JPH0157286B2 - - Google Patents

Info

Publication number
JPH0157286B2
JPH0157286B2 JP56068888A JP6888881A JPH0157286B2 JP H0157286 B2 JPH0157286 B2 JP H0157286B2 JP 56068888 A JP56068888 A JP 56068888A JP 6888881 A JP6888881 A JP 6888881A JP H0157286 B2 JPH0157286 B2 JP H0157286B2
Authority
JP
Japan
Prior art keywords
displacement
traveling table
servo
traveling
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56068888A
Other languages
Japanese (ja)
Other versions
JPS57184901A (en
Inventor
Hidezo Sano
Ryuichi Funatsu
Masayoshi Serizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56068888A priority Critical patent/JPS57184901A/en
Publication of JPS57184901A publication Critical patent/JPS57184901A/en
Publication of JPH0157286B2 publication Critical patent/JPH0157286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports
    • B23Q1/385Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports in which the thickness of the fluid-layer is adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight

Description

【発明の詳細な説明】 本発明は、直進走行テーブルの真直度補正装置
に係り、特に反射投影式マスクアライナの走行テ
ーブル等の高精度の真直性が要求される直進走行
テーブルの真直度補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a straightness correction device for a straight traveling table, and in particular, a straightness correction device for a straight traveling table that requires highly accurate straightness, such as a traveling table for a reflective projection mask aligner. Regarding.

第1図〜第3図に、本発明で対象とする走行テ
ーブルを有する反射投影式マスクアライナの一例
を示す。
FIGS. 1 to 3 show an example of a reflective projection type mask aligner having a traveling table, which is the object of the present invention.

これらの図に示される反射投影式マスクアライ
ナでは、ウエハ1とマスク2とを走行テーブル3
上に置く。
In the reflective projection mask aligner shown in these figures, a wafer 1 and a mask 2 are moved onto a traveling table 3.
put on top.

走行テーブル3は、鞍型に形成され、石定盤4
にまたがるように搭載されている。また、走行テ
ーブル3には走行方向(以下X方向という)の一
方の端部に第1、第2の上面空気軸受5a,5b
と第1、第2の側面空気軸受6a,6bとを有
し、他方の端部には第3、第4の上面空気軸受5
c,5dと第3、第4の側面空気軸受6c,6d
とを有している。第1〜第4の上面軸受5a,5
dは、石定盤4に対して走行テーブル3の上下方
向(以下Z方向という)のガイドとなり、第1〜
第4の側面空気軸受6a〜6dは、石定盤4に対
する走行テーブル3のX方向と直交する側部方向
(以下Y方向という)のガイドとなつている。
The traveling table 3 is formed into a saddle shape, and has a stone surface plate 4.
It is installed so that it straddles the . The traveling table 3 also has first and second upper air bearings 5a and 5b at one end in the traveling direction (hereinafter referred to as the X direction).
and first and second side air bearings 6a, 6b, and third and fourth upper air bearings 5 at the other end.
c, 5d and third and fourth side air bearings 6c, 6d
It has First to fourth upper surface bearings 5a, 5
d serves as a guide in the vertical direction (hereinafter referred to as Z direction) of the traveling table 3 with respect to the stone surface plate 4, and
The fourth side air bearings 6a to 6d serve as guides of the traveling table 3 relative to the stone surface plate 4 in a side direction (hereinafter referred to as the Y direction) orthogonal to the X direction.

さらに、走行テーブル3はモータ7、プーリ
8、両端部は走行テーブル3に結合されかつ途中
にプーリ8に掛け渡されたベルト9とを有する駆
動系に連結されており、モータ7を順方向および
逆方向に回転させることにより、プーリ8および
ベルト9を介して往復走査されるようになつてい
る。
Further, the traveling table 3 is connected to a drive system having a motor 7, a pulley 8, and a belt 9 connected to the traveling table 3 at both ends and passed around the pulley 8 in the middle. By rotating in the opposite direction, reciprocating scanning is performed via the pulley 8 and belt 9.

走行テーブル3の上方には、石定盤4に足を載
置して反射投影光学系10が搭載されている。
A reflection projection optical system 10 is mounted above the traveling table 3 with its feet placed on a stone surface plate 4.

そして、第1〜第4の上面空気軸受5a〜5d
と第1〜第4の側面空気軸受6a〜6dに空気を
供給してこれら空気軸受面と石定盤面にわずか
20μm程度の空気層をつくる。この状態でモータ
7を駆動させると、走行テーブル3はX方向に往
復走査する。
And the first to fourth upper surface air bearings 5a to 5d.
By supplying air to the first to fourth side air bearings 6a to 6d, a small amount of air is applied to these air bearing surfaces and the stone surface plate surface.
Create an air layer of about 20μm. When the motor 7 is driven in this state, the traveling table 3 reciprocates in the X direction.

マスク2の下方には、露光用光源および露光光
学系があり(図示せず)、石定盤4に固定されて
いる。
Below the mask 2, there is an exposure light source and an exposure optical system (not shown), which are fixed to a stone surface plate 4.

光源からの光束11は、マスク2を透過して反
射投影光学系10を通り、ウエハ1の表面へマス
クパターンを結像させる。
A light beam 11 from the light source passes through the mask 2 and passes through the reflection projection optical system 10 to form an image of the mask pattern on the surface of the wafer 1.

反射投影光学系10は、凹面鏡、凸面鏡とミラ
ーで構成され(図示せず)、収差を少なく1:1
に結像させるため、円弧状のスリツトを用いてい
る。
The reflection projection optical system 10 is composed of a concave mirror, a convex mirror, and a mirror (not shown), and reduces aberrations by 1:1.
An arc-shaped slit is used to form an image.

したがつて、ウエハ1全域にマスクパターンを
焼き付けるには、走行テーブル3を走査する必要
があり、このマスクパターンの焼き付け時走行テ
ーブル3の走行の真直度が問題となる。
Therefore, in order to print a mask pattern over the entire area of the wafer 1, it is necessary to scan the traveling table 3, and the straightness of the traveling table 3 during printing of this mask pattern becomes a problem.

今、走行テーブル3のZ方向、Y方向について
考察すると、Z方向はマスクパターン結像の焦点
深度と関係がある。石定盤4の平面度は1μm程
度であるのに対し、反射投影式マスクアライナの
焦点深度は±5μmであるため、Z方向の走行の
真直度は無視できる値である。ここで問題となる
のは、走行テーブル3をX方向に走査させたとき
に起きるY方向の動きである。例えば、2μmパ
ターンの焼き付けには走行テーブル3の走行真直
度は0.2μmくらい必要とされるが、さらにパター
ン幅が小さくなるにしたがつて真直度も小さくお
さえる必要がある。しかし、石定盤4の側面の仕
上り精度は1μm程度であるため、走行テーブル
3は走行中うねりを起こす。これはパターン焼き
付けの際に転写の歪となり、悪影響をおよぼすと
いう問題がある。
Now, considering the Z direction and Y direction of the traveling table 3, the Z direction is related to the depth of focus of mask pattern imaging. The flatness of the stone surface plate 4 is about 1 μm, whereas the depth of focus of the reflective projection mask aligner is ±5 μm, so the straightness of travel in the Z direction is a negligible value. The problem here is the movement in the Y direction that occurs when the traveling table 3 is scanned in the X direction. For example, to print a 2 μm pattern, the traveling straightness of the traveling table 3 is required to be about 0.2 μm, but as the pattern width becomes smaller, the straightness must also be kept smaller. However, since the finishing accuracy of the side surface of the stone surface plate 4 is about 1 μm, the traveling table 3 causes undulations while traveling. This causes a problem in that it causes transfer distortion during pattern printing, which has an adverse effect.

本発明の目的は、前述のごとき高詳度の真直度
を要求される走行テーブルのY方向の真直度を正
確に、かつ容易に補正しうる真直度補正装置を提
供するにある。
An object of the present invention is to provide a straightness correction device that can accurately and easily correct the straightness of a traveling table in the Y direction, which requires high-precision straightness as described above.

本発明の特徴は、少なくとも走行方向に間隔を
存して設定された複数個所についてそれらの両側
及びそれらの下側に設けられた側面静圧流体軸受
によりガイドされ、駆動源からの動力により定盤
上を直進走行する走行テーブルの真直度補正装置
において、前記走行方向の複数個所の側面静圧流
体軸受に対応させて所定の間隔を存して各側面静
圧流体軸受に近接させ、且つ走行テーブルの走行
方向と直交する方向の走行テーブル上の側部の複
数位置に測定基準ブロツクを設置し、該測定基準
ブロツクに対応させて測定基準ブロツクとの変位
量を測定する複数の静電容量型の非接触微小変位
計を定盤上に固定設置し、各側面静圧流体軸受に
流体を供給する流体圧サーボ弁を接続し、予め設
定された基準変位量に相当する設定値と前記各非
接触微小変位計の測定値とを比較して制御量を決
定するコンパレータと該コンパレータの出力信号
の変動誤差を除去する補償回路と該補償回路の出
力信号を増幅するサーボ増幅器とを備え、制御信
号を出力するサーボ回路を設け、各サーボ回路を
非接触微小変位計側の前記流体圧サーボ弁に接続
し、前記制御信号に基づき当該流体サーボ弁を通
じて当該側面静圧流体軸受に流体圧を供給し、走
行テーブルの複数の個所の変位量と前記各設定値
とが一致するように直進テーブルの真直度を補正
しうるように構成したところに存し、この構成に
より前記目的を確実に達成することができたもの
である。
A feature of the present invention is that the surface plate is guided by side hydrostatic fluid bearings provided on both sides and below the plurality of locations set at least at intervals in the running direction, and the surface plate is driven by the power from the drive source. In a straightness correction device for a traveling table that travels straight on the traveling table, the traveling table is arranged close to each side hydrostatic fluid bearing at a predetermined interval in correspondence with the side hydrostatic fluid bearings at a plurality of locations in the traveling direction; Measurement reference blocks are installed at multiple positions on the side of the traveling table in a direction perpendicular to the traveling direction of the table, and a plurality of capacitance type A non-contact minute displacement meter is fixedly installed on a surface plate, and a fluid pressure servo valve that supplies fluid to a hydrostatic fluid bearing on each side is connected, and a set value corresponding to a preset reference displacement amount and each of the non-contact A comparator that determines a control amount by comparing the measured value of a minute displacement meter, a compensation circuit that removes fluctuation errors in the output signal of the comparator, and a servo amplifier that amplifies the output signal of the compensation circuit. providing a servo circuit for outputting, connecting each servo circuit to the fluid pressure servo valve on the non-contact minute displacement meter side, and supplying fluid pressure to the side hydrostatic fluid bearing through the fluid servo valve based on the control signal; The present invention is constructed so that the straightness of the straight table can be corrected so that the amount of displacement at a plurality of locations on the travel table matches each of the set values, and with this configuration, the above object can be reliably achieved. It was made.

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第4図、第5図は本発明の一実施例を示す。 FIGS. 4 and 5 show an embodiment of the present invention.

その第4図において、前記第1図に示される部
材と同一または同じ機能を有するものについて
は、同一符号を付けて示し、これ以上の説明を省
略する。
In FIG. 4, parts that are the same as or have the same functions as those shown in FIG. 1 are designated by the same reference numerals, and further explanation thereof will be omitted.

前記第4図、第5図において、走行テーブル3
のX方向と直交するY方向の一側部に、X方向に
間隔を存して第1、第2の測定基準ブロツク12
a,12bが取り付けられている。
In FIGS. 4 and 5, the traveling table 3
First and second measurement reference blocks 12 are arranged at one side in the Y direction perpendicular to the X direction of the block, with an interval in the X direction.
a, 12b are attached.

また、第1の測定基準ブロツク12aに対応し
かつ第1、第2の側面空気軸受6a,6bの組の
第1の側面空気軸受6aに近接する位置に、第1
の変位計13aが設置され、第2の測定基準ブロ
ツク12bに対応しかつ第3、第4の側面空気軸
受6c,6dの組の第3の側面空気軸受6cに近
接する位置には、第2の変位計13bが設置され
ている。前記第1、第2の変位計13a,13b
には、例えば静電容量型の非接触微小変位計が使
用され、かかる静電容量型のものは、物体の微小
変位を静電容量の変化として検出し、電気量に変
換してその変位量を検知するものであり、0.1μm
以下の微小変位測定が可能である。
Further, a first side air bearing 6a of the pair of first and second side air bearings 6a and 6b is located corresponding to the first measurement reference block 12a.
A displacement meter 13a is installed, and a second displacement meter 13a is installed at a position corresponding to the second measurement reference block 12b and close to the third side air bearing 6c of the set of third and fourth side air bearings 6c and 6d. A displacement meter 13b is installed. The first and second displacement gauges 13a, 13b
For example, a capacitive type non-contact minute displacement meter is used, and such a capacitive type detects minute displacement of an object as a change in capacitance, converts it into an electrical quantity, and calculates the amount of displacement. 0.1μm
The following minute displacement measurements are possible.

前記第1〜第4の側面空気軸受6a〜6dに
は、それぞれ第1〜第4の空気サーボ弁14a〜
14dが接続されており、第1〜第4の空気サー
ボ弁14a〜14dはアキユームレータ15に連
結されている。
The first to fourth side air bearings 6a to 6d are provided with first to fourth air servo valves 14a to 14a, respectively.
14d is connected, and the first to fourth air servo valves 14a to 14d are connected to the accumulator 15.

一方、第1、第2の変位計13a,13bに対
応して第1、第2のサーボ回路16a,16bが
設けられている。第1、第2のサーボ回路16
a,16bは、第5図に示されるように、コンパ
レータ17、補償回路18、サーボ増巾器19と
を備えて構成されている。第1、第2のサーボ回
路16a,16bのコンパレータ17には、設定
値と当該第1、第2の変位計13a,13bから
走行テーブル3のY方向の変位量の測定値が送入
される。そして、各コンパレータ17により設定
値と変位量の測定値とを比較することによつて制
御量が決定され、その制御量は補償回路18に送
られ、該補償回路18により変動誤差等が除去さ
れ、ついでサーボ増巾器19により増巾され、サ
ーボ増巾器19から制御信号が出力されるように
なつている。
On the other hand, first and second servo circuits 16a and 16b are provided corresponding to the first and second displacement meters 13a and 13b. First and second servo circuits 16
As shown in FIG. 5, a and 16b are configured to include a comparator 17, a compensation circuit 18, and a servo amplifier 19. The set value and the measured value of the displacement amount of the traveling table 3 in the Y direction from the first and second displacement meters 13a and 13b are sent to the comparators 17 of the first and second servo circuits 16a and 16b. . A controlled amount is determined by each comparator 17 by comparing the set value and the measured value of the displacement amount, and the controlled amount is sent to the compensation circuit 18, where fluctuation errors and the like are removed. The signal is then amplified by a servo amplifier 19, and a control signal is output from the servo amplifier 19.

前記第1のサーボ回路16aには、第1、第2
の空気圧サーボ弁14a,14bが接続され、前
記第2のサーボ回路16bには、第3、第4の空
気圧サーボ弁14c,14dが接続されており、
第1のサーボ回路16aから出力される制御信号
は第1、第2の空気圧サーボ弁14a,14bに
入力され、第2のサーボ回路16aから出力され
る制御信号は第3、第4の空気圧サーボ弁14
c,14dに入力されるようになつている。
The first servo circuit 16a includes first and second servo circuits.
pneumatic servo valves 14a and 14b are connected to the second servo circuit 16b, and third and fourth pneumatic servo valves 14c and 14d are connected to the second servo circuit 16b,
The control signal output from the first servo circuit 16a is input to the first and second pneumatic servo valves 14a and 14b, and the control signal output from the second servo circuit 16a is input to the third and fourth pneumatic servo valves. valve 14
c, 14d.

なお、第5図において第1〜第4のサーボ弁は
符号14により、第1〜第4の側面空気軸受は符
号6により、また第1、第2の変位計は符号13
によりそれぞれ代表して示されている。
In FIG. 5, the first to fourth servo valves are denoted by 14, the first to fourth side air bearings are denoted by 6, and the first and second displacement meters are denoted by 13.
These are shown as representative examples.

前記実施例の真直度補正装置は、次のように作
用する。
The straightness correction device of the above embodiment operates as follows.

すなわち、第1の測定基準ブロツク12aと第
1の変位計13aとにより走行テーブル3のX方
向の一方の端部側のY方向の変位量が測定され、
その測定値は第1のサーボ回路16aのコンパレ
ータ17に送入される。
That is, the amount of displacement in the Y direction of one end of the traveling table 3 in the X direction is measured by the first measurement reference block 12a and the first displacement meter 13a,
The measured value is sent to the comparator 17 of the first servo circuit 16a.

これと同時に、第2の測定基準ブロツク12a
と第2の変位計13aとにより走行テーブル3の
X方向の他方の端部側のY方向の変位量が測定さ
れ、その測定値は第2のサーボ回路16bのコン
パレータ17に送入される。
At the same time, the second measurement reference block 12a
and the second displacement meter 13a measure the amount of displacement in the Y direction of the other end of the traveling table 3 in the X direction, and the measured value is sent to the comparator 17 of the second servo circuit 16b.

ついで、第1のサーボ回路16aではコンパレ
ータ17により設定値と第1の変位計13aから
送入される測定値とが比較されて制御量が決定さ
れ、その制御量は補償回路18、サーボ増巾器1
9で処理され、制御信号として出力され、該制御
信号は第1、第2の空気圧サーボ弁14a,14
bに入力される。
Next, in the first servo circuit 16a, a comparator 17 compares the set value with the measured value sent from the first displacement meter 13a to determine a controlled amount, and the controlled amount is transmitted to the compensation circuit 18 and the servo amplification circuit. Vessel 1
9 and output as a control signal, and the control signal is transmitted to the first and second pneumatic servo valves 14a and 14.
b.

他方、第2のサーボ回路16bではコンパレー
タ17により設定値と第2の変位計13bから送
入される測定値とが比較されて制御量が決定さ
れ、その制御量は補償回路18、サーボ増巾器1
9により処理され、制御信号として出力され、該
制御信号は第3、第4の空気サーボ弁14c,1
4dに入力される。
On the other hand, in the second servo circuit 16b, the set value is compared by the comparator 17 with the measured value sent from the second displacement meter 13b to determine a controlled amount, and the controlled amount is transmitted to the compensation circuit 18 and the servo amplification circuit. Vessel 1
9 and output as a control signal, and the control signal is sent to the third and fourth air servo valves 14c and 1.
4d.

而して、前記第1、第2の空気圧サーボ弁14
a,14dは、第1の変位計13aにより実測さ
れた走行テーブル3の当該位置の変位量に対応し
て出力される制御信号により制御され、アキユー
ムレータ15から第1、第2の空気圧サーボ弁1
4a,14bを経て第1、第2の側面空気軸受6
a,6bに走行テーブル3の変位量に対応する空
気圧が挿入され、走行テーブル3におけるX方向
の一方の端部が変位方向にしたがい、Y方向の左
または右のいずれかに押圧、移動調整され、この
位置の変位量が設定値と一致するように補正され
る。
Thus, the first and second pneumatic servo valves 14
a, 14d are controlled by a control signal outputted in accordance with the amount of displacement of the corresponding position of the traveling table 3 actually measured by the first displacement meter 13a, and are outputted from the accumulator 15 to the first and second pneumatic servos. Valve 1
4a, 14b to the first and second side air bearings 6
Air pressure corresponding to the amount of displacement of the traveling table 3 is inserted into a and 6b, and one end of the traveling table 3 in the X direction is pressed and adjusted to the left or right in the Y direction according to the displacement direction. , the amount of displacement at this position is corrected to match the set value.

また、前記第3、第4の空気圧サーボ弁14
c,14dは、第2の変位計13bにより実測さ
れた走行テーブル3のこの位置の変位量に対応し
て出力される制御信号により制御され、これによ
りアキユームレータ15から第3、第4の空気圧
サーボ弁14c,14dを通つて第3、第4の側
面空気軸受6c,6dに走行テーブル3の変位量
に対応する空気圧が挿入され、走行テーブル3に
おけるX方向の他方の端部が変位方向にしたが
い、Y方向の左または右のいずれかに押圧、移動
調整され、この位置の変位量が設定値と一致する
ように補正される。
Further, the third and fourth pneumatic servo valves 14
c and 14d are controlled by a control signal that is output corresponding to the amount of displacement of this position of the traveling table 3 actually measured by the second displacement meter 13b. Pneumatic pressure corresponding to the amount of displacement of the traveling table 3 is inserted into the third and fourth side air bearings 6c and 6d through the pneumatic servo valves 14c and 14d, so that the other end of the traveling table 3 in the X direction is in the displacement direction. Accordingly, it is pressed and moved to either the left or right in the Y direction, and the amount of displacement at this position is corrected to match the set value.

その結果、走行テーブル3のY方向の変位量は
設定範囲内に正確に補正され、走行テーブル3の
走行中のうねりが除去される。
As a result, the amount of displacement of the traveling table 3 in the Y direction is accurately corrected within the set range, and the waviness of the traveling table 3 while traveling is eliminated.

前述の走行テーブル3の補正は、走行テーブル
3がY方向に平行に変位している場合、および走
行テーブル3が水平面内で回転していてねじれて
いる場合のいずれの場合にも実行される。
The above-described correction of the traveling table 3 is performed both when the traveling table 3 is displaced in parallel to the Y direction and when the traveling table 3 is rotated and twisted in a horizontal plane.

なお、本発明では走行テーブル3のガイドであ
る軸受は、図示の空気軸受に限らず、静圧流体軸
受一般を採用でき、また変位計も前述の静電容量
型の非接触微小変位計を用いればより一層効果的
ではあるものの、これに限らないし、サーボ回路
も図示の構成に限らず、所期の機能を果しうるも
のであればよい。さらに、本発明は反射投影式マ
スクアライナの走行テーブル3に適用して好まし
い効果を発揮するものの、これに限らず、高精度
の真直度が要求される走行テーブル一般に適用で
きること勿論である。
In addition, in the present invention, the bearing that is the guide of the traveling table 3 is not limited to the air bearing shown in the figure, but a general hydrostatic fluid bearing can be used, and the displacement meter may be the capacitance type non-contact minute displacement meter described above. Although it is more effective than the above example, the servo circuit is not limited to this, and the servo circuit is not limited to the configuration shown in the drawings, as long as it can perform the intended function. Further, although the present invention exhibits a preferable effect when applied to the traveling table 3 of a reflection projection mask aligner, it is not limited thereto, and can of course be applied to any traveling table in general that requires highly accurate straightness.

本発明は、以上説明した構成、作用のもので、
走行テーブルのX方向の複数個所におけるY方向
の一側部において走行テーブルの変位量を測定
し、その測定値と設定値とを比較して制御量を決
定し、その制御量に基づいて流体圧サーボ弁を制
御し、走行テーブルのX方向の複数個所における
両側部に設置された側面静圧流体軸受に供給する
流体圧を調整し、走行テーブルの側部の押圧、移
動調整し、設定値と変位量とが一致するようにし
ているので、走行テーブルを高精度の真直度に容
易に補正しうる効果がある。すなわち、本願発明
の走行テーブルのごとく、静圧流体軸受を用いた
場合、固定側側面および移動側側面の真直性、平
坦度の加工精度がテーブルの走行精度に大きく影
響する。
The present invention has the configuration and operation described above,
The amount of displacement of the traveling table is measured at one side in the Y direction at multiple locations in the X direction of the traveling table, the measured value and the set value are compared to determine the control amount, and the fluid pressure is The servo valve is controlled to adjust the fluid pressure supplied to the side hydrostatic fluid bearings installed on both sides of the traveling table at multiple locations in the Since the amount of displacement is made to match, there is an effect that the traveling table can be easily corrected to highly accurate straightness. That is, when a hydrostatic fluid bearing is used as in the traveling table of the present invention, the machining accuracy of the straightness and flatness of the stationary side surface and the movable side surface greatly influences the traveling accuracy of the table.

理想的には固定側の定盤精度および移動側テー
ブルの加工精度が完ぺきに仕上げられていれば、
本発明は不要となる。
Ideally, if the precision of the fixed side table and the machining accuracy of the moving table are perfect,
The present invention becomes unnecessary.

しかるに、現実には、本願発明の固定側定盤の
ようにテーブル支持の流体軸受間隔が大きい場合
には、加工精度(真直度)が影響してくる。
However, in reality, when the spacing between the fluid bearings supporting the table is large, as in the case of the stationary surface plate of the present invention, the machining accuracy (straightness) has an influence.

また、本願発明の走行テーブルのようにテーブ
ル支持の流体軸受間隔が大きい場合には、横方向
の平行ずれ、ヨーイングなどの精度が影響してく
る。
Furthermore, when the distance between the hydrodynamic bearings supporting the table is large as in the traveling table of the present invention, the accuracy of lateral parallel deviation, yawing, etc. will be affected.

そのため、定盤とテーブルとの相対的加工精度
(真直度)は数μm/1000mmが限度であり、定盤
を単独に用いてステージを駆動する方法では、サ
ブミクロンの精度を達成することは不可能であ
る。
Therefore, the relative machining accuracy (straightness) between the surface plate and the table is limited to a few μm/1000 mm, and it is impossible to achieve submicron precision with the method of driving the stage using the surface plate alone. It is possible.

そこで本発明は、テーブルの側面の静圧流体軸
受に接近する位置にあらかじめテーブルの走行方
向と平行になるように位置決めされた複数の測定
基準ブロツクを設置し、固定側定盤の静圧流体軸
受に接近する位置に上記測定基準ブロツクとの変
位量を測定する複数の静電容量型の非接触微小変
位計を設置したのである。
Therefore, the present invention installs a plurality of measurement reference blocks that are positioned in advance in parallel to the running direction of the table at positions close to the hydrostatic fluid bearings on the side surface of the table, and A plurality of capacitance-type non-contact micro-displacement meters were installed at positions approaching the measurement reference block to measure the amount of displacement with respect to the measurement reference block.

したがつて、本発明は、定盤およびテーブル加
工精度が現状程度であつても、各流体軸受に対応
する個所での静電容量型の非接触微小変位計によ
り0.01μmオーダでの測定が可能であり、この変
位計と流体軸受の流体圧制御を組合せることによ
り、サブミクロンでのテーブル真直度補正が可能
となり、反射投影式マスクアライナの走行テーブ
ルに適用した場合には、パターン焼き付け歪を小
さくなしうる効果がある。
Therefore, even if the processing accuracy of the surface plate and table is at the current level, the present invention enables measurement on the order of 0.01 μm using a capacitive non-contact micro-displacement meter at the location corresponding to each fluid bearing. By combining this displacement meter and the fluid pressure control of the fluid bearing, it is possible to correct the table straightness at a submicron level, and when applied to the traveling table of a reflective projection mask aligner, it is possible to eliminate pattern burn-in distortion. There is a small effect that can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で対象とする走行テーブルを備
えた反射投影式マスクアライナの平面図、第2図
は同正面図、第3図は同走行テーブル部分の縦断
側面図である。第4図および第5図は本発明の一
実施例を示すもので、第4図は第1図に対応して
示した平面図、第5図は変位計とサーボ回路と空
気サーボ弁と側面空気軸受との関連を示すブロツ
ク図である。 3……走行テーブル、4……石定盤、5a〜5
d……第1〜第4の上面空気軸受、6a〜6d…
…側面静圧流体軸受である第1〜第4の側面空気
軸受、7……走行テーブルの駆動用モータ、8…
…同プーリ、9……同ベルト、12a,12b…
…第1、第2の測定基準ブロツク、13a,13
b……第1、第2の変位計、14a〜14d……
流体圧サーボ弁である第1〜第4の空気圧サーボ
弁、15……アキユームレータ、16a,16b
……サーボ回路。
FIG. 1 is a plan view of a reflective projection mask aligner equipped with a traveling table, which is the object of the present invention, FIG. 2 is a front view of the same, and FIG. 3 is a longitudinal sectional side view of a portion of the traveling table. 4 and 5 show one embodiment of the present invention, FIG. 4 is a plan view corresponding to FIG. 1, and FIG. 5 is a displacement meter, a servo circuit, an air servo valve, and a side view. FIG. 3 is a block diagram showing the relationship with an air bearing. 3... Traveling table, 4... Stone surface plate, 5a~5
d...First to fourth upper surface air bearings, 6a to 6d...
...first to fourth side air bearings which are side hydrostatic pressure fluid bearings, 7...motor for driving the traveling table, 8...
...Same pulley, 9...Same belt, 12a, 12b...
...first and second measurement standard blocks, 13a, 13
b...First and second displacement gauges, 14a to 14d...
First to fourth pneumatic servo valves, which are fluid pressure servo valves, 15...accumulator, 16a, 16b
...Servo circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも走行方向に間隔を存して設定され
た複数個所についてそれらの両側及びそれらの下
側に設けられた側面静圧流体軸受によりガイドさ
れ、駆動源からの動力により定盤上を直進走行す
る走行テーブルの真直度補正装置において、前記
走行方向の複数個所の側面静圧流体軸受に対応さ
せて所定の間隔を存して各側面静圧流体軸受に近
接させ、且つ走行テーブルの走行方向と直交する
方向の走行テーブル上の側部の複数位置に測定基
準ブロツクを設置し、該測定基準ブロツクに対応
させて測定基準ブロツクとの変位量を測定する複
数の静電容量型の非接触微小変位計を定盤上に固
定設置し、各側面静圧流体軸受に流体を供給する
流体圧サーボ弁を接続し、予め設定された基準変
位量に相当する設定値と前記各非接触微小変位計
の測定値とを比較して制御量を決定するコンパレ
ータと該コンパレータの出力信号の変動誤差を除
去する補償回路と該補償回路の出力信号を増幅す
るサーボ増幅器とを備え、制御信号を出力するサ
ーボ回路を設け、各サーボ回路を非接触微小変位
計側の前記流体圧サーボ弁に接続し、前記制御信
号に基づき当該流体サーボ弁を通じて当該側面静
圧流体軸受に流体圧を供給し、走行テーブルの複
数の個所の変位量と前記各設定値とが一致するよ
うに直進テーブルの真直度を補正しうるように構
成したことを特徴とする直進走行テーブルの真直
度補正装置。
1. Guided by side hydrostatic fluid bearings installed on both sides and below multiple locations at least spaced apart in the running direction, the vehicle travels straight on a surface plate using power from a drive source. In the straightness correction device for a traveling table, the device is arranged close to each side hydrostatic fluid bearing at a predetermined interval in correspondence with the plurality of side hydrostatic fluid bearings in the traveling direction, and is perpendicular to the traveling direction of the traveling table. Measurement reference blocks are installed at multiple positions on the side of a traveling table in the direction of movement, and a plurality of capacitance type non-contact minute displacement meters measure the amount of displacement with respect to the measurement reference blocks in correspondence with the measurement reference blocks. is fixedly installed on a surface plate, a fluid pressure servo valve that supplies fluid to each side hydrostatic fluid bearing is connected, and a set value corresponding to a preset reference displacement amount is measured by each of the non-contact micro displacement meters. A servo circuit that outputs a control signal, comprising a comparator that determines a control amount by comparing the values, a compensation circuit that removes fluctuation errors in the output signal of the comparator, and a servo amplifier that amplifies the output signal of the compensation circuit. and connect each servo circuit to the fluid pressure servo valve on the non-contact minute displacement meter side, and supply fluid pressure to the side hydrostatic fluid bearing through the fluid servo valve based on the control signal, and 1. A straightness correction device for a straight-travel table, characterized in that the straightness of the straight-travel table can be corrected so that the amount of displacement at a location matches each of the set values.
JP56068888A 1981-05-09 1981-05-09 Correcting device for degree of straight of straight travelling table Granted JPS57184901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56068888A JPS57184901A (en) 1981-05-09 1981-05-09 Correcting device for degree of straight of straight travelling table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56068888A JPS57184901A (en) 1981-05-09 1981-05-09 Correcting device for degree of straight of straight travelling table

Publications (2)

Publication Number Publication Date
JPS57184901A JPS57184901A (en) 1982-11-13
JPH0157286B2 true JPH0157286B2 (en) 1989-12-05

Family

ID=13386640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56068888A Granted JPS57184901A (en) 1981-05-09 1981-05-09 Correcting device for degree of straight of straight travelling table

Country Status (1)

Country Link
JP (1) JPS57184901A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224009A (en) * 1984-04-20 1985-11-08 Mitsutoyo Mfg Co Ltd Three dimensional automatic measuring machine
JPH0676886B2 (en) * 1986-04-30 1994-09-28 株式会社東京精密 Bridge type moving device
JP2567811B2 (en) * 1994-02-14 1996-12-25 キヤノン株式会社 Scanning exposure device
JP5447198B2 (en) * 2010-06-08 2014-03-19 株式会社デンソー Balance measuring device for rotating body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397859A (en) * 1977-02-08 1978-08-26 Fujitsu Ltd Plane positioning shifter
JPS53125055A (en) * 1977-04-07 1978-11-01 Masakazu Miyashita Micro position finder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397859A (en) * 1977-02-08 1978-08-26 Fujitsu Ltd Plane positioning shifter
JPS53125055A (en) * 1977-04-07 1978-11-01 Masakazu Miyashita Micro position finder

Also Published As

Publication number Publication date
JPS57184901A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
JPH01502530A (en) positioning device
JPH0257333B2 (en)
US5850291A (en) Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error
JPH06320391A (en) Device for real time measurement and correction of straight line deviation for machine tool
JPH038683B2 (en)
JPH0157286B2 (en)
JP2000136923A (en) Contact-type pipe-inside-diameter measuring apparatus
US5646732A (en) Coordinate measuring system
KR20070120441A (en) Stage apparatus
JP4875409B2 (en) Surface grinding method for surface ground workpieces
JP2816272B2 (en) Positioning device
JPH09293773A (en) Alignment device and exposure device
JP5280064B2 (en) Electron beam drawing device
JPH04317Y2 (en)
JPH09199573A (en) Positioning stage apparatus and aligner using the same
JPS6020513A (en) Moving table device having attitude control function
US5164792A (en) Movement measuring interferometer and driving system
JP2646417B2 (en) Exposure equipment
JP2586633Y2 (en) Flatness measuring machine
JP2868126B2 (en) Straightness correction mechanism for static pressure guide
JPH06185988A (en) Measuring method for dimension of section steel
KR100380133B1 (en) Method for compensating error according to intensity of rays reflected on subject in optical sensor
JPH0244365B2 (en)
JP2646595B2 (en) Laser processing equipment
JPS599918A (en) )levelling method of wafer of reflection projection exposure device