JPH0156234B2 - - Google Patents
Info
- Publication number
- JPH0156234B2 JPH0156234B2 JP59029980A JP2998084A JPH0156234B2 JP H0156234 B2 JPH0156234 B2 JP H0156234B2 JP 59029980 A JP59029980 A JP 59029980A JP 2998084 A JP2998084 A JP 2998084A JP H0156234 B2 JPH0156234 B2 JP H0156234B2
- Authority
- JP
- Japan
- Prior art keywords
- beams
- wall
- shear
- reinforced concrete
- wall plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003014 reinforcing effect Effects 0.000 claims description 37
- 239000011150 reinforced concrete Substances 0.000 claims description 19
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000010008 shearing Methods 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 description 14
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 8
- 230000006378 damage Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 208000002740 Muscle Rigidity Diseases 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Load-Bearing And Curtain Walls (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、中低層建物の建築に使用される鉄
筋コンクリート造耐震壁(以下RC造耐震壁とい
う。)に係り、さらに云えば、耐力が十分に大き
くて、しかも変形性能に優れたRC造耐震壁に関
する。[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a reinforced concrete shear wall (hereinafter referred to as an RC shear wall) used in the construction of medium- and low-rise buildings, and more specifically, it relates to a reinforced concrete shear wall (hereinafter referred to as an RC shear wall) that has a sufficiently large Moreover, it relates to RC shear walls with excellent deformation performance.
従来の技術
従来一般のせん断破壊型耐震壁は、壁鉄筋(縦
横配筋)でコンクリートが単純に補強された構成
になつている。したがつて、その荷重変形性能は
第1図に曲線イで示したとおり、耐力は大きい
が、最大耐力時の変形が少なく、最大耐力以降は
急激な耐力低下を生ずる。即ち、脆性的な破壊性
状を呈し、変形性能(能力)が低いことが欠点と
されている。Conventional technology Conventional shear failure type shear walls have a structure in which concrete is simply reinforced with wall reinforcing bars (vertical and horizontal bars). Therefore, as shown by curve A in FIG. 1, its load deformation performance is large, but deformation is small at the maximum proof stress, and after the maximum proof stress, the proof stress decreases rapidly. That is, it exhibits brittle fracture properties and has low deformation performance (capacity).
これに対し、壁板内に間柱配筋を施した構成の
曲げ降伏型耐震壁も知られている。この曲げ降状
型耐震壁は、前記せん断破壊型耐震壁に比べて変
形性能は向上しているが、間柱配筋による柱列メ
カニズムの形成が実施上難しいという欠点があ
る。 On the other hand, bending yield type shear walls are also known that have a configuration in which stud reinforcement is provided within the wall plate. Although this bending-down type shear wall has improved deformation performance compared to the shear failure type shear wall, it has the disadvantage that it is difficult to form a column mechanism by stud reinforcement arrangement.
また、壁板の縦方向にスリツトを形成したスリ
ツト型耐震壁も知られている。このスリツト型耐
震壁も変形性能は多少向上されているが、それよ
りもむしろ耐力が低下しスリツトが壁板の外観意
匠を悪くしている欠点の方が大きい。特開昭58−
168762号公報に記載された、縦目地に沿つて複数
の縦に並ぶ配置に分割される壁板により構成され
た剛性調整耐震壁に関してもおよそ同様な欠点が
ある。 Also known is a slit-type shear wall in which slits are formed in the vertical direction of the wall plate. This slit-type shear wall also has somewhat improved deformation performance, but the larger drawbacks are that the strength is reduced and the slits impair the appearance and design of the wall panels. Japanese Unexamined Patent Publication 1983-
The rigidity-adjustable shear wall described in Japanese Patent No. 168762, which is constructed of wall plates that are divided into a plurality of vertical joints along vertical joints, has almost the same drawback.
上述した通りであつて、従来のRC造耐震壁は、
最大耐力を低下させることなく変形性能を向上さ
せることが至難であり、これが解決するべき課題
となつている。 As mentioned above, conventional RC shear walls are
It is extremely difficult to improve deformation performance without reducing maximum yield strength, and this has become an issue to be solved.
したがつて、この発明の目的は、最大耐力に達
した後にも急激な耐力低下を生じないで変形性能
に優れる構成に改良したRC造耐震壁を提供する
ことである。 Therefore, an object of the present invention is to provide an improved RC shear wall with an improved structure that exhibits excellent deformation performance without causing a sudden drop in strength even after reaching the maximum strength.
課題を解決するための手段
第1〜2の発明
上記従来技術の課題を解決するための手段とし
て、第1の発明に係る鉄筋コンクリート造耐震壁
は、図面の第2図以下に好適な実施例を示した通
り、鉄筋コンクリート造の柱及び梁で囲まれた架
溝面内に鉄筋コンクリート造の壁板が一体的に設
けられている鉄筋コンクリート造耐震壁におい
て、
壁板3に垂直縦方向の補強鉄筋として両端を梁
2,2′へ強固に定着した太径鉄筋4を配筋し、
同壁板3における柱1,1′及び梁2,2′に沿う
部分にせん断力の伝達能力が小さいせん断容易箇
所を設けたことを特徴とする。Means for Solving the Problems First and Second Inventions As a means for solving the problems of the prior art described above, a reinforced concrete shear wall according to the first invention has a preferred embodiment shown in FIG. As shown, in a reinforced concrete shear wall where a reinforced concrete wall board is integrally provided within the trench plane surrounded by reinforced concrete columns and beams, both ends are installed as vertical reinforcing bars perpendicular to the wall board 3. Large-diameter reinforcing bars 4 firmly anchored to the beams 2 and 2' are placed,
The wall plate 3 is characterized by providing easy-to-shear areas with a small shearing force transmission capacity in portions along the columns 1, 1' and the beams 2, 2'.
第2の発明は、同じく鉄筋コンクリート造の柱
及び梁で囲まれた架溝面内に鉄筋コンクリート造
の壁板が一体的に設けられている鉄筋コンクリー
ト造耐震壁において、
壁板3に垂直縦方向の補強鉄筋として両端を梁
2,2′へ強固に定着した太径鉄筋4を配筋し、
同壁板3における柱1,1′及び梁2,2′に沿う
部分にせん断力の伝達能力が小さいせん断容易箇
所を設け、また、前記太径鉄筋4に沿う部分にも
せん断力の伝達能力が小さいせん断容易箇所を設
けたことを特徴とする。 The second invention is a reinforced concrete shear wall in which a reinforced concrete wall plate is integrally provided within a trench plane surrounded by reinforced concrete columns and beams, and the wall plate 3 is reinforced in a vertical direction. Large-diameter reinforcing bars 4 with both ends firmly fixed to the beams 2 and 2' are arranged as reinforcing bars.
The wall plate 3 is provided with easy shear points with a small shearing force transmission capacity in the parts along the columns 1, 1' and the beams 2, 2', and also in the part along the large diameter reinforcing bars 4, which has a shearing force transmission capacity. It is characterized by the provision of easy-to-shear areas with small shearing properties.
作 用
壁板3が柱1と梁2とが形成するラーメン架構
と一体的に働く間(つまり破壊されるまでの間)
は、太径鉄筋4が壁配筋として働くため二次剛性
が向上する(第1図の曲線○ロ参照)。しかし、壁
板3と柱1と梁2とが形成するラーメン架構との
一体性が破壊されるに至ると、耐力はあまり下ら
ず、壁板3の傷みは増大することなく、太径鉄筋
4の降伏として変形が増大する(第1図の曲線
ロ)。そして、変形が大きくなると、太径鉄筋4
は間柱的に働き、耐力低下を防止する。Function: While the wall plate 3 works integrally with the rigid frame structure formed by the columns 1 and beams 2 (in other words, until it is destroyed)
In this case, the secondary rigidity is improved because the large-diameter reinforcing bars 4 act as wall reinforcement (see curves ◯ and ◯ in Fig. 1). However, once the integrity of the rigid frame structure formed by the wall plate 3, columns 1, and beams 2 is destroyed, the strength does not decrease much, and the damage to the wall plate 3 does not increase. The deformation increases as the yield of 4 (curve B in Figure 1). Then, as the deformation increases, large diameter reinforcing bars 4
acts like a stud and prevents a decline in yield strength.
つまり、最大耐力に達してせん断容易箇所が破
壊されると、壁板3と柱1と梁2とが形成するラ
ーメン架構との一体性が喪失されるので、その後
は壁板3の傷みの進行は止まり、太径鉄筋4の降
伏として耐力が維持され、かつ降伏伸びとして変
形が増大する。 In other words, if the maximum strength is reached and the easily sheared parts are destroyed, the integrity of the rigid frame frame formed by the wall plate 3, columns 1, and beams 2 will be lost, and the damage to the wall plate 3 will continue. stops, the yield strength is maintained as the large-diameter reinforcing bars 4 yield, and the deformation increases as yield elongation.
特に、柱1,1′及び梁2,2′に沿うせん断容
易箇所と、太径鉄筋4に沿うせん断容易箇所とが
破壊される結果、壁板3は縦に2以上に分割さ
れ、かつ分割された壁板3は水平地震力により回
転変形しようとする(第6図)。この回転変形に
よつて梁2,2′は外方へ膨らもうとし、これに
太径鉄筋4の降伏伸びが手伝つて分割壁板3は回
転し易くなり、耐震壁全体が大きく変形し変形量
が増大する(第6図)。その一方で、太径鉄筋4
がその降伏耐力で梁2,2′の膨らみ変形をきつ
ちり拘束するため、最大耐力以後に耐力の急激な
低下をきたすことはないのである。 In particular, as a result of the destruction of the easily sheared areas along the columns 1, 1' and beams 2, 2', and the easily sheared areas along the large-diameter reinforcing bars 4, the wall plate 3 is vertically divided into two or more parts. The wall plate 3 that has been exposed to the wall will undergo rotational deformation due to the horizontal seismic force (Fig. 6). Due to this rotational deformation, the beams 2 and 2' tend to bulge outward, and with the help of the yield elongation of the large-diameter reinforcing bars 4, the dividing wall plate 3 becomes easy to rotate, causing the entire seismic wall to deform significantly. The amount of deformation increases (Figure 6). On the other hand, large diameter reinforcing bar 4
Because the yield strength tightly restrains the bulging deformation of the beams 2, 2', there is no sudden drop in yield strength after the maximum yield strength.
実施例 次に、図示した本発明の実施例を説明する。Example Next, illustrated embodiments of the present invention will be described.
第2図と第3図において、図中1,1′は左右
の柱であり、2,2′は上下の梁である。3は前
記柱及び梁で囲まれた架構面内に設けられた壁板
であり、これらは各々鉄筋コンクリート造として
一体的に形成されている。 In FIGS. 2 and 3, 1 and 1' are left and right pillars, and 2 and 2' are upper and lower beams. Reference numeral 3 denotes a wall plate provided within the frame surface surrounded by the pillars and beams, each of which is integrally formed as a reinforced concrete structure.
柱1,1′及び梁2,2′の鉄筋は、太さがD13
ぐらいの主筋1a,2aに、φ6ぐらいのフープ
筋1b及びスターラツプ2bを必要量巻いて補強
した構成とされている。 The reinforcing bars for columns 1 and 1' and beams 2 and 2' have a thickness of D13.
The structure is such that main reinforcements 1a and 2a of approximately 6 mm in diameter are reinforced by winding the required amount of hoop reinforcements 1b and stirrup 2b of approximately φ6.
壁板3の縦横筋3a,3bにはφ4ぐらいの鉄
筋を使用し、間隔100mmのダブル配筋として構成
されている(第3図)。縦横筋3a,3bは共に
前記柱鉄筋および梁鉄筋中に十分深く挿し入れて
アンカーされている。 The vertical and horizontal reinforcements 3a and 3b of the wall plate 3 are made of reinforcing bars with a diameter of about 4 mm, and are configured as double reinforcements with an interval of 100 mm (Figure 3). The vertical and horizontal reinforcements 3a and 3b are both inserted sufficiently deep into the column reinforcing bars and beam reinforcing bars and anchored therein.
次に、図中4は上記の壁板3中に垂直縦筋とし
て配筋された太径鉄筋である。この太径鉄筋4に
は太さがD19ぐらいの鉄筋を使用し、壁板3の横
長寸法を略三等分した中央2箇所の位置に、約
100mmの平行間隔をあけて2本ずつ配筋し、その
上下両端4a,4bは上下の梁2,2′の主筋2
a、スターラツプ2bで組立てた鉄筋篭の中に十
分深く挿し入れると共に略直角に屈曲してアンカ
ーされている。但し、中央寄りに位置する左右2
本の太径鉄筋4,4は、いわゆる長方形のフープ
筋の形態として形成されている。 Next, reference numeral 4 in the figure indicates large-diameter reinforcing bars arranged as vertical longitudinal reinforcements in the wall plate 3 described above. For this large-diameter reinforcing bar 4, use a reinforcing bar with a thickness of about D19, and place it at two locations in the center of approximately three equal parts of the horizontal dimension of the wall plate 3.
Two reinforcements are arranged at a parallel interval of 100 mm, and the upper and lower ends 4a and 4b are the main reinforcements 2 of the upper and lower beams 2 and 2'.
a, the stirrup 2b is inserted sufficiently deeply into the assembled reinforcing bar cage, and is bent at a substantially right angle and anchored. However, the left and right 2 located near the center
The large-diameter reinforcing bars 4, 4 are formed as so-called rectangular hoop bars.
図中5は壁板3に断面欠損によつてせん断力の
伝達能力が小さいせん断容易箇所を形成する塩化
ビニールパイプである。該塩化ビニールパイプ5
はその外径がφ24ぐらいの大きさであり、柱1,
1′及び梁2,2′に沿う周辺部分(第2図)であ
つて、しかも壁板3のダブルに配筋された縦横筋
3a,3bの中間位置(第3図)に設置されてい
る。各塩化ビニールパイプ5は、各太径鉄筋4と
交差する位置で分断されている。 In the figure, reference numeral 5 denotes a vinyl chloride pipe that has a cross-sectional defect in the wall plate 3 to form an easily sheared area with a small shearing force transmission capacity. The vinyl chloride pipe 5
The outer diameter of the column is about φ24, and the column 1,
1' and the peripheral area along the beams 2 and 2' (Fig. 2), and is installed at an intermediate position (Fig. 3) between the vertical and horizontal reinforcements 3a and 3b, which are double reinforced on the wall plate 3. . Each vinyl chloride pipe 5 is divided at a position where it intersects each large-diameter reinforcing bar 4.
したがつて、上記構成のRC造耐震壁の荷重変
形性能は、第1図に曲線○ロで示したように、必要
以上に高くない耐力の○ハ点で塩化ビニールパイプ
5が破壊される(つまり壁板3のせん断容易箇所
が破壊される)ため、その後耐力はあまり上がら
ず、壁板3の傷みは増大しない。そして、R=20
×10-3 rad以降では太径鉄筋4が間柱的に働き、耐
力低下が防止されるのである。 Therefore, the load deformation performance of the RC shear wall with the above configuration is as shown by the curve ○ and b in Figure 1, where the vinyl chloride pipe 5 is destroyed at point ○, where the yield strength is not higher than necessary ( In other words, the easily sheared parts of the wall board 3 are destroyed), so the proof strength does not increase much after that, and the damage to the wall board 3 does not increase. And R=20
After ×10 -3 rad , the large-diameter reinforcing bars 4 act as studs and prevent a decrease in yield strength.
第2の実施例
第4図に示したRC造耐震壁の構成の大部分は、
上記第1実施例の構成と共通するが、本実施例の
構成の特徴は、2本ずつ平行に縦方向に配筋され
た太径鉄筋4,4の中間にせん断容易箇所を形成
する塩化ビニールパイプ6が配置されていること
である。該塩化ビニールパイプ6もその外径は
φ24ぐらいの大きさであり、壁板3のダブルに配
筋された縦横筋3a,3bの中間に挿入されてい
る。該塩化ビニールパイプ6の長さは、上下の梁
2,2′にほぼ近接する長さとされている。なお、
本実施例のように太径鉄筋4とせん断容易箇所の
位置とを一致させると施工性がよく実施上好まし
いが、両者が離れた位置の構成で同様に実施する
こともできる。Second Embodiment Most of the configuration of the RC shear wall shown in Figure 4 is as follows:
Although the structure is common to that of the first embodiment, the feature of the structure of this embodiment is that vinyl chloride which forms an easy-to-shear point in the middle of the large-diameter reinforcing bars 4, 4 arranged in parallel in the vertical direction The pipe 6 is arranged. The vinyl chloride pipe 6 also has an outer diameter of about φ24, and is inserted between the double reinforcements 3a and 3b of the wall board 3. The length of the vinyl chloride pipe 6 is set to be approximately close to the upper and lower beams 2, 2'. In addition,
As in this embodiment, it is preferable to have the large-diameter reinforcing bars 4 and the easily sheared parts coincident with each other in terms of workability and practicality, but it is also possible to implement the construction in a similar manner with a configuration in which both are located at separate positions.
従つて、このRC造耐震壁の場合は、最大耐力
に達して各塩化ビニールパイプ5,6が破壊され
る(つまり壁板3のせん断容易箇所が破壊され
る)と、壁板3が太径鉄筋4の位置を境にして縦
に三つのブロツクに分割され第6図に示したよう
な回転変形を呈する状態となる。この回転変形は
梁2,2′の膨らみ変形と太径鉄筋4の降伏伸び
とで回転し易くなるので、最大耐力に達した後の
壁板3の傷みの進行は防止され、かつ耐震壁全体
の変形は十分に増大する。他方、梁2,2′は太
径鉄筋4の降伏耐力で拘束されるので、最大耐力
に達した後の急激な耐力低下は防止されるのであ
る。 Therefore, in the case of this RC shear wall, when the maximum strength is reached and the PVC pipes 5 and 6 are destroyed (that is, the easily sheared parts of the wall board 3 are destroyed), the wall board 3 becomes larger in diameter. It is vertically divided into three blocks with the position of the reinforcing bar 4 as a boundary, and exhibits rotational deformation as shown in FIG. This rotational deformation is facilitated by the bulging deformation of the beams 2, 2' and the yield elongation of the large-diameter reinforcing bars 4, so that damage to the wall plate 3 is prevented from progressing after reaching the maximum strength, and the entire shear wall is The deformation of increases sufficiently. On the other hand, since the beams 2 and 2' are restrained by the yield strength of the large-diameter reinforcing bars 4, a sudden drop in yield strength after reaching the maximum yield strength is prevented.
第3の実施例
第5図に示したRC造耐震壁は、壁板3におけ
る上下の梁2,2′に沿う部分及び太径鉄筋4,
4の中間部分に塩化ビニールパイプ5,6を設置
してせん断容易箇所を形成した構成とされてい
る。Third Embodiment The RC shear wall shown in FIG.
The structure is such that vinyl chloride pipes 5 and 6 are installed in the middle part of the pipe 4 to form an easy shearing area.
このような構成によつても、その荷重変形性能
は、上記第1、第2実施例のものに近いものが得
られるのである。 Even with such a configuration, the deformation performance under load is close to that of the first and second embodiments.
本発明が奏する効果
以上に実施例と併せて詳述したとおりであつ
て、この発明に係る鉄筋コンクリート造耐震壁に
よれば、太径鉄筋4が壁配筋としても働くため二
重剛性が向上する。しかも壁板3と柱1と梁2と
が形成するラーメン架構との一体性はせん断容易
箇所(塩化ビニルパイプ5,6)が破壊されるこ
とにより喪失し、壁板3の傷みの進行は止められ
る。また、太径鉄筋4の降伏伸びと梁2,2′の
膨らみ変形及び分割された壁板3の回転変位とに
よつて耐震壁全体の変形が増大し変形性能に優れ
る。一方、太径鉄筋4がその降伏耐力で梁2,
2′の膨らみ変形を拘束するため、最大耐力に達
した後の急激な耐力低下が防止されるので、この
耐震壁による建物の耐震性と変形性能は大きく向
上し、建物構造躯体のコストダウンを図ることが
可能である。Effects of the present invention As described above in detail in conjunction with the embodiments, according to the reinforced concrete shear wall according to the present invention, the large-diameter reinforcing bars 4 also work as wall reinforcement, so that double rigidity is improved. . Moreover, the integrity of the rigid frame structure formed by the wall plate 3, columns 1, and beams 2 is lost when the easily sheared parts (PVC pipes 5 and 6) are destroyed, and the progress of damage to the wall plate 3 is stopped. It will be done. Moreover, the deformation of the entire seismic wall increases due to the yield elongation of the large-diameter reinforcing bars 4, the bulging deformation of the beams 2 and 2', and the rotational displacement of the divided wall plates 3, resulting in excellent deformation performance. On the other hand, the large-diameter reinforcing bar 4 has a yield strength of the beam 2,
By restraining the bulging deformation of the 2' section, a sudden drop in strength after reaching the maximum strength is prevented, which greatly improves the earthquake resistance and deformation performance of the building using this shear wall, and reduces the cost of the building structure. It is possible to achieve this goal.
第1図は耐震壁の荷重変形線図、第2図はこの
発明の第1実施例であるRC造耐震壁の鉄筋組立
図、第3図は第2図の−矢視断面図、第4図
は第2実施例の鉄筋組立図、第5図はその他の実
施例を簡単に示したモデル図、第6図は耐震壁の
変形状態を概念的に誇張して示した説明図であ
る。
Fig. 1 is a load deformation diagram of a shear wall, Fig. 2 is a reinforcing bar assembly diagram of an RC shear wall according to the first embodiment of the present invention, Fig. 3 is a sectional view taken along the - arrow in Fig. 2, and Fig. The figure is a reinforcing bar assembly diagram of the second embodiment, FIG. 5 is a model diagram simply showing another embodiment, and FIG. 6 is an explanatory diagram conceptually exaggerating the deformed state of the earthquake-resistant wall.
Claims (1)
構面内に鉄筋コンクリート造の壁板が一体的に設
けられている鉄筋コンクリート造耐震壁におい
て、 壁板3に垂直縦方向の補強鉄筋として両端を梁
2,2′へ強固に定着した太径鉄筋4が配筋され
ていると共に、同壁板3における柱1,1′及び
梁2,2′に沿う部分にせん断力の伝達能力が小
さいせん断容易箇所が設けられていることを特徴
とする鉄筋コンクリート造耐震壁。 2 鉄筋コンクリート造の柱及び梁で囲まれた架
構面内に鉄筋コンクリート造の壁板が一体的に設
けられている鉄筋コンクリート造耐震壁におい
て、 壁板3に垂直縦方向の補強鉄筋として両端を梁
2,2′へ強固に定着した太径鉄筋4が配筋され
ていると共に、同壁板3における柱1,1′及び
梁2,2′に沿う部分にせん断力の伝達能力が小
さいせん断容易箇所が設けられ、前記太径鉄筋4
に沿う部分にもせん断力の伝達能力が小さいせん
断容易箇所が垂直縦方向に設けられていることを
特徴とする鉄筋コンクリート造耐震壁。[Scope of Claims] 1. In a reinforced concrete shear wall in which a reinforced concrete wall plate is integrally provided within a frame surface surrounded by reinforced concrete columns and beams, vertical reinforcing bars are provided on the wall plate 3. Large-diameter reinforcing bars 4 are firmly fixed at both ends to the beams 2, 2', and the shear force transmission capacity is increased to the portions of the wall plate 3 along the columns 1, 1' and the beams 2, 2'. A reinforced concrete shear wall characterized by the provision of easy-to-shear points with small shear. 2. In a reinforced concrete shear wall in which a reinforced concrete wall plate is integrally provided within the frame surface surrounded by reinforced concrete columns and beams, the beams 2, Large-diameter reinforcing bars 4 firmly anchored to 2' are arranged, and there are easily sheared areas with small shearing force transmission capacity in the parts of the wall plate 3 along columns 1, 1' and beams 2, 2'. The large diameter reinforcing bar 4 is provided.
A reinforced concrete shear wall characterized by having easy-to-shear points with low shear force transmission capacity in the vertical and longitudinal directions also in the parts along the .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2998084A JPS60175670A (en) | 1984-02-20 | 1984-02-20 | Earthquake-proof wall of reinforced concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2998084A JPS60175670A (en) | 1984-02-20 | 1984-02-20 | Earthquake-proof wall of reinforced concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60175670A JPS60175670A (en) | 1985-09-09 |
JPH0156234B2 true JPH0156234B2 (en) | 1989-11-29 |
Family
ID=12291106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2998084A Granted JPS60175670A (en) | 1984-02-20 | 1984-02-20 | Earthquake-proof wall of reinforced concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60175670A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015031413A (en) * | 2013-07-31 | 2015-02-16 | 日立Geニュークリア・エナジー株式会社 | Air-cooled heat exchanger frame structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120962A (en) * | 1982-01-13 | 1983-07-19 | 株式会社竹中工務店 | Earthquake-proof wall made of reinforced concrete |
JPS58168762A (en) * | 1982-03-31 | 1983-10-05 | 大成建設株式会社 | Rigid conditioned earthquake-proof wall |
-
1984
- 1984-02-20 JP JP2998084A patent/JPS60175670A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58120962A (en) * | 1982-01-13 | 1983-07-19 | 株式会社竹中工務店 | Earthquake-proof wall made of reinforced concrete |
JPS58168762A (en) * | 1982-03-31 | 1983-10-05 | 大成建設株式会社 | Rigid conditioned earthquake-proof wall |
Also Published As
Publication number | Publication date |
---|---|
JPS60175670A (en) | 1985-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4502484B2 (en) | Seismic reinforcement wall | |
JP6723281B2 (en) | Column-beam connection structure | |
JPH0156234B2 (en) | ||
JP7062853B2 (en) | Seismic retrofitting structure | |
JP6393476B2 (en) | Column beam connection structure | |
JP2021528580A (en) | Joint structure of concrete-filled steel pipe columns and reinforced concrete slabs | |
JPH07207755A (en) | Connection part structure of reinforced concrete column and steel structure beam | |
JPH01271565A (en) | Ferro-concrete composite column covered with steel pipe | |
JP2005155058A (en) | Beam member of rc structure | |
JPS6229588B2 (en) | ||
JP2018105124A (en) | Connection structure of column beam | |
JP2884279B2 (en) | Filled steel pipe concrete column | |
JP2002161580A (en) | Multiple dwelling house structure | |
JP7127244B2 (en) | Seismic reinforcement structure | |
JPH0365467B2 (en) | ||
JPS63241252A (en) | Steel reinforced concrete pillar | |
JP2001295365A (en) | Steel framed structure | |
JPH04237743A (en) | Unit house | |
JPS6233974A (en) | Ultrahigh building structure | |
JPH0429832B2 (en) | ||
JPH10292667A (en) | Antiseismic reinforcing structure of rc frame | |
JPH07119142A (en) | Steel sheet pile and steel continuous wall | |
JPS6333546B2 (en) | ||
JP2022106562A (en) | Seismic reinforcement structure | |
JP3180326B2 (en) | Reinforcement metal fittings and wooden buildings |