JPH0157763B2 - - Google Patents

Info

Publication number
JPH0157763B2
JPH0157763B2 JP53088101A JP8810178A JPH0157763B2 JP H0157763 B2 JPH0157763 B2 JP H0157763B2 JP 53088101 A JP53088101 A JP 53088101A JP 8810178 A JP8810178 A JP 8810178A JP H0157763 B2 JPH0157763 B2 JP H0157763B2
Authority
JP
Japan
Prior art keywords
light
core
cladding
output end
input end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53088101A
Other languages
Japanese (ja)
Other versions
JPS5515164A (en
Inventor
Mikio Kokayu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8810178A priority Critical patent/JPS5515164A/en
Publication of JPS5515164A publication Critical patent/JPS5515164A/en
Publication of JPH0157763B2 publication Critical patent/JPH0157763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】 本発明は線状発光体などとして利用し得る漏洩
光伝送体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leakage light transmitting body that can be used as a linear light emitter.

従来この種の線状発光体はそれ自体を光源とし
て発光させる形式のものであるため、長尺かつ細
径のものを造るといつたことが殆ど不可能である
ばかりでなく、その発光手段として少くとも両端
部に電極などを設ける必要があり、この結果その
利用範囲も自ら限定され、著しく狭いものとなつ
ていた。
Conventionally, this type of linear light emitting material is of a type that emits light by itself as a light source, so it is not only almost impossible to make one with a long length and a small diameter, but also as a means of emitting light. It is necessary to provide electrodes or the like at least at both ends, and as a result, the range of its use is also limited and extremely narrow.

本発明はこのような従来の問題点に鑑み、それ
自体に光源を求めるという前記既成観念を排し、
外部の光源に光を求めるようにした線状発光体を
得ようとするもので、このため本来はコアとこれ
を包むクラツドとの境界面において光を全反射さ
せてこれをコア内に閉じ込めつつ伝送するように
した光伝送体に着目し、該境界面に対する光の入
射角とその臨界角との関係を利用して上記コア内
を伝送される光をクラツドを介して外部に漏洩さ
せるようにし、もつて該漏洩光を外部照明に利用
するなどして上記問題点を悉く解消したものであ
る。
In view of these conventional problems, the present invention eliminates the conventional idea of requiring the light source itself, and
The aim is to obtain a linear light emitting body that seeks light from an external light source, and for this purpose, it was originally designed to completely reflect light at the interface between the core and the cladding that surrounds it, confining it within the core. Focusing on the optical transmission body configured to transmit light, the light transmitted within the core is leaked to the outside via the cladding by utilizing the relationship between the angle of incidence of light on the boundary surface and its critical angle. , all of the above problems have been solved by utilizing the leaked light for external illumination.

以下この構成を図面に基づき説明すると、先ず
第1図のものは既知の通り光の透過性のよい誘電
体材料、例えば石英ガラスなどからなる屈折率n1
のコア1を、これより小さい屈折率n2の誘導体材
料からなるクラツド2で包み、これらコア1とク
ラツド2との間に境界面3を形成して構成した光
伝送体であるが、同図の実施例ではコア1とクラ
ツド2の径が長手方向にわたつて不変となつてお
り、従つて境界面3の径も同方向にわたつて不変
となつているが、コア1の屈折率n1とクラツド2
の屈折率n2のうち一方または双方をn1>n2の範囲
内において変化させることにより、n1とn2の比を
入射端4側から出射端5側へ向け次第に小さくな
るよう設定し、これにより下記(h)式で与えられる
境界面3の臨界角αcを第1図ロで示すように上
記方向へ向け次第に大きくなるよう設定してい
る。
This configuration will be explained below based on the drawings. First, as is known, the configuration in Figure 1 is made of a dielectric material with good light transmittance, such as quartz glass, and has a refractive index n 1 .
This optical transmission body is constructed by wrapping a core 1 in a cladding 2 made of a dielectric material with a smaller refractive index n2 , and forming an interface 3 between the core 1 and the cladding 2. In the embodiment, the diameters of the core 1 and the cladding 2 remain unchanged in the longitudinal direction, and therefore the diameter of the interface 3 also remains unchanged in the same direction, but the refractive index n 1 of the core 1 and Kuratsudo 2
By changing one or both of the refractive indices n 2 within the range n 1 > n 2 , the ratio of n 1 and n 2 is set to gradually decrease from the input end 4 side to the output end 5 side. , As a result, the critical angle αc of the boundary surface 3 given by the following equation (h) is set so as to gradually increase in the above direction as shown in FIG.

αc=sin-1(n2/n1) …(h) 従つてこの実施例の場合、第1図ロで示すよう
にコア1の光軸に対しθの角度で入射端4から入
射した光は、境界面3において入射角αおよびこ
れと等しい反射角α(但しα=π/2−θ)で全
反射しつつコア1内を出射端5側へ進み、この入
射角αが上記臨界角αcより小となつたところで
クラツド2側へ屈折し、さらにこれが該クラツド
2を介して外部へ漏洩する。
αc=sin -1 (n 2 /n 1 ) ...(h) Therefore, in the case of this embodiment, as shown in FIG. travels through the core 1 toward the output end 5 side while undergoing total reflection at the boundary surface 3 at an incident angle α and an equal reflection angle α (α=π/2−θ), and this incident angle α is the critical angle mentioned above. When it becomes smaller than αc, it is refracted toward the cladding 2, and further leaks to the outside via the cladding 2.

そこでこの場合コア1の入射端において、その
光軸からyだけ離れた点Pから入射した光が、境
界面3においてクラツド2側へ屈折する地点Iの
位置について検討してみる。いまコア1の直径を
d,I点に至るまで光が全反射した回数をi(0
または1以上の整数)とし、また入射端4を基準
として出射端5側へ光軸上にx軸をとると、i回
目に全反射した地点x座標xiとI点のx座標xi+
1は夫々次の(i)式と(j)式で与えられる。
In this case, let us consider the position of a point I at the entrance end of the core 1, where light incident from a point P separated by y from the optical axis is refracted toward the cladding 2 at the boundary surface 3. Now, let the diameter of core 1 be d, and the number of total reflections of light to reach point I be i(0
or an integer greater than or equal to 1), and if we take the x-axis on the optical axis from the input end 4 to the output end 5 side, the x-coordinate of the i-th total reflection point xi and the x-coordinate of the I point xi+
1 is given by the following equations (i) and (j), respectively.

xi=(di+d/2−y)cotθ …(i) xi+1={d(i+1)+d/2−y}cotθ =(di+2/3d−y)cotθ …(j) ここで上記臨界角αcはxの関数であつて、 α=f(x) と表わすことができ、しかも x=xiにおいてαc<α=π/2−θ x=xi+1においてαc>α=π/2−θ でなければならないから f(xi)<π/2−θ<f(xi+1) 即ち f{(di+d/2−y)cotθ}<π/2−θ <f{(di+3d/2−y)cotθ} となり、この不等式によりiが求まる。かくてこ
の値を上記(j)式に代入すればxi+1の値、即ち入
射端4からのI点までの距離が求められる。
xi=(di+d/2-y)cotθ...(i) xi+1={d(i+1)+d/2-y}cotθ=(di+2/3d-y)cotθ...(j) Here, the critical angle αc of x is Since it is a function, it can be expressed as α=f(x), and at x=xi, αc<α=π/2−θ, and at x=xi+1, αc>α=π/2−θ. (xi)<π/2-θ<f(xi+1), that is, f{(di+d/2-y)cotθ}<π/2-θ<f{(di+3d/2-y)cotθ}, and by this inequality, i is found. Thus, by substituting this value into the above equation (j), the value of xi+1, that is, the distance from the incident end 4 to point I can be obtained.

なお以上の説明においてはコア1の径を変化さ
せない場合を説明したが必要に応じてコア1の径
を入射端側から出射端側に減径させる方法を組み
合せて用いることも可能である。また前述の実施
例においては説明の便宜上当該光伝送体の全長に
わたり境界面3の臨界角を変化させているが、こ
のような変化を同光伝送体の一部にのみ設定し他
の部分には必要に応じてこれとはまた異なる境界
面3の臨界角の変化を設定しても差支えないこと
勿論である。
In the above description, the case where the diameter of the core 1 is not changed has been described, but it is also possible to use a combination of methods of reducing the diameter of the core 1 from the incident end side to the output end side, if necessary. Furthermore, in the above embodiment, for convenience of explanation, the critical angle of the boundary surface 3 is changed over the entire length of the optical transmission body, but such a change is set only in a part of the optical transmission body, and it is not applied to other parts. It is of course possible to set a different change in the critical angle of the boundary surface 3 as needed.

またクラツド2の外周に光が散乱透過するよう
な光散乱層を被設すれば、外部に漏洩する光を多
方向へ均一に散乱放射させることも可能であり、
この散乱層としてはガラス中に弗化カルシウムや
弗化ソーダを混濁させて成形した乳白ガラスなど
が使用できる。
Furthermore, by providing a light scattering layer on the outer periphery of the cladding 2 that allows light to scatter and pass through, it is possible to uniformly scatter and emit light leaking to the outside in multiple directions.
As this scattering layer, opalescent glass formed by turbidizing calcium fluoride or sodium fluoride in glass or the like can be used.

以上説明した通り本発明では、コア1の外周に
これより屈折率の小さいクラツド2を被設してな
る光伝送体において、その全長または一部に、入
射端側から出射端側へ向けコア1とクラツド2と
の境界面3の臨界角が次第に大きくなるような変
化を設定することにより、入射端4側から上記コ
ア1の光軸に対し任意角度で入入射した光が出射
端5側へ伝送される過程において、上記境界面3
からクラツド2側へ屈折して外部へ漏洩するよう
にしているから、コア1の入射端の全面に亘り、
その光軸に対して不特定の角度で光を入射させれ
ば、当該光伝送体の全長にわたる全周から漏光さ
せることができ、あたかも線状発光体としての利
用が可能になる。しかもこの際当該光伝送体自体
は長尺かつ細径のものであるので、従来この種の
線状発光体として使用されていたものの欠点を完
全に補うことができるばかりでなく、入射端のみ
に光源等を接続すればよいのであるから、設備の
簡易化や設置スペースの縮少化が図れ、またそれ
自体発熱するものではなく、電気設備等を直接備
える必要はないから例えば可燃性ガスなどが発生
するため爆発の危険がある場所などでも用いるこ
とができるなど、その利用範囲が著しく拡大され
る。
As explained above, in the present invention, in an optical transmission body in which a cladding 2 having a smaller refractive index is provided around the outer periphery of a core 1, the core 1 is provided along the entire length or part of the cladding 2 from the input end side to the output end side. By setting a change in which the critical angle of the interface 3 between the core 1 and the cladding 2 gradually increases, the light incident from the input end 4 side at an arbitrary angle to the optical axis of the core 1 is directed to the output end 5 side. In the process of transmission, the boundary surface 3
Since the light is refracted toward the clad 2 side and leaks to the outside, the light is spread over the entire surface of the incident end of the core 1.
If light is incident at an unspecified angle with respect to the optical axis, light can be leaked from all around the entire length of the light transmitting body, making it possible to use the light transmitting body as if it were a linear light emitter. Moreover, since the light transmitting body itself is long and small in diameter, it is not only possible to completely compensate for the drawbacks of conventionally used linear light emitters of this kind, but also to be able to transmit light only at the input end. All you have to do is connect a light source, etc., which simplifies the equipment and reduces the installation space.Also, since it does not generate heat itself, there is no need to directly install electrical equipment, so for example, if flammable gas etc. This significantly expands the scope of its use, as it can be used in places where there is a risk of explosion.

さらにコア1の入射端の特定の位置から光軸に
対し特定の角度で光を入射させればこれに応じて
当該光伝送体の特定の位置から光を漏出させるこ
とができ、従つて局部的な光の取り出しないしは
照明等にも利用でき、この点でも極めて利用範囲
の広い漏洩光伝送体が提供し得ることとなる。
Furthermore, if light is incident at a specific angle with respect to the optical axis from a specific position of the input end of the core 1, the light can be leaked from a specific position of the optical transmission body in accordance with this, so that the light can be locally transmitted. It can also be used for light extraction or illumination, and in this respect as well, it is possible to provide a leakage light transmitting body that can be used in an extremely wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イは本発明の一実施例を示す縦断説明
図、同図ロは同実施例における境界面の臨界角変
化の一例を示す図表である。 1…コア、2…クラツド、3…境界面。
FIG. 1A is a vertical cross-sectional explanatory view showing one embodiment of the present invention, and FIG. 1...Core, 2...Clad, 3...Boundary surface.

Claims (1)

【特許請求の範囲】 1 コアの外周にこれより屈折率の小さいクラツ
ドを被設してなる光伝送体において、その全長ま
たは一部に、入射端側から出射端側へ向けコアと
クラツドの境界面の臨界角が次第に大きくなるよ
うな変化を設定することにより、入射端から上記
コアの光軸に対し任意の角度で入射した光が出射
端側へ伝送される過程において上記境界面からク
ラツド側へ屈折して外部へ漏洩するようにしたこ
とを特徴とする漏洩光伝送体。 2 クラツドの外周側に光散乱層が設けられてい
る特許請求の範囲第1項記載の漏洩光伝送体。
[Scope of Claims] 1. In an optical transmission body in which a cladding having a smaller refractive index is provided around the outer periphery of the core, the boundary between the core and the cladding extends along the entire length or part of the core from the input end side to the output end side. By setting a change in which the critical angle of the surface gradually increases, light incident from the input end at an arbitrary angle to the optical axis of the core is transmitted from the boundary surface to the cladding side in the process of being transmitted to the output end. 1. A leakage light transmitting body characterized in that the light is refracted to the outside and leaks to the outside. 2. The leakage light transmission body according to claim 1, wherein a light scattering layer is provided on the outer peripheral side of the cladding.
JP8810178A 1978-07-19 1978-07-19 Leakage light transmission body Granted JPS5515164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8810178A JPS5515164A (en) 1978-07-19 1978-07-19 Leakage light transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8810178A JPS5515164A (en) 1978-07-19 1978-07-19 Leakage light transmission body

Publications (2)

Publication Number Publication Date
JPS5515164A JPS5515164A (en) 1980-02-02
JPH0157763B2 true JPH0157763B2 (en) 1989-12-07

Family

ID=13933468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8810178A Granted JPS5515164A (en) 1978-07-19 1978-07-19 Leakage light transmission body

Country Status (1)

Country Link
JP (1) JPS5515164A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195601A (en) * 1985-09-20 1987-08-28 Nissho Giken Kk Optical direction converter
JP2590072B2 (en) * 1986-09-19 1997-03-12 政恭 根岸 Light direction changing device
JP6740273B2 (en) * 2018-03-26 2020-08-12 ファナック株式会社 Fiber laser equipment

Also Published As

Publication number Publication date
JPS5515164A (en) 1980-02-02

Similar Documents

Publication Publication Date Title
US4252403A (en) Coupler for a graded index fiber
US4045119A (en) Flexible laser waveguide
US5222795A (en) Controlled light extraction from light guides and fibers
US3832028A (en) Coupler for optical waveguide light source
US3995935A (en) Optical coupler
US3253500A (en) Doubly clad light-conducting fibers with the outer cladding being partially light absorbing
US4360372A (en) Fiber optic element for reducing speckle noise
JPS61250605A (en) Image fiber with optical waveguide
JPH10508704A (en) Hollow light guide for diffused light
US5289551A (en) Wye-branching optical circuit
US4828354A (en) Infrared fiber
JPH0157763B2 (en)
JPS63208003A (en) Optical fiber
JPS6124685B2 (en)
JPS60131503A (en) Optical attenuating method using optical fiber
GB2169096A (en) Joining optical fibres using numerical aperture transformer
JP3224106B2 (en) Optical fiber for laser input
JPS581103A (en) Optical fiber light irradiation device
JP4379074B2 (en) Optical fiber and optical fiber device
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPS59148030A (en) Optical fiber-display device
JP2001133652A (en) Leakage optical fiber
JP3158389B2 (en) Leakage type optical fiber evacuation guidance device
JPS6033513A (en) Single linear polarization optical fiber
JP2900769B2 (en) Temperature detecting optical fiber and method of manufacturing the same