added to the Se surface layer, but the addition of these elements to the surface layer deteriorates the mobility of charges (electrons) to the surface layer, especially the charge against long wavelength light. This has the disadvantage that the injection efficiency of electrons from the generation layer to the surface layer becomes poor, and the charging potential fluctuations during repeated printing become large. It is an object of the present invention to eliminate this drawback, to extend the life of a photoreceptor having a functionally separated photosensitive layer, and to reduce fluctuations in charging potential during repeated copying. The purpose of this is to form an electrophotographic photoreceptor in which a charge transport layer made of pure selenium and a charge generation layer made of a selenium-tellurium alloy are laminated in this order on a conductive substrate, and a second surface layer made of pure selenium is placed on top of the charge transport layer made of pure selenium and a charge generation layer made of a selenium-tellurium alloy. This is achieved by further laminating in this order a first surface layer consisting of a selenium alloy layer containing 1 atomic % or more of either Te or Ge. Examples of the present invention will be described below with reference to figures and comparative test results. As shown in FIG. 1, the electrophotographic photoreceptor according to the present invention has a charge transfer layer 2, a charge generation layer 3, a second surface layer 4, and a first surface layer 5 sequentially laminated on a conductive substrate 1. ing. The second surface layer 4 is a pure selenium layer that may contain a trace amount of impurities compared to the first surface layer, and the first surface layer 5 contains elements to improve heat resistance and hardness. This is a selenium alloy layer containing 1 atomic % or more of added selenium. Example 1 An aluminum cylinder with a diameter of 120 mm and a length of 340 mm as the substrate 1 was maintained at 65°C, and pure Se was placed on it.
The charge transfer layer 2 was formed by vapor deposition to a thickness of 60 μm.
Next, Se alloy containing 22.5% by weight of Te was evaporated at 350°C to form a charge generation layer 3 of 0.7 μm for long wavelength light.
It was deposited to a thickness of . At that time, the topmost surface of this layer
The Te concentration was 40-50% by weight. On top of this, a second surface layer 4 with a thickness of 1.2 μm is formed by flash-depositing pure Se, and a first surface layer 5 with a thickness of 1.2 μm is further formed by flash-depositing a 5.5 wt % Te-Se alloy.
were formed sequentially. Example 2 Conductive substrate 1, charge transfer layer 2, charge generation layer 3,
The second surface layer 4 was the same as in the example, and the first surface layer 5 was a 7% by weight Te-Se alloy deposited by flash vapor deposition to a thickness of 1.5 μm. Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the second surface layer 4 was omitted. Comparative Example 2 A sample was prepared in the same manner as in Example 2 except that the second surface layer 4 was omitted. Using the above four types of photoreceptors, corona charging is performed while rotating at a rotation speed of 14 rpm, and the corona charger
It was exposed to 780 nm monochromatic light at a position of 30°, and the surface potential was detected at a position of 100° from a corona charger. Static charge removal was performed by exposing each photoreceptor to white light with a color temperature of 2800K for an amount 10 times the half-attenuation exposure amount. For the first 25 rotations, the dark potential is measured without exposure, for the next 25 rotations, exposure is applied, and for 25 rotations again, the exposure is stopped, and in this way, after 25 rotations, the exposure is turned on and off, repeating a total of 250 cycles. , potential fluctuations at the time of stopping exposure were measured at room temperature. The results are shown in Table 1.

【表】 実施例 3 実施例1と同様に電荷移動層2および電荷発生
層3を準備し、その上に表面層を蒸着した。蒸発
源として1原子%のGeを含むSe合金を用い、蒸
発源のボート温度と蒸着開始時で380℃としてSe
だけを蒸発させ、原料が約1/3量まではこの状態
でGeとSeを分留しながら蒸着した後、ボート温
度を500℃に上げて残りの材料全部をフラツシユ
蒸着した。表面層全体の厚さは1.1μmであつた。 比較例 3 実施例において、表面層形成時の1原子%Ge
−Se合金収容のボート温度を最初から500℃にし
てフラツシユ蒸着し、Se−Ge合金表面層を
1.2μmの厚さに形成した。 実施例3、比較例3の感光体を用い第1表の結
果を得た場合と同じ疲労測定を行つた。得られた
結果を第2表に示す。
[Table] Example 3 A charge transfer layer 2 and a charge generation layer 3 were prepared in the same manner as in Example 1, and a surface layer was deposited thereon. Se alloy containing 1 at% Ge was used as the evaporation source, and the boat temperature of the evaporation source was set to 380°C at the start of evaporation.
In this state, Ge and Se were vapor-deposited by fractional distillation until about 1/3 of the amount of the raw material was left, and then the boat temperature was raised to 500°C and all the remaining materials were flash-deposited. The total thickness of the surface layer was 1.1 μm. Comparative Example 3 In the example, 1 atomic % Ge at the time of forming the surface layer
-The boat containing the Se alloy was heated to 500°C from the beginning for flash deposition, and the surface layer of the Se-Ge alloy was deposited.
It was formed to a thickness of 1.2 μm. Using the photoreceptors of Example 3 and Comparative Example 3, the same fatigue measurements as those used to obtain the results in Table 1 were performed. The results obtained are shown in Table 2.

【表】 なお実施例3、比較例3の双方の表面には従来
機能分離形感光体の表面層に用いられていなかつ
たSe−Ge合金層が存在しているが、この表面層
によつても純Se表面層に比して耐熱性、耐刷性
の向上が見られた。 本発明により、表面層に感光体を長寿命化する
ためにTe、Ge等の異元素を添加した場合の欠点
であるくり返し疲労による帯電電位の変動が、第
1表および第2表の結果が示すようにほとんど無
視できるほどに少なくなり、安定した画像が得ら
れるようになつた。特に数百枚以上の連続コピー
時には本発明による感光体と従来の表面層を有す
る感光体とでは画像上に顕著な差がでる。これは
電荷発生層で発生した電子が表面層に注入される
際、表面層への添加元素のために注入が不完全と
なり、このトラツプされた電子が蓄積されて電位
の低下を来たすのに対し、本発明により備えられ
る中間の純セレン層の存在によつてこの注入性が
改善され、かかる電子の蓄積が生じないため帯電
電位はほとんど変化しないことに基づく。しかも
表面に近い部分に存在する添加元素により、感光
体の耐熱性、耐刷性が向上できるので本発明の特
に長波長感度を有する感光体へ与える効果は極め
て大である。
[Table] Note that there is a Se-Ge alloy layer on the surface of both Example 3 and Comparative Example 3, which has not been used in the surface layer of conventional functionally separated photoreceptors. The heat resistance and printing durability were also improved compared to the pure Se surface layer. According to the present invention, fluctuations in charging potential due to repeated fatigue, which is a drawback when adding different elements such as Te and Ge to the surface layer in order to extend the life of the photoreceptor, can be reduced by the results shown in Tables 1 and 2. As shown, the amount has become almost negligible, and stable images can now be obtained. Especially when continuously copying several hundred sheets or more, there is a noticeable difference in image quality between the photoreceptor according to the present invention and a photoreceptor having a conventional surface layer. This is because when electrons generated in the charge generation layer are injected into the surface layer, the injection is incomplete due to the addition of elements to the surface layer, and these trapped electrons accumulate, causing a drop in potential. This is based on the fact that this injection property is improved by the presence of the intermediate pure selenium layer provided according to the invention, and the charging potential hardly changes since no such accumulation of electrons occurs. Moreover, the heat resistance and printing durability of the photoreceptor can be improved by the additive elements present near the surface, so the effect of the present invention is particularly great for photoreceptors having long wavelength sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す部分断面図で
ある。 1……導電性基体、2……電荷輸送層、3……
電荷発生層、4……第二表面層、5……第一表面
層。
FIG. 1 is a partial sectional view showing one embodiment of the present invention. 1... Conductive substrate, 2... Charge transport layer, 3...
Charge generation layer, 4... second surface layer, 5... first surface layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性基体上に純セレンからなる電荷輸送層
とセレン・テルル合金からなる電荷発生層がこの
順に積層され、その上に純セレン層からなる第2
表面層と、1原子%以上のTeまたはGeのいずれ
か一方を含むセレン合金層からなる第1表面層と
がこの順でさらに積層されたことを特徴とする電
子写真用感光体。
1 A charge transport layer made of pure selenium and a charge generation layer made of a selenium-tellurium alloy are laminated in this order on a conductive substrate, and a second layer made of pure selenium is placed on top of the charge transport layer made of pure selenium and a charge generation layer made of a selenium-tellurium alloy.
A photoreceptor for electrophotography, characterized in that a surface layer and a first surface layer made of a selenium alloy layer containing 1 atomic % or more of either Te or Ge are further laminated in this order.
JP7266382A 1982-04-30 1982-04-30 Electrophotographic receptor Granted JPS58189644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266382A JPS58189644A (en) 1982-04-30 1982-04-30 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266382A JPS58189644A (en) 1982-04-30 1982-04-30 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS58189644A JPS58189644A (en) 1983-11-05
JPH0157899B2 true JPH0157899B2 (en) 1989-12-07

Family

ID=13495823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266382A Granted JPS58189644A (en) 1982-04-30 1982-04-30 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS58189644A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165253A (en) * 1984-09-07 1986-04-03 Fuji Electric Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS58189644A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
JPH0157899B2 (en)
KR910008491B1 (en) Electrographic sensitive body
JPS636865B2 (en)
JPS636866B2 (en)
JPH0792610B2 (en) Electrophotographic photoconductor
US4415642A (en) Electrophotographic member of Se-Te-As with halogen
US4837099A (en) Multilayer photoconductor for electrophotography
US6228545B1 (en) Electrophotographic selenium photoconductor
JPS5974569A (en) Electrophotographic receptor and its manufacture
JPS61256353A (en) Electrophotographic selenium photosensitive body
JPS59166961A (en) Electrophotographic sensitive body
JPH0157898B2 (en)
JPH079541B2 (en) Electrophotographic photoconductor
JPS58223154A (en) Electrophotographic receptor
JP2775477B2 (en) Electrophotographic photoreceptor
JPS5882250A (en) Electrophotographic receptor
JPS58179843A (en) Electrophotographic receptor
JPH0259764A (en) Electrophotographic sensitive body
JP2599950B2 (en) Photoconductor structure
JPH0217019B2 (en)
JPS62294253A (en) Electrophotographic sensitive body
JPH05249721A (en) Electrophotographic sensitive body
JPH03172854A (en) Electrophotographic functionally separated type selenium photosensitive body
JPH0536785B2 (en)
JPH0426107B2 (en)