JPH0156828B2 - - Google Patents

Info

Publication number
JPH0156828B2
JPH0156828B2 JP61096679A JP9667986A JPH0156828B2 JP H0156828 B2 JPH0156828 B2 JP H0156828B2 JP 61096679 A JP61096679 A JP 61096679A JP 9667986 A JP9667986 A JP 9667986A JP H0156828 B2 JPH0156828 B2 JP H0156828B2
Authority
JP
Japan
Prior art keywords
magnetic
fine powder
air
separator
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61096679A
Other languages
Japanese (ja)
Other versions
JPS62254851A (en
Inventor
Kyosuke Matagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP61096679A priority Critical patent/JPS62254851A/en
Publication of JPS62254851A publication Critical patent/JPS62254851A/en
Publication of JPH0156828B2 publication Critical patent/JPH0156828B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、微粉、特に10μm以下の粉体中の
磁性物を分離する乾式磁力選別方法に関する。 従来の技術 微粉中の磁性物を分離する手段として、乾式ま
たは湿式による磁力選別が実施されている。 乾式磁力選別方法は粒子の径が0.1mm程度より
小さくなると、粒子の凝集現象や装置への付着、
閉塞現象などが発生して微粉を効果的に選別する
ことが困難である。一方、微粉を水中に分散して
いわゆるスラリ状となし、湿式で磁力選別する方
法があるが、この方法では、磁力選別を行つた
後、再び乾燥して元の粉体に戻す工程が必要で、
乾燥や粒子の解砕に多大の時間と経費を要し、し
かも乾燥〜解砕工程の中で不純物が混入するおそ
れがあり、特に非着磁物の品質上に問題がある。 発明が解決しようとする問題点 乾式により微粉を磁力選別を行う場合、微粉が
凝集して磁性粒子が非磁性粒子に包みこまれた状
態や、逆に非磁性粒子が磁性粒子に包みこまれた
状態の粒子凝集体が形成される。これを磁力選別
のような物理的分離方法によつて磁性粒子と非磁
性粒子の二者に分離することは不可能である。 また、このような粒子凝集体が磁力選別機に付
着滞留し、更にそれが成長して選別装置の閉塞を
生じたり、磁性粒子を捕捉する場所を覆つて磁力
選別の機能を損なうなどの問題がある。 なお、微粉が凝集付着する原因としては、微粉
の種類と組成、粒度分布、水分含有率、空気の湿
度、静電気、微粉の供給及び搬送方法、分離装置
の内部構造などが考えられる。 従つて、乾式による微粉の磁力選別を行うため
には、微粉の凝集を防止し、装置への付着や閉塞
が起こらないようにする必要がある。 問題点を解決するための手段及び作用 この発明は、微粉を乾式で磁力選別する場合に
おいて、原料となる微粉を充分に分散させるとと
もに、粒子の静電気の帯電を抑制して装置への付
着や閉塞を防止することにより選別の効果を高め
るもので、微粉を気流中に分散させることと、微
粉と直接又は間接に接触する機材を接地すること
により達成される。 以下図面に基いて説明する。 第1図は本発明の実施例を示す系統図である。
図中の実線は微粉の流れを示し、破線は空気の流
れを示す。 この実施例による磁力選別は、微粉原料中の磁
性物を磁力選別機で捕捉し、非磁性物のみを通過
させて非着磁物として回収する第1工程と、磁力
選別機に捕捉された磁性物を着磁物として回収す
る第2工程とよりなる。 第1工程では磁力選別機5のコイル20(第3
図)に直流電流を通電して励磁し、切替弁7の出
口を非着磁物側に切替えておく。 磁性物を含む微粉原料1は、テーブルフイーダ
などの供給機2から分散装置3に供せられて1次
空気4により分散され、磁力選別機5に送られ
る。分散装置3は特に限定されるものではない
が、たとえば第2図に示すエジエクター型ノズル
が使用できる。以下エジエクター型ノズルの例に
ついて説明する。1次空気4は図示しない空気圧
縮機より供せられる圧縮空気であつてノズル16
の先端から吹き出させる。微粉原料1はノズル1
6の先端部に生じる負圧部に原料供給ろうと15
から吸引され、オリフイス17を経て磁力選別機
5に運ばれる。オリフイス17を出たところで1
次空気4及び微粉原料1の中に含まれる空気が急
膨張し、高速気流となつて微粉原料1の中の微粉
凝集体を破壊し、粒子を分散状態にすることがで
きる。また、第1図において、排風機13を作動
させて磁力選別機5を負圧とし、2次空気6を導
入口(図示せず)から導入すると、分散状態とな
つた微粉原料1は気流にのつて運ばれるが、2次
空気6の導入によりオリフイス17を出た空気量
よりも流量が大きくなつているので一旦分散した
粒子は再凝集することなく磁力選別機5に運ばれ
る。磁力選別機5としては第3図のように、磁性
細線網18を充填した筒体19をコイル20とリ
ターンフレーム21による磁場空間に配置して磁
性細線網18の各素線周辺に高磁場勾配を発生さ
せて磁性粒子を着磁する、いわゆる高勾配磁気分
離機(例えばU.S.PAT.3567026など)が使用で
きる。ここで磁性物は着磁物として捕捉され、そ
して非磁性物のみが気流にのつて第1図の切替弁
7の非着磁物側出口を通り非着磁物回収装置8に
より捕集され、非磁性物9として回収される。切
替弁7は特に限定されるものではないが、3方分
岐ボール弁のような全断面型で弁内部に微粉が付
着しにくい構造をもつたものが望ましい。また、
非着磁物回収装置8は一般の粉体捕集機例えばバ
グフイルターなどが使用できる。 非着磁物回収装置8を通過した空気は風量調節
機10を経て排風機13により吸引され排気14
として大気放出される。 着磁物を回収する第2工程では、微粉原料1の
供給を中止し、磁力選別機5のコイル20(第3
図)への通電を中止するとともに切替弁7を着磁
物側に切替える。排風機13を作動させて2次空
気6を吸引して磁力選別機5を通過させ、内管1
9(第3図)内の着磁物を気流にのせて切替弁7
の着磁物側出口から着磁物回収装置11に運び磁
性物12として回収し、空気は排風機13により
排気14となる。この着磁物回収装置11も非着
磁物回収装置8と同様の粉体捕集機例えばバグフ
イルターなどが使用できる。 次に、本発明の特徴である非着磁物の回収を行
う第1工程について細部を説明する。 微粉原料1を分散させるために分散装置3とし
てエジエクター型ノズルを用い、排風機13によ
り2次空気6を導入して微粉中の鉄分を除去して
第1表の結果を得た。
INDUSTRIAL APPLICATION FIELD This invention relates to a dry magnetic separation method for separating magnetic substances in fine powder, particularly powder of 10 μm or less. BACKGROUND ART Dry or wet magnetic separation is carried out as a means for separating magnetic substances in fine powder. In the dry magnetic sorting method, when the particle diameter becomes smaller than about 0.1 mm, particle agglomeration phenomenon, adhesion to the equipment,
It is difficult to effectively separate fine particles due to clogging phenomena. On the other hand, there is a method of dispersing fine powder in water to form a so-called slurry and performing wet magnetic separation, but this method requires a step of drying again to return to the original powder after magnetic separation. ,
It takes a lot of time and money to dry and crush the particles, and there is a risk that impurities may be mixed in during the drying to crushing process, which poses a problem particularly in terms of the quality of non-magnetized materials. Problems to be Solved by the Invention When magnetically sorting fine powder using a dry method, the fine powder may aggregate and magnetic particles may be wrapped in non-magnetic particles, or conversely, non-magnetic particles may be wrapped in magnetic particles. State particle aggregates are formed. It is impossible to separate these particles into magnetic particles and non-magnetic particles by a physical separation method such as magnetic separation. In addition, such particle aggregates may adhere to and remain in the magnetic separator, causing further growth and clogging the separator, or covering the area where magnetic particles are captured, impairing the magnetic separator's function. be. The causes of the agglomeration and adhesion of the fine powder include the type and composition of the fine powder, particle size distribution, moisture content, air humidity, static electricity, the method of supplying and transporting the fine powder, and the internal structure of the separation device. Therefore, in order to perform magnetic separation of fine powder by dry method, it is necessary to prevent the fine powder from agglomerating and from adhering to or clogging the apparatus. Means and Effects for Solving the Problems The present invention, when magnetically sorting fine powder in a dry manner, sufficiently disperses the raw material fine powder and suppresses electrostatic charging of particles to prevent adhesion to equipment or blockage. This is achieved by dispersing the fine powder into the airflow and grounding equipment that comes into direct or indirect contact with the fine powder. This will be explained below based on the drawings. FIG. 1 is a system diagram showing an embodiment of the present invention.
The solid line in the figure shows the flow of fine powder, and the broken line shows the flow of air. Magnetic sorting according to this embodiment consists of a first step in which magnetic substances in the fine powder raw material are captured by a magnetic separator, only non-magnetic substances are allowed to pass through and recovered as non-magnetized substances, and It consists of a second step of recovering the object as a magnetized object. In the first step, the coil 20 (third
(Fig.) is excited by applying a direct current to it, and the outlet of the switching valve 7 is switched to the non-magnetized side. A fine powder raw material 1 containing a magnetic material is supplied from a feeder 2 such as a table feeder to a dispersion device 3, dispersed by primary air 4, and sent to a magnetic separator 5. Although the dispersion device 3 is not particularly limited, for example, an ejector type nozzle shown in FIG. 2 can be used. An example of an ejector type nozzle will be described below. The primary air 4 is compressed air provided by an air compressor (not shown), and is supplied through a nozzle 16.
Make it blow out from the tip. Fine powder raw material 1 is nozzle 1
15 to supply raw materials to the negative pressure generated at the tip of 6.
The magnetic separator 5 is sucked through the orifice 17 and transported to the magnetic separator 5. 1 after exiting Orifice 17
Next, the air contained in the air 4 and the fine powder raw material 1 rapidly expands and becomes a high-speed airflow, which destroys the fine powder aggregates in the fine powder raw material 1 and makes it possible to disperse the particles. Further, in FIG. 1, when the exhaust fan 13 is operated to make the magnetic separator 5 a negative pressure and the secondary air 6 is introduced from the inlet (not shown), the fine powder raw material 1 in a dispersed state is blown into the airflow. However, due to the introduction of the secondary air 6, the flow rate is larger than the amount of air that exits the orifice 17, so the once dispersed particles are transported to the magnetic separator 5 without reagglomerating. As shown in FIG. 3, the magnetic force separator 5 has a cylinder 19 filled with a magnetic fine wire net 18 placed in a magnetic field space created by a coil 20 and a return frame 21 to create a high magnetic field gradient around each strand of the magnetic fine wire net 18. A so-called high gradient magnetic separator (such as USPAT.3567026), which generates magnetic particles to magnetize them, can be used. Here, the magnetic substances are captured as magnetized substances, and only the non-magnetic substances are passed through the non-magnetized substance side outlet of the switching valve 7 in FIG. It is recovered as non-magnetic material 9. Although the switching valve 7 is not particularly limited, it is preferably a full-section type, such as a three-way branch ball valve, with a structure that prevents fine powder from adhering to the inside of the valve. Also,
As the non-magnetized material collection device 8, a general powder collector such as a bag filter can be used. The air that has passed through the non-magnetized object collection device 8 is sucked in by an exhaust fan 13 through an air volume controller 10 and is exhausted to an exhaust air 14.
released into the atmosphere as In the second step of recovering the magnetized material, the supply of the fine powder raw material 1 is stopped, and the coil 20 (third
At the same time, the switching valve 7 is switched to the magnetized object side. The exhaust fan 13 is operated to draw in the secondary air 6 and pass it through the magnetic separator 5, and the inner pipe 1
Place the magnetized object in 9 (Fig. 3) on the airflow and open the switching valve 7.
The air is conveyed from the magnetized material side outlet to the magnetized material recovery device 11 and recovered as a magnetic material 12, and the air is turned into exhaust air 14 by an exhaust fan 13. This magnetized material collection device 11 can also use a powder collector similar to the non-magnetized material collection device 8, such as a bag filter. Next, details of the first step of recovering non-magnetized materials, which is a feature of the present invention, will be explained in detail. An ejector type nozzle was used as the dispersion device 3 to disperse the fine powder raw material 1, and secondary air 6 was introduced by the exhaust fan 13 to remove iron in the fine powder, and the results shown in Table 1 were obtained.

【表】 第1表に示した平均粒径とは、微粉の通過重量
50%に相当する網目の大きさをいう(以下同じ)。 この結果より、分散装置3の使用と2次空気6
導入の併用により微粉原料1が充分に分散して非
磁性物9及び磁性物12として得られた産物の品
質、回収率ともに優れていることが判る。 また、微粉原料1が分散装置3で分散した場合
及び分散装置3その他の各機器の内部に接触した
場合に微粉粒子とそれら各機器との間に静電気が
発生して帯電し、粒子付着の大きな原因になつて
いることが判つた。分散装置3及び磁力選別機5
をそれぞれ接地して平均粒径14μmの澱粉を原料
として静電気の防止効果を比較したところ、非磁
性物として回収した量は95.9%であつたが、同じ
条件で接地しない状態では非磁性物として回収し
た量は60.3%に減少し、接地による静電防止効果
を確認した。このとき非磁性物回収装置8で回収
した粒子は、接地を行わないときは3000〜8000V
に帯電していたが、接地により150〜300Vに減少
していた。 なお、接地は分散装置3と磁力選別機5に限定
されず、粉体と接触する機材のすべてを接地した
方が望ましい結果が得られる。 第3図において、磁力選別機5の筒体19を通
過する空気の流速を変化させて平均粒径8μmの
珪石微粉(Fe 0.66%第1表の原料Aと同じ)を
処理して第2表の結果を得た。
[Table] The average particle size shown in Table 1 refers to the weight of fine powder passing through.
Refers to the mesh size equivalent to 50% (the same applies below). From this result, the use of the dispersion device 3 and the secondary air 6
It can be seen that by the combined use of introduction, the fine powder raw material 1 is sufficiently dispersed, and the quality and recovery rate of the products obtained as the non-magnetic material 9 and the magnetic material 12 are excellent. In addition, when the fine powder raw material 1 is dispersed by the dispersion device 3 or when it comes into contact with the inside of the dispersion device 3 and other devices, static electricity is generated between the fine powder particles and each of these devices, which causes a large amount of particle adhesion. It turned out that this was the cause. Dispersion device 3 and magnetic separator 5
When the static electricity prevention effect was compared using starch with an average particle size of 14 μm as a raw material by grounding each of The amount was reduced to 60.3%, confirming the antistatic effect of grounding. At this time, the particles collected by the non-magnetic material collection device 8 have a voltage of 3000 to 8000 V when not grounded.
The voltage was reduced to 150-300V by grounding. Note that grounding is not limited to the dispersion device 3 and the magnetic separator 5, and desirable results can be obtained by grounding all the equipment that comes into contact with the powder. In FIG. 3, silica fine powder (Fe 0.66%, same as raw material A in Table 1) with an average particle size of 8 μm is treated by changing the flow rate of air passing through the cylinder 19 of the magnetic separator 5. The results were obtained.

【表】 筒体19を通過する空気の流速は1〜10m/
secが適当で、これより大きすぎれば捕捉された
着磁物が非着磁物の方にもちこまれて混入し、非
磁性物9の品質悪化と磁性物12の回収率低下の
原因となる。逆に、流速が小さすぎると非磁性物
が筒体19の中に滞留し、結果として着磁物中に
混入するので磁性物12の品質悪化と非磁性物9
の回収率低下の原因となり、更に筒体19の閉塞
など選別不可能といつた状態を起すことにもなり
かねない。この空気流速は第1図の風量調節機1
0により調節する。また筒体19を通過する気流
1m3中に含まれる微粉原料1の含有量(以下ダス
ト濃度という)を変化させて同じ珪石粉(原料
A、Fe 0.66%)を処理して第3表の結果を得た。
[Table] The flow velocity of air passing through the cylinder 19 is 1 to 10 m/
sec is appropriate, and if it is too large, the captured magnetized material will be brought into the non-magnetized material and become mixed, causing deterioration in the quality of the non-magnetic material 9 and a decrease in the recovery rate of the magnetic material 12. On the other hand, if the flow rate is too low, non-magnetic substances will remain in the cylinder 19 and will be mixed into the magnetized substance, resulting in deterioration of the quality of the magnetic substance 12 and damage to the non-magnetic substance 9.
This may cause a decrease in the recovery rate, and may also cause a situation such as clogging of the cylinder 19, which may make it impossible to sort. This air flow velocity is determined by air volume controller 1 in Figure 1.
Adjust by 0. In addition, the same silica powder (raw material A, Fe 0.66%) was treated by changing the content of fine powder raw material 1 (hereinafter referred to as dust concentration) contained in 1 m 3 of airflow passing through cylinder 19, and the results shown in Table 3 were obtained. I got it.

【表】 原料の粒度、組成等にもよるがダスト濃度は
0.1〜1.5Kg/m3が適当でこの範囲を外れると選別
成績が悪化することを確認した。 上記の外に磁力選別機5の筒体19にバイブレ
ータ等の振動機22を取付けて振動を与えること
や、筒体19内の磁性細線網18を間隔保持体2
3と交互に配置することが選別効果に有効である
ことを確認した。 なお、筒体19内に捕捉された着磁物を磁性物
12として回収する第2工程では筒体19を通過
する空気の流速は15m/sec以上とするのが適当
である。 実施例 第1図の系統に基いて少量のマグネタイトを含
むフライアツシユ及び珪石微粉あるいは石灰石微
粉にそれぞれ少量の四三酸化鉄を混合調整したも
のを処理して第4表の結果を得た。 このとき使用した機器と使用条件はいずれも下
記の通りであつた。 分散装置3はノズル径2mm、オリフイス径6
mm、原料供給ろうと径9.2mmのエジエクター型ノ
ズルを使用し、1次空気4は供給空気圧5Kgf/
cm2Gの圧縮空気を使用した。 磁力選別機5はサラ社製高勾配磁気分離サイク
リツクタイプモデル10−15−20を磁場の強さが筒
体19を取付けない状態で4600エルステツドとし
て使用し(一般には原料の性状により3000〜
20000エルステツドの範囲の適宜の値が選定され
る)、筒体19は直径89mm、高さ530mmのものに磁
性細線網18として厚さ0.4mmのSUS430板のエキ
スバンドメタル45枚と高さ3mm肉厚1mmの銅製円
筒の間隔保持体23を44個と交互に積層したもの
を充填し、充填高さ150mmとして使用した。なお
筒体19には振動機22として電磁振動機2個を
取付け3000spmで使用した。切替弁7は口径50mm
のY型3方分岐ボール弁を用い、非着物回収装置
8及び着磁物回収装置12はそれぞれろ過面積4
m2のバグフイルターを使用し、排風機13は最大
風量4.5m3/min、真空度−2000mmAqのルーツ型
真空ポンプを使用した。 選別の第1工程における筒体19内の気流速度
は風量調節機10により8m/secに調節した。
分散装置3および磁力選別機5はそれぞれ特別第
3種接地端子に接続した。
[Table] Although it depends on the particle size and composition of the raw material, the dust concentration is
It was confirmed that 0.1 to 1.5 Kg/m 3 is appropriate, and that if it falls outside this range, the sorting performance deteriorates. In addition to the above, it is possible to attach a vibrator 22 such as a vibrator to the cylindrical body 19 of the magnetic separator 5 to give vibration, or to move the magnetic wire mesh 18 inside the cylindrical body 19 to the spacing member 2.
It was confirmed that arranging them alternately with 3 was effective for the selection effect. In the second step of recovering the magnetized material captured in the cylinder 19 as the magnetic material 12, it is appropriate that the flow velocity of the air passing through the cylinder 19 be 15 m/sec or more. Example Based on the system shown in FIG. 1, fly ash containing a small amount of magnetite, silica fine powder, or limestone fine powder mixed with a small amount of triiron tetroxide was treated, and the results shown in Table 4 were obtained. The equipment and operating conditions used at this time were as follows. Dispersion device 3 has a nozzle diameter of 2 mm and an orifice diameter of 6.
mm, a raw material supply funnel and an ejector type nozzle with a diameter of 9.2 mm are used, and the primary air 4 has a supply air pressure of 5 Kgf/
cm 2 G compressed air was used. The magnetic separator 5 uses a high-gradient magnetic separation cyclic type model 10-15-20 manufactured by Sara Co., Ltd. with a magnetic field strength of 4600 oersted without the cylinder 19 attached (generally 3000 to 3000 oersted depending on the properties of the raw material).
The cylinder body 19 has a diameter of 89 mm and a height of 530 mm, and the magnetic fine wire net 18 is made of 45 expanded metal sheets of SUS430 plate with a thickness of 0.4 mm and a thickness of 3 mm in height. The spacer was filled with 44 copper cylindrical spacing members 23 having a thickness of 1 mm and alternately laminated, and the filling height was 150 mm. Two electromagnetic vibrators were attached to the cylinder 19 as vibrators 22 and used at 3000 spm. The switching valve 7 has a diameter of 50mm.
Using a Y-type three-way branch ball valve, the non-kimono material collection device 8 and the magnetized material collection device 12 each have a filtration area of 4.
A bag filter of 2 m 2 was used, and the exhaust fan 13 was a Roots type vacuum pump with a maximum air volume of 4.5 m 3 /min and a vacuum degree of -2000 mmAq. The airflow velocity within the cylinder 19 in the first step of sorting was adjusted to 8 m/sec by the air volume regulator 10.
The dispersion device 3 and the magnetic separator 5 were each connected to a special type 3 grounding terminal.

【表】 効 果 上記のように原料微粉を分散装置と2次空気の
導入によつて充分に分散し、分散装置及び磁力選
別機好ましくは機材の全部を接地して、流速1〜
10m/secの気流中に原料含有量が0.1〜1.5Kg/m3
になるようにして磁力選別を行うことにより微
粉、特に10μm以下の微粉であつても良好に分離
することができる。特に乾式処理を行うので乾燥
工程等が不要となり、水に溶解しやすい粉体や水
に分散不可能な粉体の処理も可能で空気の代りに
窒素ガス等を使用して装置全体を防爆構造とすれ
ば引火性の粉体の磁力選別が可能となるなどその
工業的経済的効果は大なるものである。
[Table] Effects As mentioned above, the raw material fine powder is sufficiently dispersed by the dispersion device and the introduction of secondary air, and the dispersion device and magnetic separator are preferably all grounded, and the flow rate is 1 to 1.
Raw material content is 0.1~1.5Kg/ m3 in air flow of 10m/sec
By performing magnetic separation in such a manner, even fine powder, especially fine powder of 10 μm or less, can be separated well. In particular, dry processing eliminates the need for a drying process, making it possible to process powders that are easily soluble in water or powders that cannot be dispersed in water.The entire device has an explosion-proof structure by using nitrogen gas instead of air. If so, it would have great industrial and economical effects, such as making magnetic separation of flammable powder possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す系統図、第2図
は分散装置3の1例を示す詳細図、第3図は磁力
選別機5の1例を示す詳細図である。 3……分散装置、5……磁力選別機、7……切
替弁、10……風量調節機、13……排風機、1
8……磁性細線網、19……筒体、20……コイ
ル、21……リターンフレーム、22……振動
機、23……間隔保持体。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a detailed view showing an example of a dispersing device 3, and FIG. 3 is a detailed view showing an example of a magnetic separator 5. 3...Dispersion device, 5...Magnetic separator, 7...Switching valve, 10...Air volume controller, 13...Exhaust fan, 1
8... Magnetic wire net, 19... Cylindrical body, 20... Coil, 21... Return frame, 22... Vibrator, 23... Spacing member.

Claims (1)

【特許請求の範囲】[Claims] 1 磁力選別機を使用して微粉原料を乾式で磁力
選別する方法において、分散装置により1次空気
を導入して分散せしめた微粉原料を磁力選別機に
供給し、一方排風機によつて該磁力選別機に2次
空気を導入して該磁力選別機の筒体内の流速を1
m/sec以上10m/sec以下に調節し、かつ気流中
の該微粉原料の含有量が0.1Kg/m3以上1.5Kg/m3
以下となるようにして磁力選別するとともに、上
記分散装置及び磁力選別機を接地することを特徴
とする磁力選別方法。
1. In a method of dry magnetically separating fine powder raw materials using a magnetic separator, the fine powder raw materials that have been dispersed by introducing primary air through a dispersion device are supplied to the magnetic separator, while the magnetic By introducing secondary air into the separator, the flow velocity inside the cylinder of the magnetic separator is reduced to 1.
m/sec or more and 10 m/sec or less, and the content of the fine powder raw material in the airflow is 0.1 Kg/m 3 or more and 1.5 Kg/m 3
A magnetic sorting method characterized by performing magnetic sorting as follows and grounding the dispersion device and the magnetic sorting machine.
JP61096679A 1986-04-28 1986-04-28 Dry magnetic separation of fine powder Granted JPS62254851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096679A JPS62254851A (en) 1986-04-28 1986-04-28 Dry magnetic separation of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096679A JPS62254851A (en) 1986-04-28 1986-04-28 Dry magnetic separation of fine powder

Publications (2)

Publication Number Publication Date
JPS62254851A JPS62254851A (en) 1987-11-06
JPH0156828B2 true JPH0156828B2 (en) 1989-12-01

Family

ID=14171480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096679A Granted JPS62254851A (en) 1986-04-28 1986-04-28 Dry magnetic separation of fine powder

Country Status (1)

Country Link
JP (1) JPS62254851A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347091B2 (en) * 2006-03-03 2013-11-20 国立大学法人愛媛大学 Metal recovery processing method
DE102008063047A1 (en) * 2008-12-23 2010-06-24 Volkswagen Ag Process for the preparation of a textile fraction, which was produced in the treatment of waste tires and plant for carrying out the process
KR101272291B1 (en) * 2012-09-07 2013-06-07 한국지질자원연구원 A physical and chemical separation method for recovering and separating iron from waste nonferrous slags generated from copper, zinc and lead smelting processes
JP5772869B2 (en) * 2013-04-24 2015-09-02 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5679372B2 (en) 2013-07-03 2015-03-04 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5776913B2 (en) 2014-01-17 2015-09-09 住友金属鉱山株式会社 Method for producing hematite for iron making

Also Published As

Publication number Publication date
JPS62254851A (en) 1987-11-06

Similar Documents

Publication Publication Date Title
JPS571454A (en) Electrostatic type ultrahigh capacity filter
US8695903B2 (en) Processing of steel making slag
WO2018233382A1 (en) Dry separation and recovery process for recovering valuable constituent from waste circuit board
GB2064377A (en) Magnetic separators
JPH0156828B2 (en)
CN109530083A (en) A kind of particulate continuous dry-type concentration equipment and application method
JP3579883B2 (en) Waste home appliances processing equipment
CN102728461B (en) Micro powder fine powder dry-type magnet separator
JP2003190838A (en) Cyclone type fine powder catcher
CN209438815U (en) A kind of particulate continuous dry-type concentration equipment
CN205146399U (en) Joint air current in sintered ferrite magnetic production technology grinds device
US4212651A (en) High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization
CN106111318B (en) A kind of strongly magnetic mineral is classified fluidization weak magnetic screening device
JP3113779B2 (en) Air classifier with iron removal function for powder
CN108032406A (en) A kind of oriented structure chipboard is mated formation with dummy sketch recovery method and recovery system
JPH0596243A (en) Waste refuse separator
JP2002011408A (en) Vibration sieving device
JP6733254B2 (en) Fly ash manufacturing method
CN206372879U (en) A kind of crushing material sieves dust pelletizing system
Guillory et al. Electrostatic enhancement of moving-bed granular filtration
CN203316722U (en) Iron-based rare earth permanent magnetic material powder manufacturing equipment
JP2002539943A (en) Particle size sorter
GB2167681A (en) Separator
JPS62283820A (en) Method for obtaining iron oxide for producing ferrite from hematitic iron ore
CN220027282U (en) Air flow mill