JPH0155916B2 - - Google Patents

Info

Publication number
JPH0155916B2
JPH0155916B2 JP6294185A JP6294185A JPH0155916B2 JP H0155916 B2 JPH0155916 B2 JP H0155916B2 JP 6294185 A JP6294185 A JP 6294185A JP 6294185 A JP6294185 A JP 6294185A JP H0155916 B2 JPH0155916 B2 JP H0155916B2
Authority
JP
Japan
Prior art keywords
immobilization carrier
diameter
dimensional
bacteria
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6294185A
Other languages
Japanese (ja)
Other versions
JPS61220790A (en
Inventor
Shigeru Yoshino
Yasutoshi Shimizu
Isao Miura
Nozomi Nawata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP60062941A priority Critical patent/JPS61220790A/en
Publication of JPS61220790A publication Critical patent/JPS61220790A/en
Publication of JPH0155916B2 publication Critical patent/JPH0155916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は廃水処理装置内の微生物、即ち嫌気性
菌を固定化する固定化担体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an immobilization carrier for immobilizing microorganisms, ie, anaerobic bacteria, in a wastewater treatment device.

(従来の技術及び発明が解決しようとする問題
点) 嫌気性菌の固定化担体は、シヨツクロードやPH
の変化に対して安定である。飢餓への抵抗性が強
い。低濃度廃水でwash outが防止できる。等の
利点を有する。
(Problems to be solved by the prior art and the invention) The immobilization carrier for anaerobic bacteria is
It is stable against changes in . Strong resistance to starvation. Wash out can be prevented with low concentration wastewater. It has the following advantages.

ところで、従来、此種の固定化担体は特公昭59
−41764号公報(第5図)で見られるように大量
の粒径濾材を粒径を均一に揃えて各濾床200を
形成し、各濾床200を積層して上層から下層に
行くに従つて濾床200を密にするもの(以下前
者)やハニカム等の多孔性固体で形成したもの
(以下後者)である。
By the way, conventionally, this type of immobilization carrier was
As seen in Publication No. 41764 (Figure 5), each filter bed 200 is formed by making a large amount of particle size filter medium uniform in particle size, and each filter bed 200 is stacked one on top of the other from the upper layer to the lower layer. The filter bed 200 can be made dense (hereinafter referred to as the former), or made of porous solid such as honeycomb (hereinafter referred to as the latter).

ところが、斯様な粒状物で濾床を形成した前者
は逆洗浄操作の際、沈降速度の小さな細かい粒状
物が上層に、沈降速度の大きな粗い粒状物は下層
に沈積する為、下向流濾過を行なうと上層の細か
い濾床が難分解性の懸濁固形物で塞がれ、濾過効
率が著しく低下する大きな問題を有する。
However, in the case of the former, in which a filter bed is formed of such granular materials, during backwashing operation, fine granules with a low sedimentation rate settle in the upper layer, and coarse granules with a high sedimentation rate in the lower layer, resulting in downward flow filtration. If this is done, the fine filter bed in the upper layer becomes clogged with hard-to-decompose suspended solids, resulting in a major problem in that the filtration efficiency is significantly reduced.

一方後者は固定化担体内において廃水の流れが
層流となつて速かに流れる為、微生物(菌)との
接触が少く発酵の進行が遅い問題を有する。
On the other hand, the latter has the problem that since the wastewater flows rapidly in a laminar flow within the immobilization carrier, there is little contact with microorganisms (bacteria) and the progress of fermentation is slow.

発明が解決しようとする問題点は、廃水中に含
まれる難分解性の懸濁物による濾床の閉塞防止と
菌体に触れる機会を増やし発酵の進行を効率よく
行わせることにより廃水処理を速かに行うことが
できる微生物固定化担体を供することにある。
The problems that the invention aims to solve are to speed up wastewater treatment by preventing blockage of the filter bed due to persistent suspended matter contained in wastewater, increasing opportunities for contact with bacterial cells, and allowing fermentation to progress efficiently. The object of the present invention is to provide a microorganism immobilization carrier that can be used to immobilize microorganisms.

(問題点を解決する為の手段) 上記問題点を解決する為に講じた技術的手段
は、2次元或いは3次元の連通状多孔を有する多
孔体で固定化担体本体を形成し、該連通状多孔径
を上層から下層に行くに従つて小さくしたことで
ある。
(Means for solving the problem) The technical means taken to solve the above problem is to form the immobilization carrier main body with a porous body having two-dimensional or three-dimensional continuous pores, and to The pore diameter is made smaller from the upper layer to the lower layer.

(作用) 本発明の技術的手段による作用は、難分解性の
固形分の粒径に応じた孔径の連通状多孔でその懸
濁固形物を捕捉させる。
(Function) The effect of the technical means of the present invention is to trap suspended solids in continuous pores whose pore diameter corresponds to the particle size of the hard-to-decompose solids.

(発明の効果) 本発明は以上のように2次元或いは3次元の連
通状多孔を有する多孔体で固定化担体本体を形成
し、該連通状多孔径を上層から下層に行くに従つ
て小さくしたので、下記の利点がある。
(Effects of the Invention) As described above, the present invention forms the immobilization carrier body with a porous body having two-dimensional or three-dimensional continuous pores, and the diameter of the continuous pores is made smaller from the upper layer to the lower layer. Therefore, it has the following advantages.

難分解性の懸濁固形物を、その粒径に応じた
孔径の連通状多孔で大きい順に順次捕捉できる
から、上層の濾床が目詰りを起すことがなく且
つ廃水の流れが乱流となるから微生物との接触
が長く発酵の進行が早い。故に廃水の処理効率
が高い。
Difficult to decompose suspended solids can be captured sequentially in descending order of size through continuous pores with pore sizes that correspond to the particle size, so the upper filter bed does not become clogged and the flow of wastewater becomes turbulent. Since the contact with microorganisms is long, fermentation progresses quickly. Therefore, wastewater treatment efficiency is high.

粒状物を用いていないから、逆洗浄操作時に
密な粒状物が上層部分に溜る心配なく、常時一
定した懸濁固形物の捕捉効率を維持できる。
Since no granules are used, there is no need to worry about dense granules accumulating in the upper layer during backwashing operations, and a constant suspended solids trapping efficiency can be maintained at all times.

(実施例) 本発明は多孔体1で形成した固定化担体本体A
内の2次元或いは3次元の連通状多孔2径を、上
層から下層に行くに従つて小さくしたものであ
る。
(Example) The present invention provides an immobilization carrier body A formed of a porous body 1.
The two diameters of two-dimensional or three-dimensional continuous pores within the layer are made smaller from the upper layer to the lower layer.

多孔体1は、線径0.1mm乃至数mmの線条3を2
次元或いは3次元の連通状多孔2を有するように
フオーム化したもので、所定の大きさに形作つて
固定化担体本体Aを構成する。
The porous body 1 has two wires 3 with a wire diameter of 0.1 mm to several mm.
It is formed into a form having dimensional or three-dimensional communicating pores 2, and is formed into a predetermined size to constitute the immobilization carrier main body A.

固定化担体本体Aは、数層に分割形成し、それ
を多段状に積層して構成するか或いは上記数層を
一体成形することによつて構成する。
The immobilization carrier main body A is formed by dividing into several layers and stacking them in a multi-tiered manner, or by integrally molding the above-mentioned several layers.

固定化担体本体Aを形作る線条3はスポンジ細
線、プラスチツク細線等の有機細線、又はアルミ
ナ、コージエライト、ムライト、陶磁器等の無機
細線である。
The filaments 3 forming the immobilization carrier main body A are organic fine wires such as sponge fine wires and plastic fine wires, or inorganic fine wires such as alumina, cordierite, mullite, and ceramic wires.

連通状多孔2は、固定化担体本体A内の通過す
る流路であり、上層から下層に行くに従つて数
1000μmから数μmの範囲で徐々に漸減するよう
に開孔する。
The communicating pores 2 are channels through which the immobilization carrier main body A passes, and the number increases from the upper layer to the lower layer.
Open the holes so that they gradually decrease in size from 1000 μm to several μm.

而して、斯る本発明固定化担体は、上層部分か
ら開孔径に応じた難分解性の懸濁物を順次大きい
順に捕捉すると共に有機成分を、菌の働きで発酵
させる。この時、生成ガスの上昇によつて捕捉さ
れた懸濁固形物は上記連通状多孔2内において揺
動するからその連通状多孔2内の閉塞は緩和され
る。
Thus, the immobilization carrier of the present invention traps recalcitrant suspended matter in order of size according to the opening diameter from the upper layer, and ferments the organic components by the action of bacteria. At this time, the suspended solids captured by the rise of the generated gas oscillate within the communicating pores 2, so that the blockage in the communicating pores 2 is alleviated.

尚、発酵採取したメタンガスや不活性ガスなど
を内部に流すか或いは液に脈動を起させて固形物
の揺動を促進し、閉塞をより一層防止するように
しても良い。
Incidentally, methane gas, inert gas, etc. collected by fermentation may be flowed into the interior, or the liquid may be pulsated to promote the shaking of the solids to further prevent clogging.

また、本発明固定化担体は図示するように担体
の下流側に2μmφ以下の微細孔を有する分離膜
4を載置して使用に供する。又この膜に加えて
10-2μm以下の微細孔を有する2次分離膜5を載
置して使用に供することもできる。
Further, the immobilized carrier of the present invention is used by placing a separation membrane 4 having micropores of 2 μm or less on the downstream side of the carrier, as shown in the figure. In addition to this membrane
A secondary separation membrane 5 having micropores of 10 -2 μm or less can also be mounted and used.

尚、図には平膜タイプの分離膜を記している
が、膜の形状およびその設置方法は図にこだわる
ものではなく、チユーブ状分離膜も使用可能であ
る。
Although the drawing shows a flat membrane type separation membrane, the shape of the membrane and its installation method are not limited to those shown in the drawing, and a tube-shaped separation membrane can also be used.

ちなみに、本発明固定化担体は、第2図に示す
ように末焼成の線状物を切断後焼成したり或いは
焼成後その線状物を切断して数層の短線状焼結体
100を作り、これに泥漿101で付着せしめる
と共に余分な泥漿101を排除した後これを所定
形状の製造型102内に個別に充填し、再度焼成
したりして成形し、また、有機細線で形成されて
いる場合には多段状に分割し、その数層ごとにキ
ヤステイングして成形する等所望の方法を用い
る。
Incidentally, as shown in FIG. 2, the immobilization carrier of the present invention can be produced by cutting a partially fired linear object and then firing it, or by cutting the linear object after firing to make several layers of short linear sintered bodies 100. After adhering to this with slurry 101 and removing the excess slurry 101, it is individually filled into a manufacturing mold 102 having a predetermined shape, and then baked and molded again. In such a case, a desired method such as dividing into multiple stages and casting and molding each several layers is used.

また、第3図に示すように固定化担体本体Aを
形作るその線条3に、100μm以下径の通孔6を
多数開孔して菌付着面積を拡大させても良い。
Further, as shown in FIG. 3, a large number of through holes 6 having a diameter of 100 μm or less may be opened in the filament 3 forming the immobilization carrier main body A to enlarge the bacterial adhesion area.

通孔6は菌付着面積を拡大させて菌を高濃度に
保持する為のもので、100μm乃至1μmの孔径で
線条3の全域に渉り、多数開孔する。
The through holes 6 are for expanding the bacteria adhesion area and retaining the bacteria at a high concentration, and are formed in large numbers over the entire area of the filament 3 with a hole diameter of 100 μm to 1 μm.

尚、通孔6径は菌径が1μmであるから、その
通孔6内に菌が付着できる程度として1μmφを
最低限とし、線条3の強度が著しく低下するのを
さける為、最大孔径として100μmとするが、基
質拡散の目的の為に、1μmφ以下の通孔6を設
けて線条3に付着した微生物(菌)の活性化を図
るように配慮しても良い。
In addition, since the diameter of the through hole 6 is 1 μm for bacteria, the minimum hole diameter is 1 μm to allow bacteria to adhere to the inside of the through hole 6, and the maximum hole diameter is set to avoid a significant decrease in the strength of the filament 3. Although the diameter is 100 μm, for the purpose of substrate diffusion, consideration may be given to providing a through hole 6 with a diameter of 1 μm or less to activate microorganisms (bacteria) attached to the filament 3.

ちなみに、この実施例の場合、直径0.5mmの稠
密なアルミナ質の線条3を用いて空隙率76%の多
孔体1を形成して、これを固定化担体本体Aとし
て、多孔度が25%となるように、平均10μmφ径
の通孔6を開孔した実験によると25000m2/m3
で菌付着面積が拡大した。これによると、通孔6
を開孔しなかつた同固定化担体本体A(菌付着表
面積:1900m2/m3)に比べて約14倍の付着表面積
を得ることが立証される。
Incidentally, in the case of this example, a porous body 1 with a porosity of 76% is formed using dense alumina filaments 3 with a diameter of 0.5 mm, and this is used as the immobilization carrier body A, with a porosity of 25%. According to an experiment in which through-holes 6 with an average diameter of 10 μmφ were opened, the bacterial adhesion area expanded to 25000 m 2 /m 3 . According to this, through hole 6
It is verified that the adhesion surface area is approximately 14 times larger than that of the same immobilization carrier body A without openings (bacteria adhesion surface area: 1900 m 2 /m 3 ).

尚、この実験例は一例であり、線条3径、空隙
率、通孔6の孔径、その通孔6の多孔は上記実験
例の数値には限定されないが、多孔度は50%を越
えると固定化担体本体Aの強度が著しく低下する
から好ましくなく、それ以下ならば何%でも良
い。この実施例の場合、担体Aを形成するのに用
いた線条3の直径をR1φ、これを用いた多孔体の
空隙率をx(100x%)、線条3の内部に開孔した
通孔6の孔径をR2φ、これの多孔度をy(100y%)
とすると 菌付着表面積=4(1−x){1−y/R1+y/R2} となる。
This experimental example is just an example, and the diameter of the filament 3, the porosity, the diameter of the through hole 6, and the porosity of the through hole 6 are not limited to the values in the experimental example above, but if the porosity exceeds 50%, This is not preferable because the strength of the immobilization carrier main body A is significantly reduced, and any percentage may be used as long as it is less than that. In the case of this example, the diameter of the filament 3 used to form carrier A was R 1 φ, the porosity of the porous body using this was x (100x%), and the pores were opened inside the filament 3. The diameter of the through hole 6 is R 2 φ, and its porosity is y (100y%)
Then, the bacterial adhesion surface area=4(1-x) {1-y/R 1 +y/R 2 }.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明微生物固定化担体の実施例を示
し、第1図は正面図で一部拡大して示す、第2図
は製造工程図、第3図は他の実施例の正面図で一
部拡大して示す、第4図は使用状態図、第5図は
従来例の縦断面図である。 尚図中、A:固定化担体本体、1:多孔体、
2:連通状多孔、3:線条。
The drawings show an example of the microorganism immobilization carrier of the present invention, FIG. 1 is a front view with a partially enlarged view, FIG. 2 is a manufacturing process diagram, and FIG. 3 is a front view of another example with a partially enlarged view. FIG. 4 is an enlarged view of the device in use, and FIG. 5 is a vertical cross-sectional view of a conventional example. In the figure, A: immobilization carrier body, 1: porous body,
2: continuous pores, 3: striations.

Claims (1)

【特許請求の範囲】[Claims] 1 2次元或いは3次元の連通状多孔を有する多
孔体で固定化担体本体を形成し、該連通状多孔径
を上層から下層に行くに従つて小さくしたことを
特徴とする廃水処理装置用の微生物固定化担体。
1. A microorganism for wastewater treatment equipment, characterized in that the immobilization carrier body is formed of a porous body having two-dimensional or three-dimensional continuous pores, and the diameter of the continuous pores decreases from the upper layer to the lower layer. Immobilization carrier.
JP60062941A 1985-03-26 1985-03-26 Microbe-immobilizing carrier for waste water treating apparatus Granted JPS61220790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062941A JPS61220790A (en) 1985-03-26 1985-03-26 Microbe-immobilizing carrier for waste water treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062941A JPS61220790A (en) 1985-03-26 1985-03-26 Microbe-immobilizing carrier for waste water treating apparatus

Publications (2)

Publication Number Publication Date
JPS61220790A JPS61220790A (en) 1986-10-01
JPH0155916B2 true JPH0155916B2 (en) 1989-11-28

Family

ID=13214828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062941A Granted JPS61220790A (en) 1985-03-26 1985-03-26 Microbe-immobilizing carrier for waste water treating apparatus

Country Status (1)

Country Link
JP (1) JPS61220790A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341488A (en) * 2017-12-20 2018-07-31 中山市和智电子科技有限公司 A kind of biological suspended packing for administering black and odorous water

Also Published As

Publication number Publication date
JPS61220790A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
CN101043945B (en) Method for coating a wall flow filter with a coating composition
CN101132991B (en) Biofilter units and water treatment facilities with using the same biofilter units
WO2008143792A1 (en) Formation of catalytic regions within porous structures using supercritical phase processing
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
JP6084500B2 (en) Exhaust gas purification filter and manufacturing method of exhaust gas purification filter
US6296794B1 (en) Pressed porous filter bodies
JPH0155916B2 (en)
EP2530056A1 (en) Apparatus and method for filtering sludge
GB2223690A (en) Filter tubes
EP1607129B1 (en) Ceramic filter
JP3435103B2 (en) Dust collection honeycomb filter and manufacturing method thereof
JPH0155917B2 (en)
JP2000342920A (en) Ceramic filter
EP1604718A1 (en) Ceramic filter
JPH02191594A (en) Sewage treating device
JPH11319865A (en) Biological filter facility
JP3504710B2 (en) Ceramic filter and method of manufacturing the same
JPH07251016A (en) Filter membrane with asymmetric structure and filter apparatus wherein the filter membrane is used
JP2009022911A (en) Dredging wastewater purification system
JPH0796115A (en) Three-dimensional filter and its production
JPH05208104A (en) Apparatus for removing suspensible solid
JPH0349678A (en) Carrier for bio-reactor
JPH047005A (en) Water purification device
JP3071218B2 (en) Ceramic filter
JPH01210099A (en) Treatment of organic waste water