JP3435103B2 - Dust collection honeycomb filter and manufacturing method thereof - Google Patents

Dust collection honeycomb filter and manufacturing method thereof

Info

Publication number
JP3435103B2
JP3435103B2 JP26004099A JP26004099A JP3435103B2 JP 3435103 B2 JP3435103 B2 JP 3435103B2 JP 26004099 A JP26004099 A JP 26004099A JP 26004099 A JP26004099 A JP 26004099A JP 3435103 B2 JP3435103 B2 JP 3435103B2
Authority
JP
Japan
Prior art keywords
porous
base material
particle size
slurry
aggregate particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26004099A
Other languages
Japanese (ja)
Other versions
JP2001079321A (en
Inventor
淳司 左近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26004099A priority Critical patent/JP3435103B2/en
Publication of JP2001079321A publication Critical patent/JP2001079321A/en
Application granted granted Critical
Publication of JP3435103B2 publication Critical patent/JP3435103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、被処理ガス中の
ダスト等を除去するために使用される集塵用ハニカムフ
ィルタ及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a honeycomb filter for dust collection used for removing dust and the like in a gas to be treated and a method for manufacturing the same.

【0002】[0002]

【従来の技術】 ハニカムフィルタは、被処理ガス中の
ダスト等を除去するための集塵用フィルタとして、化
学、電力、鉄鋼、自動車関連産業等、広範な分野におい
て、高温ガスから製品を回収したり、或いは排ガスを浄
化するために使用されている。
2. Description of the Related Art A honeycomb filter is a dust collecting filter for removing dust and the like in a gas to be treated, and recovers products from high temperature gas in a wide range of fields such as chemical, electric power, steel and automobile related industries. Alternatively, it is used to purify exhaust gas.

【0003】 一般に、ハニカムフィルタは、図2に示
すようにハニカム状の多孔質体に多数のセル23が形成
され、当該多数のセル23の入口側Bと出口側Cの端部
とが1セル毎に交互に封止された構造を有している。こ
のようなフィルタ21によれば、ダスト等を含む被処理
ガスを入口側Bからセル23内に送り込むことにより、
多孔質体の気孔径より大きいダスト等はセル壁22の気
孔内に捕捉されるため、セル壁22を透過するガス成分
のみを出口側Cから回収することが可能となる。
Generally, in a honeycomb filter, as shown in FIG. 2, a large number of cells 23 are formed in a honeycomb-shaped porous body, and the ends of the large number of cells 23 on the inlet side B and the outlet side C form one cell. Each of them has a structure in which they are alternately sealed. According to such a filter 21, by feeding the gas to be treated containing dust and the like into the cell 23 from the inlet side B,
Since dust and the like larger than the pore diameter of the porous body are trapped in the pores of the cell wall 22, only the gas component that permeates the cell wall 22 can be recovered from the outlet side C.

【0004】 ハニカムフィルタにおいては、ダスト等
の捕捉効率が高いことに加え、被処理ガスがフィルタを
透過する際の圧力損失を低下させ処理能力を向上させる
必要があるため、ハニカム状の多孔質基材の表面に、当
該多孔質基材と比較して気孔径が小さい多孔質膜を形成
した構造が採用されている。このような構造とすること
により、ダスト等の捕捉は専ら多孔質膜で行われるた
め、多孔質膜の気孔径を適正に設計することによりダス
ト等の捕捉効率を向上させることができ、また、多孔質
基材の気孔径を大きくすることによりフィルタ全体の圧
力損失を低下させることも可能となるのである。
In the honeycomb filter, in addition to high efficiency of trapping dust and the like, it is necessary to reduce the pressure loss when the gas to be processed permeates the filter to improve the processing capacity. A structure in which a porous membrane having a smaller pore size than that of the porous substrate is formed on the surface of the material is adopted. With such a structure, since the trapping of dust and the like is performed exclusively by the porous membrane, the trapping efficiency of dust and the like can be improved by appropriately designing the pore diameter of the porous membrane, and By increasing the pore diameter of the porous substrate, it is possible to reduce the pressure loss of the entire filter.

【0005】 上記構造のハニカムフィルタは、例えば
気孔を液体で飽和させた多孔質基材の一端側を減圧し、
他端側より骨材粒子を含むスラリーを供給する動加圧真
空法(特開昭61-238315号公報)、セラミック粉末を気
流中で多孔質基材の表面に付着させた後、水分を付与し
て吸着させる気流コート法(特開平10-249124号公
報)、骨材粒子を含むスラリーを多孔質基材の表面に接
触・保持した後、排出するスラリー注入・排出法、多孔
質基材を骨材粒子を含むスラリーに浸漬するディッピン
グ法、骨材粒子を含むスラリーを多孔質基材の各セルに
供給し、スラリー中の水分を多孔質基材を透過させて除
去するスラリー直濾過法等により、ハニカム状の多孔質
基材の表面に成膜を行い、次いで焼成することにより製
造することが可能である。
The honeycomb filter having the above structure has, for example, decompressed one end side of a porous substrate whose pores are saturated with a liquid,
Dynamic pressure vacuum method of supplying a slurry containing aggregate particles from the other end side (Japanese Patent Laid-Open No. 61-238315), applying ceramic powder to the surface of a porous substrate in an air stream, and then applying water Air flow coating method (Japanese Patent Laid-Open No. 10-249124) in which the particles are adsorbed by the method, a slurry injecting / exhausting method of contacting and holding a slurry containing aggregate particles on the surface of the porous substrate, and then discharging A dipping method of immersing in a slurry containing aggregate particles, a slurry direct filtration method of supplying the slurry containing aggregate particles to each cell of a porous substrate, and removing the water in the slurry by permeating the porous substrate. Thus, it is possible to manufacture by forming a film on the surface of a honeycomb-shaped porous substrate and then firing it.

【0006】[0006]

【発明が解決しようとする課題】 しかしながら、上記
の製造方法は製造上の、或いは製造されるフィルタの品
質面において問題があり、いずれも充分なものとは言え
なかった。例えば動加圧真空法は、ハニカム構造のよう
な複雑な形状を有する基材に適用する場合には複雑な装
置が必要となり、生産効率、製造コストの点において問
題があった。また、気流コート法はセラミック粒子が凝
集した状態で基材に付着するため、多孔質膜の平均気孔
径が大きくなり、高い捕捉効率を実現することが困難で
あるという不具合があった。
However, the above-mentioned manufacturing methods have problems in manufacturing or in the quality of the manufactured filter, and none of them can be said to be sufficient. For example, the dynamic pressure vacuum method requires a complicated device when applied to a base material having a complicated shape such as a honeycomb structure, and has problems in terms of production efficiency and manufacturing cost. Further, in the air flow coating method, since the ceramic particles adhere to the base material in a state of agglomerated, there is a problem that it is difficult to realize high trapping efficiency because the average pore diameter of the porous membrane becomes large.

【0007】 一方、スラリー注入・排出法やディッピ
ング法は、多孔質膜の膜厚の制御が困難であることに起
因して、フィルタ間で捕捉効率や圧力損失の程度にばら
つきが生じるという問題があった。また、スラリー直濾
過法では、平均粒子径が小さい骨材粒子(具体的には、
基材の平均気孔径の2/3未満である骨材粒子)から調
製したスラリーを成膜しようとすると、骨材粒子が基材
の気孔内に侵入するため、基材と多孔質膜との間に緻密
な構造を有する両者の混合層が形成され、フィルタの圧
力損失が大きくなるという問題があった。
On the other hand, the slurry injecting / discharging method and the dipping method have a problem that the trapping efficiency and the degree of pressure loss vary among filters due to the difficulty of controlling the thickness of the porous film. there were. Further, in the slurry direct filtration method, aggregate particles having a small average particle size (specifically,
When a slurry prepared from aggregate particles having a diameter of less than 2/3 of the average pore diameter of the base material) is to be formed into a film, the aggregate particles enter the pores of the base material, so that the base material and the porous film are separated from each other. There is a problem that a mixed layer of the both having a dense structure is formed between them, and the pressure loss of the filter increases.

【0008】 本発明は上述のような従来技術の問題点
に鑑みてなされたものであって、その目的とするところ
は、捕捉効率が高く、圧力損失が小さいハニカムフィル
タを、簡単な装置にて容易に製造でき、更には多数のフ
ィルタを均一な品質で製造することが可能なハニカムフ
ィルタの製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and an object of the present invention is to provide a honeycomb filter having a high trapping efficiency and a small pressure loss with a simple device. It is an object of the present invention to provide a method for manufacturing a honeycomb filter which can be easily manufactured and can manufacture a large number of filters with uniform quality.

【0009】[0009]

【課題を解決するための手段】 本発明者らが鋭意検討
した結果、スラリー直濾過法において、平均粒子径及び
粒度分布が所定の範囲内にある骨材粒子から調製したス
ラリーを使用して成膜を行うことにより上記従来技術の
問題点を解決できることを見出して本発明を完成した。
Means for Solving the Problems As a result of intensive studies by the present inventors, the slurry direct filtration method was performed using a slurry prepared from aggregate particles having an average particle size and a particle size distribution within a predetermined range. The present invention has been completed by finding that the problems of the above-mentioned prior art can be solved by forming a film.

【0010】 即ち、本発明によれば、多数のセルの入
口側と出口側の端部とが1セル毎に交互に封止された
ニカム状の多孔質基材の表面に、当該多孔質基材と比較
して気孔径が小さい多孔質膜が少なくとも1層、1セル
毎に交互に形成された、集塵用ハニカムフィルタの製造
方法であって、前記多孔質基材のセル内部に、50%粒
子径(D50:μm)が前記多孔質基材の平均気孔径
(P:μm)の0.74倍以上、1倍以下であって、か
つ、粒度分布が下記式(1)の範囲内にある骨材粒子か
ら調製したスラリーを供給し、当該スラリー中の水分を
前記多孔質基材の気孔を透過させて除去することにより
成膜し、次いで焼成することを特徴とする集塵用ハニカ
ムフィルタの製造方法が提供される。 D50/(D50−D10)≧1.5 … (1) (但し、D50:50%粒子径(μm)、D10:10%粒
子径(μm))
That is, according to the present invention, a large number of cells
On the surface of the honeycomb-shaped porous base material in which the mouth side and the end portion on the outlet side are alternately sealed every cell, the pores having a smaller pore diameter than that of the porous base material are formed. At least 1 layer of membrane , 1 cell
A method for manufacturing a honeycomb filter for dust collection, which is alternately formed for each of the cells, wherein the 50% particle diameter (D 50 : μm) is the average pore diameter of the porous base material inside the cells of the porous base material. (P: μm) 0.74 times or more and 1 time or less, and a slurry prepared from aggregate particles having a particle size distribution within the range of the following formula (1) is supplied, and the water content in the slurry is There is provided a method for manufacturing a honeycomb filter for dust collection, which comprises forming a film by passing through the pores of the porous substrate to remove the film, and then firing. D 50 / (D 50 −D 10 ) ≧ 1.5 (1) (however, D 50 : 50% particle diameter (μm), D 10 : 10% particle diameter (μm))

【0011】 また、本発明によれば、多数のセルの入
口側と出口側の端部とが1セル毎に交互に封止された
ニカム状の多孔質基材の表面に、当該多孔質基材と比較
して気孔径が小さい多孔質膜が少なくとも1層、1セル
毎に交互に形成された、集塵用ハニカムフィルタであっ
て、前記多孔質膜のうち1層目の多孔質膜が、50%粒
子径(D50:μm)が前記多孔質基材の平均気孔径
(P:μm)の0.74倍以上、1倍以下であって、粒
度分布が下記式(1)の範囲内にある骨材粒子により構
成され、かつ、平均膜厚が前記50%粒子径の3倍以上
であることを特徴とする集塵用ハニカムフィルタが提供
される。 D50/(D50−D10)≧1.5 … (1) (但し、D50:50%粒子径(μm)、D10:10%粒
子径(μm))
Further, according to the present invention, a large number of cells
On the surface of the honeycomb-shaped porous base material in which the mouth side and the end portion on the outlet side are alternately sealed every cell, the pores having a smaller pore diameter than that of the porous base material are formed. At least 1 layer of membrane , 1 cell
A honeycomb filter for collecting dust, which is alternately formed for each of the porous membranes, wherein the first porous membrane of the porous membranes has an average 50% particle diameter (D 50 : μm) of the porous base material. It is composed of aggregate particles having a pore size (P: μm) of 0.74 times or more and 1 time or less and a particle size distribution within the range of the following formula (1), and the average film thickness is 50% or more. Provided is a honeycomb filter for dust collection, which has a particle diameter of 3 times or more. D 50 / (D 50 −D 10 ) ≧ 1.5 (1) (however, D 50 : 50% particle diameter (μm), D 10 : 10% particle diameter (μm))

【0012】[0012]

【発明の実施の形態】 本発明の集塵用ハニカムフィル
タの製造方法は、スラリー直濾過法において、所定の平
均粒子径及び粒度分布を有する骨材粒子から調製したス
ラリーを使用して成膜を行うことを特徴とする。このよ
うな方法によれば、捕捉効率が高く、圧力損失が小さい
ハニカムフィルタを、簡単な装置にて容易に製造でき、
更には多数のフィルタを均一な品質で製造することが可
能となる。以下、本発明の製造方法について更に詳細に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for manufacturing a honeycomb filter for dust collection of the present invention is a slurry direct filtration method in which a film is formed using a slurry prepared from aggregate particles having a predetermined average particle size and particle size distribution. It is characterized by performing. According to such a method, a trapping efficiency is high, and a honeycomb filter with a small pressure loss can be easily manufactured with a simple apparatus,
Furthermore, it becomes possible to manufacture a large number of filters with uniform quality. Hereinafter, the manufacturing method of the present invention will be described in more detail.

【0013】 本発明の製造方法は、多孔質基材(以
下、単に「基材」という。)の表面に多孔質膜を形成す
るためのスラリー成膜方法として、基材のセル内部に、
骨材粒子を含むスラリーを供給し、当該スラリー中の水
分を基材の気孔を透過させて除去することにより成膜す
るスラリー直濾過法を採用する。スラリー直濾過法はハ
ニカム状のような複雑形状の基材に対しても図1に示す
ような簡単な装置で実施できるため、生産効率、製造コ
ストの面で有利であることに加え、多孔質膜の膜厚の制
御が容易であり、多数のフィルタを均一な品質で製造す
ることが可能である点においても他の方法に比して優れ
ているからである。
The manufacturing method of the present invention is a slurry film-forming method for forming a porous film on the surface of a porous substrate (hereinafter, simply referred to as “substrate”).
A slurry direct filtration method is adopted in which a slurry containing aggregate particles is supplied and water in the slurry is removed by permeating through pores of a base material to form a film. Since the direct slurry filtration method can be carried out on a substrate having a complicated shape such as a honeycomb structure with a simple apparatus as shown in Fig. 1, in addition to being advantageous in terms of production efficiency and manufacturing cost, it is possible to obtain a porous structure. This is because it is superior to other methods in that the film thickness of the film can be easily controlled and a large number of filters can be manufactured with uniform quality.

【0014】 但し、従前のスラリー直濾過法において
は、平均粒子径の小さい骨材粒子から調製したスラリー
を成膜しようとすると、骨材粒子が基材の気孔内に侵入
して、基材と多孔質膜との間に緻密な構造を有する両者
の混合層が形成され、フィルタの圧力損失が大きくなる
という問題がある。そこで本発明の製造方法において
は、所定の平均粒子径及び粒度分布を有する骨材粒子か
ら調製したスラリーを使用して成膜を行うこととした。
However, in the conventional slurry direct filtration method, when an attempt is made to form a slurry prepared from aggregate particles having a small average particle diameter, the aggregate particles penetrate into the pores of the base material to form a base material. There is a problem that a mixed layer of the both having a dense structure is formed between the porous membrane and the pressure loss of the filter increases. Therefore, in the production method of the present invention, film formation is performed using a slurry prepared from aggregate particles having a predetermined average particle size and particle size distribution.

【0015】 まず、本発明の製造方法においては、ス
ラリーを調製する骨材粒子の平均粒子径、即ち50%粒
子径(D50:μm)が基材の平均気孔径(P:μm)の
0.74倍以上、1倍以下であることが必要である。
First, in the production method of the present invention, the average particle diameter of the aggregate particles for preparing the slurry, that is, the 50% particle diameter (D 50 : μm) is the average pore diameter (P: μm) of the base material.
It must be 0.74 times or more and 1 time or less.

【0016】 骨材粒子の50%粒子径を基材の平均気
孔径の0.74倍以上とすることにより、骨材粒子は基
材の気孔内に侵入し難くなるため、従来のスラリー直濾
過法のように、基材と多孔質膜との間に緻密な構造を有
する両者の混合層が形成され、フィルタの圧力損失が大
きくなることを防止することができる。一方、骨材粒子
の50%粒子径を基材の平均気孔径の1倍以下としてい
るため、基材表面に形成される多孔質膜の気孔径は必要
以上に大きくならず、ダスト等の捕捉効率が低下するこ
とはない。
When 50% of the aggregate particles have a particle size of 0.74 times or more of the average pore diameter of the base material, the aggregate particles are less likely to enter the pores of the base material. As in the method, it is possible to prevent the pressure loss of the filter from becoming large by forming a mixed layer of the both having a dense structure between the substrate and the porous membrane. On the other hand, since 50% of the aggregate particles have a particle size of 1 time or less of the average pore size of the base material, the pore size of the porous film formed on the surface of the base material does not become larger than necessary, and the dust and the like are trapped. There is no reduction in efficiency.

【0017】 更に、骨材粒子の50%粒子径が上記範
囲内にある場合には、スラリーの沈殿性と基材への粒子
の付着性とのバランスが良好となるため、多孔質膜の厚
さを一定にすることができ、フィルタ間で捕捉効率や圧
力損失の程度を均一化することができる点においても好
ましい。なお、フィルタの圧力損失とダスト等の捕捉効
率をより高いレベルで均衡させるためには骨材粒子の5
0%粒子径を、基材の平均気孔径の4/5倍以上、6/
7倍以下とすることが好ましい。
Furthermore, when the 50% particle size of the aggregate particles is within the above range, the balance between the sedimentation property of the slurry and the adhesion property of the particles to the base material becomes good, so that the thickness of the porous film is increased. This is also preferable in that the height can be made constant and the trapping efficiency and the degree of pressure loss can be made uniform among the filters. In order to balance the pressure loss of the filter and the trapping efficiency of dust at a higher level, it is necessary to use 5
0% particle size is 4/5 times or more of the average pore size of the substrate, 6 /
It is preferably 7 times or less.

【0018】 また、本発明の製造方法においては、ス
ラリーを調製する骨材粒子の50%粒子径を上記範囲内
とすることに加え、当該骨材粒子の粒度分布が所定の範
囲内にあることが必要である。具体的には、骨材粒子の
50%粒子径(D 50:μm)と10%粒子径(D10:μ
m)とが下記式(1)の関係を満たす必要がある。 D50/(D50−D10)≧1.5 … (1)
In the manufacturing method of the present invention,
50% particle size of aggregate particles for preparing rally is within the above range
In addition to the above, the particle size distribution of the aggregate particles is within a predetermined range.
It is necessary to be in the enclosure. Specifically, the aggregate particles
50% particle size (D 50: Μm) and 10% particle size (DTen: Μ
m) and m need to satisfy the relationship of the following formula (1). D50/ (D50-DTen) ≧ 1.5 (1)

【0019】 骨材粒子の50%粒子径のみならず粒度
分布をも規定したのは、たとえ50%粒子径が既述の範
囲内にあったとしても、粒度分布がブロードで微粒成分
を多く含む場合には、50%粒子径が基材の平均気孔径
の2/3未満である場合と同様に、フィルタの圧力損失
が大きくなるおそれがあるからである。本発明で指標と
しているD50/(D50−D10)の値は小さくなるほど粒
度分布がブロードであることを意味し、この値が1.5
未満となるとフィルタの圧力損失が大きくなり、フィル
タの使用上不具合を生ずる。なお、骨材粒子の粒度分布
が上記条件を満たしていない場合には水簸、サイクロ
ン、サイザー等の従来公知の分級処理を施して所定の粒
度分布に調整することが可能である。
Not only the 50% particle size of the aggregate particles but also the particle size distribution is defined, even if the 50% particle size is within the above-mentioned range, the particle size distribution is broad and contains many fine particle components. In this case, the pressure loss of the filter may increase, as in the case where the 50% particle size is less than 2/3 of the average pore size of the base material. The value of D 50 / which is an index in the present invention (D 50 -D 10) means that the particle size distribution as the smaller is broad, the value is 1.5
If it is less than this, the pressure loss of the filter becomes large, which causes a problem in using the filter. When the particle size distribution of the aggregate particles does not satisfy the above conditions, it is possible to perform a conventionally known classification process such as elutriation, cyclone, and sizer to adjust the particle size distribution to a predetermined value.

【0020】 本発明における50%粒子径及び10%
粒子径は、ストークスの液層沈降法を測定原理とし、X
線透過法により検出を行う、X線透過式粒度分布測定装
置(例えば、島津製作所製セディグラフ5000−02
形等)により測定した値である。X線透過式粒度分布測
定装置によれば、沈降した積算重量%に対応する粒子径
が粒度分布曲線により直接表示されるため、50%粒子
径及び10%粒子径を比較的簡便に測定できる。例え
ば、図3はX線透過式粒度分布測定装置により、分級処
理前の骨材粒子の粒度分布と、水簸により分級処理を行
った後の粒度分布を測定した粒度分布曲線であるが、分
級処理により10%粒子径が大きくなり(即ち、微粒成
分が減少し)粒度分布がシャープになっていることが確
認できる。
50% particle size and 10% in the present invention
The particle size is measured by the Stokes liquid-layer sedimentation method as the measurement principle.
X-ray transmission type particle size distribution measuring device (for example, CEDIGRAPH 5000-02 manufactured by Shimadzu Corporation) for detecting by a ray transmission method.
It is the value measured by the shape etc.). According to the X-ray transmission type particle size distribution measuring device, since the particle size corresponding to the accumulated weight% of sedimentation is directly displayed by the particle size distribution curve, the 50% particle size and the 10% particle size can be measured relatively easily. For example, FIG. 3 is a particle size distribution curve obtained by measuring the particle size distribution of aggregate particles before classification and the particle size distribution after classification with elutriation by an X-ray transmission type particle size distribution analyzer. It can be confirmed that the treatment increases the particle size by 10% and increases the particle size (that is, the fine particle component is reduced).

【0021】 本発明の製造方法においては、骨材粒子
の50%粒子径、粒度分布以外の条件については特に限
定されないが、スラリー中の骨材粒子の濃度は0.5重
量%以上、2.0重量%未満の範囲、更には0.8重量
%以上、1.5重量%の範囲であることが、スラリーの
沈殿性と基材への粒子の付着性とのバランスが良好とな
る点において好ましい。また、成膜に使用するスラリー
の体積は、多孔質膜を形成すべきセルの総容積の3倍未
満とするとセル内部で膜厚差を生じる不具合があり、6
倍を超えるとスラリーが多量になり作業が困難となるた
め、セルの総容積3倍以上、6倍以下であることが好ま
しい。
In the production method of the present invention, conditions other than the 50% particle size of the aggregate particles and the particle size distribution are not particularly limited, but the concentration of the aggregate particles in the slurry is 0.5% by weight or more, 2. It is in the range of less than 0% by weight, and more preferably in the range of 0.8% by weight or more and 1.5% by weight in order to obtain a good balance between the sedimentation property of the slurry and the adhesion property of the particles to the substrate. preferable. Further, if the volume of the slurry used for film formation is less than 3 times the total volume of the cell in which the porous film is to be formed, there is a problem that a film thickness difference occurs inside the cell.
If it exceeds 2 times, the amount of slurry becomes large and the work becomes difficult. Therefore, the total cell volume is preferably 3 times or more and 6 times or less.

【0022】 本発明の製造方法は、基材に1層目の多
孔質膜を形成する場合を想定したものであるが、2層目
以降の多孔質膜の形成も1層目の多孔質膜を焼成した
後、上記と同様の方法にて行うことが可能である。この
際にはn+1層目の成膜に使用するスラリーに含まれる
骨材粒子の50%粒子径をn層目の多孔質膜の平均気孔
径の0.74倍以上、1倍以下とし、当該骨材粒子の粒
度分布が下記式(1)の関係を満たしていることが好ま
しい。 D50/(D50−D10)≧1.5 … (1)
The production method of the present invention is based on the assumption that the first layer of the porous membrane is formed on the substrate, but the formation of the second and subsequent layers of the porous membrane is also the first layer of the porous membrane. After firing, it can be carried out in the same manner as above. At this time, the 50% particle diameter of the aggregate particles contained in the slurry used for forming the (n + 1) th layer is set to 0.74 times or more and 1 time or less than the average pore diameter of the nth layer porous membrane, It is preferable that the particle size distribution of the aggregate particles satisfies the relationship of the following formula (1). D 50 / (D 50 −D 10 ) ≧ 1.5 (1)

【0023】 本発明のフィルタは、ハニカム状の基材
の表面に、当該基材と比較して気孔径が小さい多孔質膜
が少なくとも1層形成されている。そして、基材の表面
に形成された多孔質膜のうち1層目の多孔質膜(即ち、
基材表面に直接接触する多孔質膜)を構成する骨材粒子
の50%粒子径(D50:μm)が基材の平均気孔径
(P:μm)の0.74倍以上、1倍以下であって、か
つ、粒度分布が下記式(1)の範囲内にある骨材粒子に
より構成されているものである。 D50/(D50−D10)≧1.5 … (1)
In the filter of the present invention, at least one layer of a porous membrane having a pore size smaller than that of the base material is formed on the surface of the base material of the honeycomb shape. Then, of the porous films formed on the surface of the base material, the first porous film (that is,
The 50% particle diameter (D 50 : μm) of the aggregate particles that form the porous membrane that directly contacts the substrate surface is 0.74 times or more and 1 time or less than the average pore diameter (P: μm) of the substrate. The aggregate particle size distribution is within the range of the following formula (1). D 50 / (D 50 −D 10 ) ≧ 1.5 (1)

【0024】 このようなフィルタは、基材の気孔内が
微粒成分で閉塞されておらず、基材表面に適正な気孔径
を有する多孔質膜が形成されているため、捕捉効率を高
く、圧力損失を小さくすることができる点において有用
である。
In such a filter, the inside of the pores of the base material is not blocked by the fine particle component and a porous membrane having an appropriate pore diameter is formed on the surface of the base material, so that the trapping efficiency is high and the pressure is high. This is useful in that the loss can be reduced.

【0025】 なお、本発明のフィルタにおいては、1
層目の多孔質膜と基材との関係のみを規定しているが、
2層目以降の多孔質膜についても同様の関係を満たして
いることが好ましい。即ち、n+1層目の多孔質膜を構
成する骨材粒子の50%粒子径がn層目の多孔質膜の平
均気孔径の0.74倍以上、1倍以下であり、当該骨材
粒子の粒度分布が下記式(1)の関係を満たしているこ
とが好ましい。 D50/(D50−D10)≧1.5 … (1)
In the filter of the present invention, 1
Although only the relationship between the porous membrane of the layer and the substrate is specified,
It is preferable that the second and subsequent porous films also satisfy the same relationship. That is, the 50% particle size of the aggregate particles forming the (n + 1) th layer porous membrane is 0.74 times or more and 1 time or less than the average pore diameter of the nth layer porous membrane. It is preferable that the particle size distribution satisfies the relationship of the following formula (1). D 50 / (D 50 −D 10 ) ≧ 1.5 (1)

【0026】 本発明のフィルタにおいては、多孔質膜
の骨材粒子の50%粒子径、粒度分布が上記条件を満た
すことの他、1層目の多孔質膜の平均膜厚が、その多孔
質膜自体の50%粒子径の3倍以上であることが必要で
ある。3倍未満とすると捕捉効率が小さくなる場合があ
るからである。これ以外の条件については特に限定され
ないが、1層目の多孔質膜の平均膜厚を、前記多孔質膜
を構成する骨材粒子の50%粒子径の7倍以下とするこ
とが好ましく、5倍以下とすることが更に好ましい。多
孔質膜の膜厚を必要以上に大きくすると、多孔質膜の骨
材粒子の50%粒子径や粒度分布を規定してもフィルタ
の圧力損失が大きくなる場合があるからである。
In the filter of the present invention, the 50% particle size and particle size distribution of the aggregate particles of the porous membrane satisfy the above conditions, and the average thickness of the first porous membrane is It is necessary that the particle size is at least 3 times the 50% particle size of the film itself. This is because if it is less than 3 times, the trapping efficiency may decrease. Other conditions are not particularly limited, but it is preferable that the average film thickness of the porous film of the first layer is not more than 7 times the 50% particle diameter of the aggregate particles constituting the porous film. It is more preferable that the number of times is not more than twice. This is because if the film thickness of the porous film is increased more than necessary, the pressure loss of the filter may increase even if the 50% particle size and particle size distribution of the aggregate particles of the porous film are specified.

【0027】[0027]

【実施例】 以下、本発明を実施例により更に詳細に説
明する。但し、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

【0028】 実施例1〜5、比較例1〜13において
は、ハニカム状の基材の表面にスラリーを成膜し、焼成
することにより、基材と比較して気孔径が小さい多孔質
膜が形成された集塵用ハニカムフィルタを製造した。
In Examples 1 to 5 and Comparative Examples 1 to 13, by forming a slurry on the surface of a honeycomb-shaped base material and firing it, a porous film having a smaller pore size than that of the base material was obtained. The formed honeycomb filter for dust collection was manufactured.

【0029】(基材)基材としては、コーディエライト
からなり、平均気孔径15μm、サイズ150mm×1
50mm×500mmの多孔質体の長手方向に、セル壁
厚さが1.3mm、断面が10mm×10mmの正方形
状であるセルが多数形成され、図2に示すように多数の
セルの一端と他端が1セル毎に交互に封止された構造を
有するものを使用した。当該基材の多孔質膜を形成すべ
きセルの総容積は3692cm 3であった。
(Substrate) As the substrate, cordierite is used.
Consisting of an average pore size of 15 μm and size of 150 mm x 1
The cell wall is placed in the longitudinal direction of the 50 mm x 500 mm porous body.
Square with a thickness of 1.3 mm and a cross section of 10 mm x 10 mm
A large number of cells are formed, and as shown in FIG.
A structure in which one end and the other end of the cell are alternately sealed for each cell
I used the one I had. A porous film should be formed on the substrate.
The total volume of the cell is 3692 cm 3Met.

【0030】(多孔質膜)多孔質膜は、上記基材のセル
内表面にスラリーを成膜し、焼成することにより形成し
た。多孔質膜の膜厚は後述するスラリー濃度によって制
御し、20μm、30μm、50μmの3水準の平均膜
厚を有する多孔質膜を形成した。
(Porous film) The porous film was formed by forming a slurry on the inner surface of the cell of the above-mentioned substrate and firing it. The film thickness of the porous film was controlled by the slurry concentration described later to form a porous film having three levels of average film thickness of 20 μm, 30 μm, and 50 μm.

【0031】 骨材粒子はいずれもコーディエライトか
らなり、50%粒子径が基材の平均気孔径15μmの
0.74倍以上、1倍以下のものを使用した。スラリー
の調製は、骨材粒子、有機バインダ、水の重量比を、膜
厚50μmの場合は1:0.005:99、膜厚30μ
mの場合は0.6:0.003:99.4、膜厚20μ
mの場合は0.4:0.002:99.6としてポリ容
器内に投入し、ホモミキサーにて攪拌・混合することに
より行った。成膜に使用するスラリーの体積は、多孔質
膜を形成すべきセルの総容積3692cm3の3倍とし
た。
All the aggregate particles are made of cordierite and have a 50% particle size of the base material having an average pore size of 15 μm.
The one used was 0.74 times or more and 1 time or less. The slurry is prepared by adjusting the weight ratio of the aggregate particles, the organic binder and water to 1: 0.005: 99 when the film thickness is 50 μm and the film thickness is 30 μm.
m: 0.6: 0.003: 99.4, film thickness 20μ
In the case of m, the amount was 0.4: 0.002: 99.6, and the mixture was put into a poly container and stirred and mixed with a homomixer. The volume of the slurry used for film formation was 3 times the total volume of the cells for forming the porous film, 3692 cm 3 .

【0032】 スラリーの成膜は、図1に示す処理装置
4により、スラリー直濾過法で行った。処理装置4で
は、マグネットスターラ5の撹拌作用によりスラリータ
ンク6内で均一濃度に調製されたスラリー8が、エアA
の圧力によって配管9、スラリー注入具3、取付治具2
を通過して基材1入口側のセル開口部からセル内部に供
給され、基材1のセル壁によって濾過されることにより
成膜が行われる。即ち、当該セルの出口側は封止されて
いるため、スラリー中の水分は各セルのセル壁を透過し
て隣接するセル内に流出する一方、スラリー中の骨材粒
子はセル内表面に付着することにより成膜が進行する。
The film formation of the slurry was performed by the slurry direct filtration method by the processing device 4 shown in FIG. In the processing device 4, the slurry 8 prepared to have a uniform concentration in the slurry tank 6 by the stirring action of the magnetic stirrer 5 is mixed with the air A.
Pipe 9, slurry injector 3, mounting jig 2
To the inside of the cell through the cell opening on the inlet side of the base material 1 and is filtered by the cell wall of the base material 1 to form a film. That is, since the outlet side of the cell is sealed, the water content in the slurry permeates the cell wall of each cell and flows out into the adjacent cell, while the aggregate particles in the slurry adhere to the inner surface of the cell. By doing so, film formation proceeds.

【0033】 この際スラリー8の供給量は、スラリー
タンク6に設けられた液面計7により監視されており、
供給量が所定の値に達するとスラリー8の供給は自動的
に停止される。次いで、基材1を反転して隣接するセル
内に流出した濾過水を出口側のセル開口部から排出する
ことにより成膜が完了する。当該成膜体を乾燥し、13
50℃で2時間焼成して多孔質膜を形成することによ
り、ハニカムフィルタを得た。形成された多孔質膜の総
面積は17172cm2であった。
At this time, the supply amount of the slurry 8 is monitored by a liquid level gauge 7 provided in the slurry tank 6.
When the supply amount reaches a predetermined value, the supply of the slurry 8 is automatically stopped. Next, the substrate 1 is turned over and the filtered water that has flowed out into the adjacent cells is discharged from the cell opening on the outlet side to complete the film formation. The film-forming body is dried,
A honeycomb filter was obtained by firing at 50 ° C. for 2 hours to form a porous film. The total area of the formed porous film was 17172 cm 2 .

【0034】(実施例1、比較例1〜2)粒度分布の指
標であるD50/(D50−D10)の値が1.765である
骨材粒子から調製したスラリーを使用して成膜を行っ
た。
(Example 1, Comparative Examples 1 and 2) A slurry prepared from aggregate particles having a D 50 / (D 50 -D 10 ) value of 1.765, which is an index of particle size distribution, was used. The membrane was made.

【0035】(実施例2、比較例3〜4)粒度分布の指
標であるD50/(D50−D10)の値が1.729である
骨材粒子から調製したスラリーを使用して成膜を行っ
た。
(Example 2, Comparative Examples 3 to 4) A slurry prepared from aggregate particles having a D 50 / (D 50 -D 10 ) value of 1.729, which is an index of particle size distribution, was used. The membrane was made.

【0036】(実施例3、比較例5〜6)粒度分布の指
標であるD50/(D50−D10)の値が1.708である
骨材粒子から調製したスラリーを使用して成膜を行っ
た。
(Example 3, Comparative Examples 5-6) A slurry prepared from aggregate particles having a D 50 / (D 50 -D 10 ) value of 1.708, which is an index of particle size distribution, was used. The membrane was made.

【0037】(実施例4、比較例7〜8)粒度分布の指
標であるD50/(D50−D10)の値が1.630である
骨材粒子から調製したスラリーを使用して成膜を行っ
た。
(Example 4, Comparative Examples 7 to 8) A slurry prepared from aggregate particles having a D 50 / (D 50 -D 10 ) value of 1.630, which is an index of particle size distribution, was used. The membrane was made.

【0038】(実施例5、比較例9〜10)粒度分布の
指標であるD50/(D50−D10)の値が1.592であ
る骨材粒子から調製したスラリーを使用して成膜を行っ
た。
(Example 5, Comparative Examples 9 to 10) A slurry prepared from aggregate particles having a value of D 50 / (D 50 -D 10 ) of 1.592, which is an index of particle size distribution, was used. The membrane was made.

【0039】(比較例11〜13)粒度分布の指標であ
るD50/(D50−D10)の値が1.487である骨材粒
子から調製したスラリーを使用して成膜を行った。
(Comparative Examples 11 to 13) Film formation was performed using a slurry prepared from aggregate particles having a value of D 50 / (D 50 -D 10 ) which is an index of particle size distribution of 1.487. .

【0040】(評価方法)実施例1〜5及び比較例1〜
13のハニカムフィルタについては、以下に示す方法に
より圧力損失、及び捕捉効率を評価した。その結果を表
1及び図4に示す。
(Evaluation Method) Examples 1 to 5 and Comparative Examples 1 to 1
Regarding the honeycomb filter of No. 13, the pressure loss and the trapping efficiency were evaluated by the methods described below. The results are shown in Table 1 and FIG.

【0041】(1)圧力損失 フィルタの圧力損失は、フィルタの多孔質膜において生
ずる差圧(以下、「膜間差圧」という。)により評価し
た。予め、多孔質膜形成前の基材について、濾過面積
(m2)当たりの流量(m3/分)を1(m/分)として
常温の空気を透過させたときの基材入口側と出口側との
圧力差(mmAq)を測定しておき、同様にして実施
例、比較例のフィルタについてもフィルタ入口側と出口
側との圧力差(mmAq)を測定し、フィルタの圧力差
から基材の圧力差を差し引いた値を当該フィルタの膜間
差圧(mmAq)とした。通常、膜間差圧が35mmA
q超となるとフィルタの圧力損失が上昇し、許容差圧を
超えてしまうため好ましくない。
(1) Pressure Loss The pressure loss of the filter was evaluated by the differential pressure generated in the porous membrane of the filter (hereinafter referred to as "transmembrane differential pressure"). For the base material before forming the porous membrane, the flow rate (m 3 / min) per filtration area (m 2 ) was set at 1 (m / min), and the base material inlet side and outlet when air at room temperature was permeated. The pressure difference (mmAq) with the filter side is measured in advance, and similarly for the filters of Examples and Comparative Examples, the pressure difference (mmAq) between the filter inlet side and the outlet side is measured, and the pressure difference between the filter and the substrate is used. The value obtained by subtracting the pressure difference was used as the transmembrane pressure difference (mmAq) of the filter. Transmembrane pressure difference is usually 35mmA
When it exceeds q, the pressure loss of the filter increases and exceeds the allowable differential pressure, which is not preferable.

【0042】(2)捕捉効率 フィルタ入口側の粒子密度を6250(個/m3)とし
て、50%粒子径が0.2μmであるフタル酸ジオクチ
ルの粒子を含む空気を実施例、比較例のフィルタに透過
させ、フィルタ出口側の粒子密度(個/m3)を測定
し、下記式(2)から得られた値を捕捉効率(%)とし
た。通常、捕捉効率が80%未満となるとリークするダ
ストの量が増加し、集塵性能が低下するため好ましくな
い。 捕捉効率(%)=1−(出口粒子密度/入口粒子密度) … (2)
(2) Capture efficiency With the particle density on the inlet side of the filter being 6250 (particles / m 3 ), air containing particles of dioctyl phthalate having a 50% particle diameter of 0.2 μm is used in the filters of Examples and Comparative Examples. The particle density (particles / m 3 ) on the outlet side of the filter was measured, and the value obtained from the following formula (2) was taken as the trapping efficiency (%). Usually, when the trapping efficiency is less than 80%, the amount of dust that leaks increases and the dust collection performance deteriorates, which is not preferable. Capture efficiency (%) = 1- (outlet particle density / inlet particle density) (2)

【0043】(その他)なお、表1には示さなかった
が、1つのフィルタの複数の位置において多孔質膜の厚
さを測定し、そのばらつきの程度から多孔質膜の厚さの
均一性を、同一の条件により多数のフィルタを製造し、
各フィルタの圧力損失及び捕捉効率を測定し、そのばら
つきの程度から多孔質膜の特性の安定性を、それぞれ評
価した。その結果、実施例1〜5及び比較例1〜13の
ハニカムフィルタは多孔質膜の厚さの均一性、多孔質膜
の特性の安定性についてはいずれも良好な結果を示し
た。
(Others) Although not shown in Table 1, the thickness of the porous film was measured at a plurality of positions of one filter, and the uniformity of the thickness of the porous film was determined from the degree of variation. , Manufacture many filters under the same conditions,
The pressure loss and trapping efficiency of each filter were measured, and the stability of the characteristics of the porous membrane was evaluated based on the degree of variation. As a result, the honeycomb filters of Examples 1 to 5 and Comparative Examples 1 to 13 showed good results with respect to the uniformity of the thickness of the porous film and the stability of the characteristics of the porous film.

【0044】[0044]

【表1】 [Table 1]

【0045】(結果)表1に示すように、実施例1〜5
のいずれのフィルタも捕捉効率、膜間差圧とも良好な結
果を示した。一方、比較例11のフィルタは捕捉効率に
ついては良好であるものの、膜間差圧が38mmAqと
高く、フィルタの圧力損失が上昇し、許容差圧を超えて
しまう点において問題であった。また、多孔質膜の平均
膜厚が骨材粒子の50%粒子径の3倍未満である比較例
1〜10,12〜13のフィルタは膜間差圧については
良好であるものの、捕捉効率が80%未満に低下し、集
塵性能の面で問題があった。
(Results) As shown in Table 1, Examples 1 to 5
Both filters showed good results in terms of trapping efficiency and transmembrane pressure difference. On the other hand, although the filter of Comparative Example 11 has good trapping efficiency, it has a problem in that the transmembrane pressure difference is as high as 38 mmAq, the pressure loss of the filter increases, and the permissible pressure difference is exceeded. Further, the filters of Comparative Examples 1 to 10 and 12 to 13 in which the average film thickness of the porous film is less than 3 times the 50% particle size of the aggregate particles are good in transmembrane pressure, but the trapping efficiency is high. It was reduced to less than 80%, and there was a problem in terms of dust collection performance.

【0046】[0046]

【発明の効果】 本発明の製造方法によれば、捕捉効率
が高く、圧力損失が小さいハニカムフィルタを、簡単な
装置にて容易に製造でき、更には多数のフィルタを均一
な品質で製造することが可能である。また、本発明のハ
ニカムフィルタは、捕捉効率が高く、圧力損失が小さい
ため、被処理ガス中のダスト等を除去するための集塵用
フィルタとして、化学、電力、鉄鋼、自動車関連産業
等、広範な分野において、高温ガスからの製品回収や排
ガス浄化に好適に使用することができる。
According to the manufacturing method of the present invention, a honeycomb filter having a high trapping efficiency and a small pressure loss can be easily manufactured with a simple apparatus, and further, a large number of filters can be manufactured with uniform quality. Is possible. Further, since the honeycomb filter of the present invention has a high trapping efficiency and a small pressure loss, it can be used as a dust collecting filter for removing dust and the like in the gas to be treated, such as chemical, electric power, steel, automobile-related industries, and the like. In various fields, it can be suitably used for product recovery from high-temperature gas and exhaust gas purification.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の集塵用ハニカムフィルタの製造方法
の一例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a method for manufacturing a honeycomb filter for dust collection of the present invention.

【図2】 ハニカムフィルタの一般的構成を示す斜視図
である。
FIG. 2 is a perspective view showing a general configuration of a honeycomb filter.

【図3】 X線粒度分布測定装置により測定した粒度分
布曲線を示すグラフである。
FIG. 3 is a graph showing a particle size distribution curve measured by an X-ray particle size distribution measuring device.

【図4】 粒度分布と膜間差圧の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between particle size distribution and transmembrane pressure difference.

【符号の説明】[Explanation of symbols]

1…多孔質基材、2…取付治具、3…スラリー注入具、
4…処理装置、5…マグネットスターラ、6…スラリー
タンク、7…液面計、8…スラリー、9…配管、21…
ハニカムフィルタ、22…セル壁、23…セル。
1 ... Porous base material, 2 ... Mounting jig, 3 ... Slurry injection tool,
4 ... Processing device, 5 ... Magnet stirrer, 6 ... Slurry tank, 7 ... Liquid level gauge, 8 ... Slurry, 9 ... Piping, 21 ...
Honeycomb filter, 22 ... Cell wall, 23 ... Cell.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多数のセルの入口側と出口側の端部とが
1セル毎に交互に封止されたハニカム状の多孔質基材の
表面に、当該多孔質基材と比較して気孔径が小さい多孔
質膜が少なくとも1層、1セル毎に交互に形成された、
集塵用ハニカムフィルタの製造方法であって、 前記多孔質基材のセル内部に、 50%粒子径(D50:μm)が前記多孔質基材の平均気
孔径(P:μm)の0.74倍以上、1倍以下であっ
て、かつ、粒度分布が下記式(1)の範囲内にある骨材
粒子から調製したスラリーを供給し、 当該スラリー中の水分を前記多孔質基材の気孔を透過さ
せて除去することにより成膜し、次いで焼成することを
特徴とする集塵用ハニカムフィルタの製造方法。 D50/(D50−D10)≧1.5 … (1) (但し、D50:50%粒子径(μm)、D10:10%粒
子径(μm))
1. The inlet side and outlet side end of a large number of cells
At least one layer of a porous membrane having a pore size smaller than that of the porous base material is alternately formed on the surface of the honeycomb-shaped porous base material that is alternately sealed for each cell. Was
A method of manufacturing a honeycomb filter for collecting dust, wherein a 50% particle diameter (D 50 : μm) of the inside of the cell of the porous base material is 0. % of an average pore diameter (P: μm) of the porous base material . A slurry prepared from aggregate particles having a particle size distribution of 74 times or more and 1 time or less and within the range of the following formula (1) is supplied, and the water content in the slurry is changed to the pores of the porous substrate. A method for manufacturing a honeycomb filter for dust collection, which comprises forming a film by transmitting and removing the film, and then firing. D 50 / (D 50 −D 10 ) ≧ 1.5 (1) (however, D 50 : 50% particle diameter (μm), D 10 : 10% particle diameter (μm))
【請求項2】 多数のセルの入口側と出口側の端部とが
1セル毎に交互に封止されたハニカム状の多孔質基材の
表面に、当該多孔質基材と比較して気孔径が小さい多孔
質膜が少なくとも1層、1セル毎に交互に形成された、
集塵用ハニカムフィルタであって、 前記多孔質膜のうち1層目の多孔質膜が、 50%粒子径(D50:μm)が前記多孔質基材の平均気
孔径(P:μm)の0.74倍以上、1倍以下であっ
て、粒度分布が下記式(1)の範囲内にある骨材粒子に
より構成され、かつ、平均膜厚が前記50%粒子径の3
倍以上であることを特徴とする集塵用ハニカムフィル
タ。 D50/(D50−D10)≧1.5 … (1) (但し、D50:50%粒子径(μm)、D10:10%粒
子径(μm))
2. The inlet side and outlet side ends of a large number of cells are
At least one layer of a porous membrane having a pore size smaller than that of the porous base material is alternately formed on the surface of the honeycomb-shaped porous base material that is alternately sealed for each cell. Was
A honeycomb filter for dust collection, wherein the first layer of the porous membrane has a 50% particle diameter (D 50 : μm) of an average pore diameter (P: μm) of the porous substrate. 0.74 times or more and 1 time or less, the particle size distribution is constituted by aggregate particles within the range of the following formula (1), and the average film thickness is 3% of the 50% particle diameter.
A honeycomb filter for dust collection characterized by being more than doubled. D 50 / (D 50 −D 10 ) ≧ 1.5 (1) (however, D 50 : 50% particle diameter (μm), D 10 : 10% particle diameter (μm))
JP26004099A 1999-09-14 1999-09-14 Dust collection honeycomb filter and manufacturing method thereof Expired - Lifetime JP3435103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26004099A JP3435103B2 (en) 1999-09-14 1999-09-14 Dust collection honeycomb filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26004099A JP3435103B2 (en) 1999-09-14 1999-09-14 Dust collection honeycomb filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001079321A JP2001079321A (en) 2001-03-27
JP3435103B2 true JP3435103B2 (en) 2003-08-11

Family

ID=17342476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26004099A Expired - Lifetime JP3435103B2 (en) 1999-09-14 1999-09-14 Dust collection honeycomb filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3435103B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20023989U1 (en) 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Ceramic filter arrangement
AU2003242426A1 (en) * 2002-05-24 2003-12-12 Ngk Insulators, Ltd. Honeycomb filter and method of manufacturing the honeycomb filter, filter holder, backwashing device, and dust collector
JP2004299966A (en) * 2003-03-31 2004-10-28 Ngk Insulators Ltd Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
EP1997788B1 (en) * 2006-03-17 2012-11-28 NGK Insulators, Ltd. Process for producing a cordierite-based honeycomb structure
JP5419371B2 (en) 2008-03-17 2014-02-19 日本碍子株式会社 Catalyst support filter
US11761361B2 (en) 2020-03-26 2023-09-19 Ngk Insulators, Ltd. Method for manufacturing pillar-shaped honeycomb structure filter
JP6902153B1 (en) * 2020-03-26 2021-07-14 日本碍子株式会社 Columnar honeycomb structure filter and its manufacturing method

Also Published As

Publication number Publication date
JP2001079321A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
KR101076135B1 (en) Porous sintered composite materials
US9486728B2 (en) Honeycomb filter and production method for honeycomb filter
JPH0378130B2 (en)
EP2915577A1 (en) Zeolite membrane regeneration method
EP2045001A1 (en) Ceramic filter
EP2483218B1 (en) Method of making membrane filter
WO1993006912A1 (en) Laminated filter medium, method of making said medium, and filter using said medium
JP3435103B2 (en) Dust collection honeycomb filter and manufacturing method thereof
KR20170095330A (en) Filters comprising sic membranes incorporating nitrogen
JP3698906B2 (en) Multi-layer honeycomb filter and manufacturing method thereof
JPH10249124A (en) Manufacture of dust collecting filter element
WO2021009085A1 (en) Air filter comprising a silicone carbide membrane layer
KR101971645B1 (en) Filter comprising a coating layer of flake-like powders and a preparation method thereof
CN110860213A (en) Thin metal/ceramic hybrid membrane and filter
EP2832414B1 (en) Production method for honeycomb filter
US20170348646A1 (en) FILTERS COMPRISING OXYGEN-DEPLETED SiC MEMBRANES
US20180015426A1 (en) SiC-NITRIDE OR SiC-OXYNITRIDE COMPOSITE MEMBRANE FILTERS
JPH05146617A (en) Silicon carbide filter and production thereof
JPS61238305A (en) Preparation of tubular double-layered filter
EP1302231A1 (en) Honeycomb filter having multi-layer structure and method for manufacturing the same
JPH0515716A (en) Electret air filter for removing sea salt particle
JP3071218B2 (en) Ceramic filter
JP2002172304A (en) Multi-layer structure honeycomb filter and method for producing the same
WO2020109731A1 (en) Dynamic filtering device with porous ceramic silicon carbide plate
JPH05293342A (en) Ceramic filter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030520

R150 Certificate of patent or registration of utility model

Ref document number: 3435103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

EXPY Cancellation because of completion of term