JPH0155930B2 - - Google Patents

Info

Publication number
JPH0155930B2
JPH0155930B2 JP56107941A JP10794181A JPH0155930B2 JP H0155930 B2 JPH0155930 B2 JP H0155930B2 JP 56107941 A JP56107941 A JP 56107941A JP 10794181 A JP10794181 A JP 10794181A JP H0155930 B2 JPH0155930 B2 JP H0155930B2
Authority
JP
Japan
Prior art keywords
tool
axis
blade
wire
tool equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56107941A
Other languages
Japanese (ja)
Other versions
JPS5810423A (en
Inventor
Atsuo Unosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10794181A priority Critical patent/JPS5810423A/en
Publication of JPS5810423A publication Critical patent/JPS5810423A/en
Publication of JPH0155930B2 publication Critical patent/JPH0155930B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 この発明は任意の大きさのねじれを有する、特
に植刃又は付刃カツタに使用するのに有用なねじ
れブレードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing twisted blades having any amount of twist, particularly useful for use in implanted or attached cutters.

ねじれ刃のカツタは、直刃のカツタに比し振動
が少なく切削性能が格段に優れているので、切削
加工の業界において広く使用されている。今日一
般に使用されているこれらのねじれ刃のカツタの
刃部は、高速度鋼製のカツタや、小径の超硬カツ
タにおける工具素材に直接ねじれみぞをつけて切
刃としたいわゆるムクカツタの他、高速度鋼製又
は超硬製の刃部ブレードを構造用鋼等の鋼製シヤ
ンクに、機械的にクランプした植刃カツタ又はロ
ー付等により固着した付刃カツタとして構成され
ている。
Twisted blade cutters have less vibration and much superior cutting performance than straight blade cutters, and are therefore widely used in the cutting industry. The blades of these twisted-edged cutters commonly used today include high-speed steel cutters, small-diameter carbide cutters with twisted grooves directly formed on the tool material, and high-speed steel cutters. It is constructed as a blade cutter in which a blade made of speed steel or carbide is fixed to a steel shank such as structural steel by mechanically clamping or brazing.

然しこの種のねじれ刃カツタは小形のカツタを
除いては、高価になるので上述の如きムクカツタ
はほとんど採用されず、専ら植刃又は付刃カツタ
が使用されている。
However, except for small-sized cutters, this type of twisted-blade cutter is expensive, so the above-mentioned barbed cutter is rarely used, and implanted or attached-edge cutters are used exclusively.

これらの植刃、付刃カツタには、工具用材料か
ら成るねじれ刃としてのブレードが必要である
が、このようなブレードの製造には多くの困難が
伴なう。即ち高速度鋼製のねじれ刃ブレードでは
該材料からの削り出しに多くの工数を要しまた歩
留が悪い上、ブレード自体が熱処理工程中に容易
に変形し、精度を出すための研削加工においても
製品の保持が難かしいので研削がしにくく、結果
的に高価となるという欠点を有していた。一方、
超硬合金ブレードは焼結前に型による加圧や押出
による成形が行なわれるが、このような方法では
焼結による変形が大きく高速度鋼製のブレード以
上に製造が困難であるという欠点がある。また強
いねじれを有する一体的ブレードや長いねじれ刃
の一体的ブレードは成形が不能である。従つてこ
のような強いねじれを有する一体的ブレードや一
体成形の長いねじれ刃のブレードを使用するカツ
タは市場の要求が大きいにも拘らず、その要求に
応じられておらず、現実には要求以下のねじれを
有するブレードや、短かいチツプをねじれに沿つ
て多数固着した形式のブレードを使用している。
These implanted blades and cutters with attached blades require blades as twisted blades made of tool material, but manufacturing such blades is accompanied by many difficulties. In other words, twisted-edged blades made of high-speed steel require many man-hours to machine from the material, have a low yield, and are easily deformed during the heat treatment process, making it difficult to grind them to achieve precision. However, since it is difficult to hold the product, it is difficult to grind, and as a result, it is expensive. on the other hand,
Cemented carbide blades are formed by pressurization with a mold or extrusion before sintering, but these methods have the disadvantage that they are more difficult to manufacture than high-speed steel blades because of the large deformation caused by sintering. . Furthermore, integral blades with strong twists or long twisted edges cannot be molded. Therefore, although there is a strong market demand for cutters that use integrated blades with strong twists or blades with long twisted blades molded in one piece, these demands have not been met, and in reality, the cutters are less than required. Blades with a twist or blades with many short tips fixed along the twist are used.

本発明はかかる現状に鑑み、高精度な一体的ね
じれ刃のブレードを製造する方法を提供すること
を目的とするもので特に従来は製造不可能であつ
た様な、大きいねじれを有する長さの長い例えば
リードの長さより長いようなエンドミル用の継目
なしのブレード等も提供できるものである。
In view of the current situation, it is an object of the present invention to provide a method for manufacturing a blade with a high-precision integrally twisted edge. It is also possible to provide seamless blades for end mills that are long, for example longer than the length of the lead.

なお本願において、扇形角とは、継目のない単
一のブレードの長手方向の両端における夫々の軸
直角断面の外周部と軸心を結ぶ直線を同一軸直角
面に投影したときになす角度即ち軸直角断面に投
影したブレード両端間のなす角をいう。また、ね
じれ角とは、工具機材が円筒形の場合、ブレード
のつる巻き線とその上の一点を通るブレードの軸
線に平行な直線とがなす角度を、又、工具機材が
円錐中空体の場合、ブレードの円錐つる巻き線と
その上の一点を通るブレードの軸線に平行な直線
とがなす角度をその点を通るブレードの半径に直
角な平面上に投影した角度(JIS−B−0101)を
いう。
In this application, the sector angle is the angle formed when a straight line connecting the outer periphery of each axis-perpendicular cross section and the axis at both ends of a seamless single blade in the longitudinal direction is projected onto the same axis-perpendicular plane, that is, the axis. The angle between the two ends of the blade when projected on a right-angled cross section. In addition, the helix angle is the angle between the helical winding of the blade and a straight line parallel to the axis of the blade that passes through a point above it when the tool is cylindrical, or when the tool is a conical hollow body. , the angle formed by the conical helical winding of the blade and a straight line parallel to the axis of the blade that passes through a point on it and projected onto a plane perpendicular to the radius of the blade that passes through that point (JIS-B-0101). say.

本発明を実施例によつて詳述する。 The present invention will be explained in detail by way of examples.

第1図は本発明のブレードの製造方法に使用す
る装置の1例である。図において、1はワイヤカ
ツト放電加工機のテーブルである。このテーブル
1上には加工ワイヤ2に対して直交する方向に伸
長する回転軸心x−xを有する横軸回転ヘツド3
及び支持軸5を設ける。該横軸回転ヘツド3には
支持軸5を介して回転軸線x−xを同心上に工具
材料から成る予かじめ所定形状例えば直円筒形又
は円錐形に成形した中空機材4を取付け、該機材
4を支持軸5へ例えばロー付けなどの手段で固着
する。この回転支持軸上の機材円筒4は回転ヘツ
ドに設けられた駆動モータ6で予かじめ設定した
制御指令によつて回転せしめられる。テーブル1
は同様に制御指令によつて矢印7の方向に移動す
る。
FIG. 1 shows an example of an apparatus used in the blade manufacturing method of the present invention. In the figure, 1 is a table of a wire cut electrical discharge machine. On this table 1 is a horizontal rotary head 3 having a rotation axis x-x extending in a direction perpendicular to the processing wire 2.
and a support shaft 5 are provided. A hollow member 4 made of a tool material and pre-formed into a predetermined shape, such as a right cylindrical shape or a conical shape, is attached to the horizontal rotating head 3 via a support shaft 5 concentrically with the rotational axis x-x. 4 is fixed to the support shaft 5 by means such as brazing. The equipment cylinder 4 on this rotary support shaft is rotated by a drive motor 6 provided on the rotary head in accordance with a preset control command. table 1
similarly moves in the direction of arrow 7 according to the control command.

指令制御を適当に行なうことにより、後述のよ
うに自由な角度のねじれ角を有する任意の大きさ
の扇形角を備えた長大なブレードを容易に製造出
来るのである。
By appropriately performing command control, it is possible to easily manufacture a long blade with a fan-shaped angle of any size and a free helix angle, as will be described later.

第2図及び第2A図は本発明の方法によつて製
作された4個のブレードをロー付けした4枚刃エ
ンドミルの例である。各ブレード4′は外径D、
長さlの工具の刃部を構成し、夫々は厚さt、巾
Sの寸法を有している。
FIGS. 2 and 2A are examples of a four-blade end mill manufactured by the method of the present invention, in which four blades are brazed. Each blade 4' has an outer diameter D,
It constitutes a tool blade portion having a length l, each having dimensions of a thickness t and a width S.

第3図及び第3A図は第2図に示すエンドミル
に刃部を1個取出した概略図であり、該ブレード
4′は直径D、ねじれ角θのとき、このブレード
のリードをLとすれば L=πD/tanθ …(1) となり長さlのブレードでは端面から見た扇形角
βは、 β=360×l/L=(l・tanθ/πD)×360゜とな
る。
3 and 3A are schematic views of one blade section taken out from the end mill shown in FIG. 2. When the blade 4' has a diameter D and a helix angle θ, the lead of this blade is L. L=πD/tanθ...(1) Therefore, for a blade of length l, the fan angle β seen from the end face is β=360×l/L=(l・tanθ/πD)×360°.

となる。becomes.

図示の如きブレード4′は次の方法により製造
される。
The blade 4' as shown is manufactured by the following method.

第1図において、工具機材4は長さl、直径
D、内径(D−2S)の中空円筒形であり、ワイ
ヤカツト放電加工機のテーブル1の右方向への移
動量と工具機材4の回転角との関係は、工具機材
1回転に対し前記(1)のLだけ、移動するようにし
加工ワイヤ2に対し工具機材4が相対的にねじ運
動を行うことにより加工面をねじれ面とすること
ができる。工具機材4は支持軸5に接着されてお
り、工具機材4の長さlに対して前述の加工を行
う長さをlよりいく分長い長さl′としても加工後
に機材が脱落しないようにしてある。
In Fig. 1, the tool equipment 4 has a hollow cylindrical shape with a length l, a diameter D, and an inner diameter (D-2S). The relationship between the tool and equipment is such that the machined surface can be made into a twisted surface by moving by L in (1) above for one rotation of the tool and the tooling and equipment 4 making a screw movement relative to the processing wire 2. can. The tool equipment 4 is glued to the support shaft 5, and even if the length of the tool equipment 4 used for the above-mentioned processing is set to a length l' that is somewhat longer than l, the tool is prevented from falling off after processing. There is.

第4図は工具機材4を端面から見た図面で、加
工ワイヤはa−aの位置で加工を開始し、ねじれ
角に沿つたねじ運動を行いながらl′の長さを加工
した後、その位置から逆方向のねじ運動を行いな
がら端面位置a−aに戻り次いで所要工具機材の
厚さtだけ加工ワイヤを軸x−xと直角に移動
し、a′−a′の位置から再び同様の加工を行う。
Fig. 4 is a drawing of the tool equipment 4 seen from the end. The machining wire starts machining at the a-a position, and after machining the length l' while making a screw movement along the helix angle, While performing a screw movement in the opposite direction from the position, return to the end face position a-a, then move the processing wire perpendicular to the axis x-x by the required thickness t of the tool equipment, and repeat the same operation from the position a'-a'. Perform processing.

このような運動をx−x軸を適当な角rだけ割
出した後、b−b、b′−b′、c−c、c′−c′…と
繰返した後工具機材4と支持軸5を分離すること
により同一工具機材4から数個の正確なねじれ刃
のブレードA1,A2,B1,B2…を製造することが
できる。また、支持軸5を用いず工具機材4を直
接横軸回転ヘツド3に取付け、加工後必要な長さ
に切断することもできる。なお工具機材の厚さt
は第2図のブレード厚さtに対応するものであ
る。
After indexing the x-x axis by an appropriate angle r, repeating this motion as bb, b'-b', c-c, c'-c', etc., the tool equipment 4 and the support shaft are moved. By separating the blades 5, several accurately twisted blades A 1 , A 2 , B 1 , B 2 . . . can be manufactured from the same tool equipment 4. It is also possible to attach the tool 4 directly to the horizontal rotary head 3 without using the support shaft 5, and to cut it to the required length after machining. In addition, the thickness of the tool equipment t
corresponds to the blade thickness t in FIG.

第5図は第4図の工具機材を展開した図で、加
工ワイヤ2は矢印8の方向に a→a1→a→a′→a1′→a′→b→b1→b→b′→b1

b′… と進むことを示している。なおlは工具機材4の
長さ、l′は加工長さ、tは工具機材厚さである。
また、傾き角θは第3図におけるθに対応する。
なお、この方法によれば同時にA1とA2,B1とB2
の如く二つのねじれを有するブレードを加工する
ことも出来A1とA2は工具機材が中空円筒形状で
あれば全く同一のものである。ただし、工具機材
を中空円錐形状としたり、不等ねじれ角、即ち工
具機材の軸方向位置によつてねじれ角θが変化す
るブレードに対しては、A1,A2の形状は加工ワ
イヤの位置が工具機材の中心からの偏位置によつ
て異る。例へば第4図のようにa−aは中心を通
りa′−a′は中心からtだけ偏位している場合は、
工具機材が円筒形状以外の場合にはA1A2の形状
は同一にはならず片方のみが所要の形状となる。
但し中心からの偏位が特別に大きくならなければ
使用に支障のない場合が多い。
FIG. 5 is an expanded view of the tool equipment shown in FIG. ′→b 1

It shows that the process proceeds as b′…. Note that l is the length of the tool 4, l' is the machining length, and t is the thickness of the tool.
Further, the tilt angle θ corresponds to θ in FIG.
In addition, according to this method, A 1 and A 2 , B 1 and B 2 at the same time
It is also possible to machine a blade with two twists, such as A 1 and A 2 are exactly the same if the tool material is a hollow cylinder. However, for blades where the tool material is a hollow cone shape, or where the torsion angle θ changes depending on the axial position of the tool material, the shapes of A 1 and A 2 will depend on the position of the machining wire. varies depending on the offset position of the tool from the center. For example, as shown in Figure 4, if a-a passes through the center and a'-a' is deviated from the center by t, then
If the tool equipment has a shape other than a cylinder, the shapes of A 1 A 2 will not be the same and only one will have the required shape.
However, as long as the deviation from the center is not particularly large, there is often no problem in using it.

以上詳述した本発明の方法によればねじれを有
するブレードの製造上の変形をもたらす要素、例
へば高速度鋼における熱処理、超硬合金における
焼結の影響等の従来の製造方法の欠点を完全に除
去することが出来るのみならず、従来の機械的方
法では製造不可能であつた強い扇形角を有する任
意のねじれ角を備えた長いブレードや、不等リー
ドを有するブレード、テーパを有するカツタのブ
レード等を単に制御プログラムを変更するのみで
任意にかつ高精度に製造することができる。例え
ば第3A図側面図におけるブレードの扇形角βの
製造範囲は従来120゜以下であつたが、本発明の方
法によれば120゜を超えて製造することが出来、放
電加工機のストロークさえ許せば360゜以上のもの
も高精度に製造できる。
The method of the present invention as detailed above completely eliminates the disadvantages of conventional manufacturing methods such as the deformation factors in manufacturing twisted blades, such as heat treatment in high-speed steel and sintering effects in cemented carbide. Long blades with arbitrary helix angles, blades with unequal leads, and tapered cutter blades with strong sector angles that can not only be removed but cannot be manufactured using conventional mechanical methods. etc. can be manufactured arbitrarily and with high precision simply by changing the control program. For example, the manufacturing range of the sector angle β of the blade in the side view of FIG. 3A was conventionally 120° or less, but according to the method of the present invention, it can be manufactured over 120°, and even the stroke of the electric discharge machine can be tolerated. It is also possible to manufacture objects with angles of 360° or more with high precision.

本発明の方法によるブレードを使用することに
より、例えば従来製造不能であつたつぎ目なしの
単一ブレードを有する強ねじれのロングエンドミ
ルや、テーパ形彫りエンドミルを容易に製造でき
機械加工業界にもたらす利益は甚だ大きく、また
従来はねじれ面の精度不良のため強力切削が不可
能であつたねじれブレードを植刃としたカツタも
ブレード背面と取付面との精度向上により強力切
削が可能となる。
By using the blade according to the method of the present invention, it is possible to easily manufacture, for example, a long end mill with a strong helix and a tapered die-sinking end mill with a seamless single blade, which could not be manufactured in the past, which brings benefits to the machining industry. The blade is very large, and cutters that are grafted with twisted blades, which were conventionally impossible to perform strong cutting due to the poor precision of the twisted surface, can now be cut with strong force by improving the precision between the back surface of the blade and the mounting surface.

なお、超硬合金等の放電加工による表面の欠陥
(例へば微少クラツク等)の発生も考えられるが、
ブレードを工具シヤンクに取付後外周、すくい面
等を切削加工するのが一般的でこの工程により容
易に除去され、実害を及ぼすことは皆無である。
Furthermore, surface defects (for example, minute cracks, etc.) may occur due to electrical discharge machining of cemented carbide, etc.
After attaching the blade to the tool shank, it is common to cut the outer periphery, rake face, etc., and it is easily removed through this process, causing no actual damage.

なお上記具体例ではブレード切削手段としてワ
イヤカツト放電加工機を使用した場合について説
明したが、これ以外に電子ビーム加工又はレーザ
ー加工を使つても同様の効果が得られることは当
業者において容易に推考出来よう。
Although the above specific example describes the case where a wire cut electric discharge machine is used as the blade cutting means, those skilled in the art can easily imagine that the same effect can be obtained by using electron beam machining or laser machining in addition to this. Good morning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を具体化する実施例を示
す概略図、第2図は本発明の方法により製造した
ブレードをロー付けしたエンドミルの側面図、第
2A図は第2図の正面概略図、第3図は第2図の
ブレードのみを示した側面図、第3A図は第3図
の正面概略図、第4図は本発明の方法で加工した
工具機材の端面図、第5図は第4図の展開図であ
る。 1……放電加工機のテーブル、2……放電加工
ワイヤ、3……横軸回転ヘツド、4……工具機
材、4′……ブレード、5……工具機材支持軸、
6……駆動モータ、β……扇形角。
Fig. 1 is a schematic diagram showing an embodiment embodying the method of the present invention, Fig. 2 is a side view of an end mill to which a blade manufactured by the method of the present invention is brazed, and Fig. 2A is a schematic front view of Fig. 2. Figure 3 is a side view showing only the blade in Figure 2, Figure 3A is a schematic front view of Figure 3, Figure 4 is an end view of the tool machined by the method of the present invention, and Figure 5. is a developed view of FIG. DESCRIPTION OF SYMBOLS 1... table of electrical discharge machine, 2... electrical discharge machining wire, 3... horizontal axis rotating head, 4... tool equipment, 4'... blade, 5... tool equipment support shaft,
6...Drive motor, β...Sector angle.

Claims (1)

【特許請求の範囲】 1 工具機材からねじれブレードを製造する方法
であつて、ワイヤカツト放電加工機のテーブル上
に加工ワイヤに対し直角な方向に軸心を有する横
軸回転ヘツドを設けること、該横軸回転ヘツドの
軸心上に所要の形状を有する工具用材料から成る
中空工具機材を取付けること、該中空工具機材の
軸心を通る該機材の端面位置に加工ワイヤを位置
づけること、加工ワイヤと工具機材とを該工具機
材の軸心方向へ相対的に移動させること、この移
動に応じて前記横軸回転ヘツドに所要の回転角を
与えながらねじれブレードの一方の面を創成する
こと、創成終了位置から逆方向のねじ運動を行う
ことにより加工ワイヤを端面位置まで戻すこと、
加工ワイヤと工具機材の軸心とを該軸心に直角を
なす面内において所要の寸法だけ移動すること、
その位置から加工ワイヤと工具機材とを工具機材
の軸心と平行に工具機材の軸心方向へ相対的に移
動させること、この移動に応じて前記横軸回転ヘ
ツドに所要の回転角を与えながらねじれブレード
のもう一方の面を創成すること、工具機材からね
じれブレードを切落とすこと、の諸工程から成る
ねじれブレードの製造方法。 2 工具機材が所要の内径及び外径を有する中空
円筒形状をなしている特許請求の範囲第1項記載
の方法。 3 工具機材が所要の内径及び外径を有する中空
円錐形状をなしている特許請求の範囲第1項記載
の方法。
[Scope of Claims] 1. A method for manufacturing a twisted blade from tool equipment, comprising: providing a horizontal rotating head having an axis perpendicular to a machining wire on a table of a wire-cut electrical discharge machine; Installing a hollow tool made of a tool material having a desired shape on the axis of a rotating head; Positioning a machining wire at an end face position of the tool passing through the axis of the hollow tool; Processing wire and tool moving the tool and the tool relative to each other in the axial direction of the tool, creating one surface of the twisted blade while giving a required rotation angle to the horizontal rotating head in response to this movement, and creating a creation end position. returning the processed wire to the end face position by performing a screw movement in the opposite direction from
moving the machining wire and the axis of the tool equipment by a required dimension in a plane perpendicular to the axis;
relatively moving the processing wire and the tool equipment from that position in parallel with the axis of the tool equipment in the axial direction of the tool equipment, while giving the required rotation angle to the horizontal axis rotation head in accordance with this movement; A method for manufacturing a twisted blade comprising the steps of creating the other side of the twisted blade and cutting off the twisted blade from the tool equipment. 2. The method according to claim 1, wherein the tool equipment has a hollow cylindrical shape with a required inner diameter and outer diameter. 3. The method according to claim 1, wherein the tool equipment has a hollow conical shape with a required inner diameter and outer diameter.
JP10794181A 1981-07-10 1981-07-10 Manufacture of heavy twist super hard blade Granted JPS5810423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10794181A JPS5810423A (en) 1981-07-10 1981-07-10 Manufacture of heavy twist super hard blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10794181A JPS5810423A (en) 1981-07-10 1981-07-10 Manufacture of heavy twist super hard blade

Publications (2)

Publication Number Publication Date
JPS5810423A JPS5810423A (en) 1983-01-21
JPH0155930B2 true JPH0155930B2 (en) 1989-11-28

Family

ID=14471923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10794181A Granted JPS5810423A (en) 1981-07-10 1981-07-10 Manufacture of heavy twist super hard blade

Country Status (1)

Country Link
JP (1) JPS5810423A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659605A5 (en) * 1984-09-11 1987-02-13 Charmilles Technologies ELECTROEROSION MACHINE FOR WIRE SPINNING AND Sinking.
JPS6420912A (en) * 1987-07-13 1989-01-24 Atsuo Unosawa Milling tool
JPH0297524U (en) * 1988-08-31 1990-08-03
JP2556393B2 (en) * 1990-02-07 1996-11-20 ジーエヌツール株式会社 Cutting tool having twisted blade and manufacturing method thereof
JP2828423B2 (en) * 1996-04-02 1998-11-25 株式会社牧野フライス製作所 Forming tool processing device by numerical control
JP2828424B2 (en) * 1996-04-02 1998-11-25 株式会社牧野フライス製作所 Machining method of forming tool by numerical control
GB0304321D0 (en) * 2003-02-26 2003-04-02 Bladon Jets Ltd Fans and turbines
CH705611A1 (en) * 2011-09-29 2013-04-15 Renaud Rodrique EDM machine and method.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548529A (en) * 1978-10-04 1980-04-07 Inoue Japax Res Inc Screw type wirecut electric spark machine
JPS57211422A (en) * 1981-06-16 1982-12-25 Sodeitsuku:Kk Wire cut discharge machining process and equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548529A (en) * 1978-10-04 1980-04-07 Inoue Japax Res Inc Screw type wirecut electric spark machine
JPS57211422A (en) * 1981-06-16 1982-12-25 Sodeitsuku:Kk Wire cut discharge machining process and equipment

Also Published As

Publication number Publication date
JPS5810423A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
KR101848402B1 (en) Fabricating method of material
JP2000263309A (en) Milling method
EP2516089B1 (en) Method for plunge milling workpiece
WO2004089569A1 (en) Device and method for processing screw rotor, and cutting tool
US11890687B2 (en) Milling tool and workpiece machining method
JPWO2005092548A1 (en) Cutting method and apparatus, and rib electrode for electric discharge machining
JPH0155930B2 (en)
JP5021883B2 (en) Method and apparatus for manufacturing a cutting tool having a plurality of margins
JP5021882B2 (en) Method and apparatus for manufacturing a cutting tool having a groove
JPH0616964B2 (en) How to make a coil
JPH0526604B2 (en)
JPS61197116A (en) Strong helical blade and strong helical tooth cutting tool
JP4183058B2 (en) Blade cutting method
JP3487773B2 (en) Trochoid tools
CN1013938B (en) Method and automatic machine for machining coiled stock
JPS5810417A (en) Twist blade and twist edge cutter
JPH11347823A (en) Cutting method for metal mold
JPH09290316A (en) Cutter for poking
JPH07164231A (en) Machining method for scroll volute
JPS63110364U (en)
JPH0310707A (en) Torsion chip of sintered hard body
JP2602377Y2 (en) Boring tool
JPH03169B2 (en)
JP2723158B2 (en) Processing method of toroidal surface
JPS61197102A (en) Manufacture of object having fine groove