JPH0155913B2 - - Google Patents
Info
- Publication number
- JPH0155913B2 JPH0155913B2 JP60161787A JP16178785A JPH0155913B2 JP H0155913 B2 JPH0155913 B2 JP H0155913B2 JP 60161787 A JP60161787 A JP 60161787A JP 16178785 A JP16178785 A JP 16178785A JP H0155913 B2 JPH0155913 B2 JP H0155913B2
- Authority
- JP
- Japan
- Prior art keywords
- septic tank
- flow rate
- air
- sewage
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 39
- 239000010865 sewage Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 30
- 239000002351 wastewater Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 238000000746 purification Methods 0.000 claims description 17
- 238000005273 aeration Methods 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 7
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 6
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 5
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 claims description 4
- 238000013019 agitation Methods 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000010419 fine particle Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 5
- 230000001546 nitrifying effect Effects 0.000 description 5
- 238000011001 backwashing Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010802 sludge Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920000114 Corrugated plastic Polymers 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は汚水浄化処理装置の制御方法に係り、
特に接触材の表面に付着生育させた微生物の働き
により汚水中のアンモニア性窒素を硝化処理する
ようにした固定床形汚水浄化処理装置の制御装置
に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a control method for a sewage purification treatment device,
In particular, the present invention relates to a control device for a fixed-bed sewage purification system that nitrates ammonia nitrogen in sewage through the action of microorganisms grown on the surface of a contact material.
微生物の働きにより汚水を浄化処理する方法の
一つとして、従来より固定床法が知られている。
この固定床法は、プラスチツク製の波板、網、筒
等で形成した接触材を浄化槽内に収容してこれに
汚水を流入せしめ、散気又は機械式撹拌により槽
内の汚水中に酸素を溶解させると同時に撹拌を行
い、前記接触材の表面に付着生育した微生物と循
環する汚水とを接触させることにより汚水を浄化
処理する方法である。
A fixed bed method has been known as one of the methods for purifying wastewater using the action of microorganisms.
In this fixed bed method, a contact material made of plastic corrugated plates, nets, tubes, etc. is housed in a septic tank, and wastewater is allowed to flow into it. Oxygen is added to the wastewater in the tank through aeration or mechanical stirring. This is a method for purifying wastewater by dissolving and stirring at the same time, and bringing the microorganisms grown on the surface of the contact material into contact with the circulating wastewater.
汚水中のアンモニア性窒素(以下NH4−Nと
記す)を硝化菌の働きにより亜硝酸性又は硝酸性
窒素(以下NOx−Nと記す)に硝化処理する場
合には浄化槽内の接触材表面に硝化菌を長期間保
持できることから好気性固定床法が好適とされて
いる。第7図は、この種の従来の汚水浄化処理装
置を示したものであり、浄化槽1の内部には側壁
に沿つてプラスチツク製の波板や筒で形成された
接触材2が配置され、この接触材2の中心部に撹
拌室3が形成され、その中に散気管4が設置され
ている。この浄化槽1の内には流入管5を通して
浄化処理すべき汚水Wが導入され浄化処理された
浄化水は流出管6より流出するように構成されて
いる。上記散気管4は空気供給管7を介して散気
ブロワ8の送風口に接続され、空気供給管7上に
は散気弁9が組込まれている。さらに、浄化槽1
の底板の中央には排泥管10が接続され、その管
路上には排泥弁11が設けられている。また、上
記接触材2の下方位には逆洗用散気管12が配管
され、これらの管と前記空気供給管7とは逆洗用
送気管13で接続され、この管路上には逆洗弁1
4が組込まれている。次に上述した構造の固定床
形汚水浄化装置における硝化処理工程を説明する
と、BOD除去を主体とする二次処理を終えた汚
水Wは流入管5より浄化槽1内に流入する。この
浄化槽1内において汚水Wは散気管4より散気さ
れる空気より溶存酸素を与えられ、同時にエアリ
フト効果により矢印のように浄化槽1内を循環撹
拌される。この過程において浄化槽1内のNH4
−Nは接触材2の表示上に付着生育している硝化
菌の働きによりNOx−Nに酸化され、硝化され
た水は処理水として流出管6より排出される。 When ammonia nitrogen (hereinafter referred to as NH 4 -N) in wastewater is nitrified to nitrite or nitrate nitrogen (hereinafter referred to as NO x -N) by the action of nitrifying bacteria, the surface of the contact material in the septic tank is The aerobic fixed bed method is preferred because it can retain nitrifying bacteria for a long period of time. FIG. 7 shows this type of conventional sewage purification equipment. Inside the septic tank 1, a contact material 2 formed of a corrugated plastic plate or tube is placed along the side wall. A stirring chamber 3 is formed in the center of the contact material 2, and an aeration pipe 4 is installed in the stirring chamber 3. The septic tank 1 is configured such that wastewater W to be purified is introduced through an inflow pipe 5 and purified water flows out through an outflow pipe 6. The air diffuser pipe 4 is connected to an air outlet of an air diffuser blower 8 via an air supply pipe 7, and an air diffuser valve 9 is installed on the air supply pipe 7. Furthermore, septic tank 1
A sludge drain pipe 10 is connected to the center of the bottom plate, and a sludge drain valve 11 is provided on the pipe. Further, a backwashing air diffuser pipe 12 is installed below the contact material 2, and these pipes and the air supply pipe 7 are connected by a backwashing air supply pipe 13, and a backwash valve is installed on this pipe. 1
4 is included. Next, the nitrification process in the fixed-bed sewage purification apparatus having the above-described structure will be described. The sewage W that has undergone secondary treatment, mainly BOD removal, flows into the septic tank 1 through the inflow pipe 5. In the septic tank 1, the wastewater W is given dissolved oxygen by the air diffused from the aeration pipe 4, and at the same time is circulated and agitated within the septic tank 1 as shown by the arrow due to the air lift effect. In this process, NH4 in septic tank 1
-N is oxidized to NO x -N by the action of nitrifying bacteria growing on the surface of the contact material 2, and the nitrified water is discharged from the outflow pipe 6 as treated water.
ところで、このような処理が数カ月連続して行
われると、汚水W中の浮遊物質の蓄積や微生物自
体の増殖により生物膜の厚さが厚くなり、ついに
は生物膜自体を接触材2の表面上に支えきれなく
なつて剥離し、処理水に混入して処理水の悪化を
招くという問題がある。この問題を解決するため
に、従来は周期的に逆洗を行つている。この逆洗
の際には散気弁9を全閉し、逆洗弁14を開けて
接触材2の下方に設置された逆洗用散気管12よ
り空気を吹き込み気泡を接触材2のすき間を通過
させ、肥厚した生物膜を剥離している。このよう
にして剥離した生物膜は浄化槽1の底部に沈積す
るので排泥弁11を開くことにより除去してい
る。 By the way, if such treatment is carried out continuously for several months, the thickness of the biofilm will increase due to the accumulation of suspended solids in the wastewater W and the proliferation of microorganisms themselves, and eventually the biofilm itself will be deposited on the surface of the contact material 2. There is a problem in that it can no longer be supported by the water and peels off, contaminating the treated water and causing deterioration of the treated water. To solve this problem, backwashing has conventionally been performed periodically. During backwashing, the air diffuser valve 9 is fully closed, the backwash valve 14 is opened, and air is blown through the backwash air diffuser pipe 12 installed below the contact material 2 to remove air bubbles and fill the gaps in the contact material 2. This process removes the thickened biofilm. The biofilm separated in this manner is deposited at the bottom of the septic tank 1 and is removed by opening the sludge valve 11.
上述した硝化処理を安定した状態で行うには、
浄化槽1内の水温の変動および窒素負荷の変動に
対する対策が十分に行われることが必要である。
硝化菌の活性は温度によつて影響を受け、水温が
1℃低下すると約8%低下するとされており、そ
のために水温が低下する冬期には硝化効率が低下
し、それに伴つてNH4−Nを含む処理水が流出
するという問題があつた。 In order to perform the above-mentioned nitrification treatment in a stable condition,
It is necessary to take sufficient measures against fluctuations in water temperature and nitrogen load within the septic tank 1.
The activity of nitrifying bacteria is affected by temperature, and it is said that it decreases by about 8% when the water temperature decreases by 1℃.As a result, nitrification efficiency decreases in winter when the water temperature decreases, and NH 4 -N There was a problem that treated water containing
一方、窒素負荷が大きく変動して一時的に過大
なNH4−N負荷がかかつた場合には相対的に硝
化能力が不足してNH4−Nが処理水中に含まれ
て流出しやすいという問題があつた。 On the other hand, if the nitrogen load fluctuates greatly and a temporary excessive NH 4 -N load is applied, the nitrification capacity is relatively insufficient and NH 4 -N is likely to be contained in the treated water and leaked out. There was a problem.
これらの問題を解決するために、硝化槽の容量
および接触材の充填量を増加させて、硝化能力を
増大させることが考えられるが、この解決方法は
比較的水温の高い春、夏、秋の時期やNH4−N
負荷の低い時間には能力過剰とならざるを得ず、
設備コストが高価となり散気ブロワの運転コスト
上の無駄を招来するという欠点があつた。 In order to solve these problems, it is possible to increase the nitrification capacity by increasing the capacity of the nitrification tank and the amount of contact material filled. period and NH 4 −N
During periods of low load, there is no choice but to overcapacity,
The drawback is that the equipment cost is high, leading to waste in operating costs for the diffuser blower.
また、NH4−N負荷の変動を抑制するために、
固定床法の前段に水量、水質を均等化する調整槽
を設けNH4−N負荷を一定にする方法が考えら
れる。しかしながら、この方法は、調整槽の容量
が一日の通常流入汚水量の40〜50%は必要となり
設備コストが高くなるという点で問題であつた。 In addition, in order to suppress fluctuations in NH 4 −N load,
One possible method is to provide a regulating tank to equalize the water quantity and quality before the fixed bed method to keep the NH 4 -N load constant. However, this method has a problem in that the capacity of the regulating tank needs to be 40 to 50% of the amount of sewage that normally flows in each day, which increases the equipment cost.
そこで、本発明の目的は、上記従来技術が有す
る問題点を解消し、処理すべき汚水の温度や
NH4−N負荷が変化してもその変化に対応して
硝化能力を調整することができるようにした汚水
浄化処理装置の制御方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, the purpose of the present invention is to solve the problems of the above-mentioned conventional techniques, and to
It is an object of the present invention to provide a control method for a sewage purification treatment device that can adjust the nitrification capacity in response to changes in the NH 4 -N load.
上記目的を達成するために、本発明は表面に微
生物を付着生育させた接触材を浄化槽内の汚水中
に設置し、浄化槽内の汚水中に散気ブロワから送
出される空気を供給して接触材の表面を通過する
循環流を生成させ汚水中のアンモニア性窒素を亜
硝酸性窒素または硝酸性窒素に硝化処理するよう
にした汚水浄化装置において、浄化槽内の汚水の
温度を測定する温度測定手段と、前記散気ブロワ
から浄化槽内へ送出する空気の流量を測定する空
気流量測定手段と、上記温度測定手段および空気
流量測定手段からの出力信号とあらかじめ入力さ
れた水温、循環速度および硝化速度の関係とを比
較演算する演算制御手段と、この演算制御手段か
らの出力信号によつて前記散気ブロワから送出さ
れる空気流量を制御する手段とを備え、浄化槽内
の散気撹拌能力を調節することによつて硝化能力
を制御するようにしたことを特徴とするものであ
る。
In order to achieve the above object, the present invention installs a contact material on which microorganisms are attached and grown in waste water in a septic tank, and contacts the waste water by supplying air sent from a diffuser blower into the waste water in the septic tank. Temperature measuring means for measuring the temperature of sewage in a septic tank in a sewage purification device that generates a circulating flow that passes through the surface of a material to nitrify ammonia nitrogen in sewage into nitrite nitrogen or nitrate nitrogen. , an air flow rate measuring means for measuring the flow rate of air sent from the aeration blower into the septic tank, and output signals from the temperature measuring means and air flow rate measuring means and pre-input water temperature, circulation speed and nitrification rate. and a means for controlling the flow rate of air sent from the aeration blower according to an output signal from the arithmetic control means, and adjusting the aeration agitation capacity in the septic tank. This method is characterized in that the nitrification ability is controlled by this method.
また本願の他の発明は、表面に微生物を付着生
育させた接触材を浄化槽内の汚水中に設置し、浄
化槽内の汚水中に散気ブロワから送出される空気
を供給して接触材の表面を通過する循環流を生成
させ、汚水中のアンモニア性窒素を亜硝酸性窒素
または硝酸性窒素に硝化処理するようにした汚水
浄化装置において、浄化槽内の汚水の温度を測定
する温度測定手段と、前記散気ブロワから浄化槽
内へ送出する空気の流量を測定する空気流量測定
手段と、上記記浄化槽内において処理すべき汚水
中に含まれている窒素負荷を計量する手段と、上
記温度測定手段、空気流量測定手段および窒素負
荷計量手段からの出力信号とあらかじめ入力され
た水温、循環速度の関係とを比較演算する演算制
御手段と、この演算制御手段からの出力信号によ
つて前記散気ブロワから送出される空気流量を制
御する手段とを備え、浄化槽内の散気能力を調節
することによつて硝化能力を制御するようにした
ことを特徴とするものである。 In addition, another invention of the present application is to install a contact material on which microorganisms have grown attached to the surface of the contact material in waste water in a septic tank, and to supply air from a diffuser blower into the waste water in the septic tank to surface the contact material. In a sewage purification device that generates a circulating flow that passes through the septic tank and nitrifies ammonia nitrogen in the sewage into nitrite nitrogen or nitrate nitrogen, a temperature measuring means for measuring the temperature of the sewage in the septic tank; an air flow rate measuring means for measuring the flow rate of air sent from the aeration blower into the septic tank; a means for measuring the nitrogen load contained in the wastewater to be treated in the septic tank; and the temperature measuring means; arithmetic control means for comparing and calculating the output signals from the air flow rate measuring means and the nitrogen load measuring means with the relationship between water temperature and circulation speed input in advance; The septic tank is characterized in that it includes means for controlling the flow rate of air sent out, and the nitrification capacity is controlled by adjusting the air diffusion capacity within the septic tank.
以下本発明による汚水浄化処理装置の制御方法
の実施例について説明する。
Embodiments of the method for controlling a sewage purification apparatus according to the present invention will be described below.
本発明の具体的な実施例の説明に先立つてまず
本発明の原理について説明する。 Before explaining specific embodiments of the present invention, the principle of the present invention will be explained first.
一般にNH4−N負荷が一定もしくは日間変動
のように一定の周期をもつて変動する場合、汚水
浄化装置の硝化速度は浄化槽内の汚水の温度と接
触材の表面に通過する汚水の循環流速(以下循環
流速と言う)に依存することが知られている。こ
のうち水温については水温の変化1℃当たり硝化
速度8%の変化があることが知られている。 In general, when the NH 4 -N load is constant or fluctuates at regular intervals such as daily fluctuations, the nitrification rate of the sewage purification system is determined by the temperature of the sewage in the septic tank and the circulating flow rate of the sewage passing through the surface of the contact material ( It is known that the flow rate depends on the circulation flow rate (hereinafter referred to as the circulation flow rate). Regarding water temperature, it is known that the nitrification rate changes by 8% per 1°C of change in water temperature.
本発明者らは一定の水温下で循環流速の硝化速
度に与える影響を実験によつて調べた結果、第5
図に示したような結果を得た。この線図から分か
るように、循環流速が増加すると硝化速度も増加
する傾向にあることが分かる。この傾向は次のよ
うに説明できる。すなわち、接触材内を流れる汚
水の循環流速が大きくなつて接触材の表面に形成
される汚水の境膜の厚さが薄くなると、NH4−
Nが接触材の表面上の硝化菌膜に移動する速度も
大きくなつて硝化反応が促進される。 The present inventors conducted an experiment to investigate the effect of circulation flow rate on nitrification rate under a constant water temperature, and found that
The results shown in the figure were obtained. As can be seen from this diagram, it can be seen that as the circulating flow rate increases, the nitrification rate also tends to increase. This trend can be explained as follows. In other words, when the circulation flow rate of sewage flowing through the contact material increases and the thickness of the film of sewage formed on the surface of the contact material becomes thinner, NH 4 −
The rate at which N moves to the nitrifying bacteria film on the surface of the contact material also increases, promoting the nitrification reaction.
一方、浄化槽1内の汚水の循環流速は散気ブロ
ワによつて散気管4内に供給される空気流量によ
つても影響を受け、その関係は第6図に示された
とおり、空気流量が増加すれば循環流速も増加す
る。 On the other hand, the circulation flow rate of wastewater in the septic tank 1 is also affected by the air flow rate supplied into the air diffuser pipe 4 by the air diffuser blower, and the relationship is as shown in Fig. 6. If it increases, the circulation flow rate also increases.
本発明が対象とする固定床法の循環流速は0.2
〜2m/分程度(層流)であり、これは乱流域も
含めた広範な循環流速と硝化速度の関係の低速領
域の一部を示すものである。このような考察から
対象とする領域が狭いためこの範囲では循環流速
と硝化速度の関係を次に示す一次式で近似しても
事実上問題なしと考えられる。 The circulation flow rate of the fixed bed method targeted by the present invention is 0.2
~2 m/min (laminar flow), which represents a part of the low-velocity region of the relationship between the wide circulation flow velocity and the nitrification rate, including the turbulent region. From these considerations, since the target area is narrow, it is considered that there is virtually no problem in approximating the relationship between circulation flow rate and nitrification rate using the following linear equation.
Vnt=alv+b ……(1)
ただし、
Vnt:t℃における硝化速度
Lv:循環流速
a、b:実験的に得られる定数
さらに水温の影響を考慮すると、一般式は次に
示すとおり。 Vnt=alv+b...(1) However, Vnt: Nitrification rate at t°C Lv: Circulating flow rate a, b: Constants obtained experimentally Considering the influence of water temperature, the general formula is as follows.
Vnt=(aLv+b)θt-to ……(2) で表される。 It is expressed as Vnt=(aLv+b)θt -to ...(2).
ただし、
Vnt:硝化速度
θ:定数(1.08)
to:基準とする温度
t:水 温
上記(2)式は水温と循環流速が求まれば、硝化速
度が求まることを示しており循環流速を変えるこ
とによつて硝化速度を制御することが可能である
ことを示しており、言い換えれば、空気流量を操
作することによつて硝化速度の制御が可能であ
る。 However, Vnt: Nitrification rate θ: Constant (1.08) to: Reference temperature t: Water temperature Equation (2) above shows that if the water temperature and circulation flow rate are determined, the nitrification rate can be determined, so change the circulation flow rate. In other words, the nitrification rate can be controlled by controlling the air flow rate.
次に本発明の具体的実施例を第7図と同一部分
に同一符号を付して示した第1図乃至第4図を参
照して説明する。 Next, a specific embodiment of the present invention will be described with reference to FIGS. 1 to 4, in which the same parts as in FIG. 7 are denoted by the same reference numerals.
この実施例において、浄化槽1内の汚水中には
汚水の温度を測定するための温度計15がセツト
され、この温度計15からの温度検出信号16は
演算制御装置17に入力される。また、空気供給
管7の管路上であつて散気弁9の下流側には管路
内を流れる供給空気の空気量を測定するための空
気流量計18が組込まれ、この空気流量計18か
らの流量検出信号19は前記演算制御装置17に
入力される。上記演算制御装置17にはあらかじ
め設計硝化速度Vndおよび空気流量と循環流速の
関係が入力されている。演算制御装置17は測定
された汚水の温度、設計硝化速度Vndにもとづい
て上記(2)式より必要な循環流速をVn=Vndとし
て求め必要な空気流量を設定する。演算制御装置
17からの出力信号20は、散気ブロワ8の回転
数を制御するインバータ21に入力される。この
ようにして汚水の温度に応じた適切な空気流量で
固定床の運転が可能となる。なお、上記(2)式の
a、b、Lv、Vntの値の決定は実機を用いて実際
の使用条件で実験を行つて求める方法が最も適切
であるが小型の実験装置を用いて求めても実用上
問題はない。また、実際における循環流速は、撹
拌室3の上部における円周方向への流速または撹
拌室3内の上昇流速を流速計を用いて測定しそれ
ぞれの流路断面積との積として流量を求め、さら
にこの値を接触材2の水平充填断面積で割ること
によつて得られる。 In this embodiment, a thermometer 15 for measuring the temperature of the waste water is set in the waste water in the septic tank 1, and a temperature detection signal 16 from the thermometer 15 is input to an arithmetic and control unit 17. Further, an air flow meter 18 is incorporated on the air supply pipe 7 on the downstream side of the air diffuser 9 to measure the amount of supply air flowing in the pipe. The flow rate detection signal 19 is input to the arithmetic and control unit 17. The design nitrification rate Vnd and the relationship between the air flow rate and the circulation flow rate are input into the arithmetic and control unit 17 in advance. Based on the measured wastewater temperature and the designed nitrification rate Vnd, the arithmetic and control unit 17 determines the necessary circulation flow rate from the above equation (2) as Vn=Vnd, and sets the necessary air flow rate. An output signal 20 from the arithmetic and control device 17 is input to an inverter 21 that controls the rotation speed of the diffuser blower 8 . In this way, the fixed bed can be operated with an appropriate air flow rate depending on the temperature of the wastewater. Note that the most appropriate method for determining the values of a, b, Lv, and Vnt in equation (2) above is to conduct an experiment using an actual machine under actual usage conditions, but they can also be determined using a small experimental device. There is no practical problem. In addition, the actual circulation flow rate is determined by measuring the flow rate in the circumferential direction in the upper part of the stirring chamber 3 or the rising flow rate in the stirring chamber 3 using a current meter, and calculating the flow rate as the product of the respective flow path cross-sectional areas. Furthermore, this value is obtained by dividing this value by the horizontal filling cross-sectional area of the contact material 2.
第2図は本発明の他の実施例を示したもので第
1図に示した実施例と異なる点は処理すべき汚水
を供給する汚水供給管22上に汚水流量計23と
全窒素分析計24とが設けられた点である。この
実施例における制御方法は基本的には第1図に示
した例と同じであるが、窒素負荷の設定方法にお
いて相違がある。すなわち、汚水流量計23で計
量された汚水流量信号25は演算制御装置17に
入力されると共に全窒素分析計24によつて汚水
中の窒素濃度が測定され、汚水流量と窒素濃度と
の積が窒素負荷として計量される。このようにし
て窒素負荷の大きさが求められたら、その値を考
慮して循環流速の最適値が決定されインバータ2
1を通じて散気ブロワ8からの供給空気量がフイ
ードバツク制御される。なお、二次処理水のよう
に全窒素濃度とNH4−N濃度との比が比較的安
定している汚水では全窒素分析計にかえてNH4
−N分析計を用いることができる。 FIG. 2 shows another embodiment of the present invention, which differs from the embodiment shown in FIG. This is the point where 24 is provided. The control method in this embodiment is basically the same as the example shown in FIG. 1, but there is a difference in the method of setting the nitrogen load. That is, the sewage flow rate signal 25 measured by the sewage flow meter 23 is input to the arithmetic and control unit 17, and the nitrogen concentration in the sewage is measured by the total nitrogen analyzer 24, and the product of the sewage flow rate and the nitrogen concentration is calculated. Metered as nitrogen load. Once the size of the nitrogen load has been determined in this way, the optimal value for the circulation flow rate is determined by taking that value into account.
1, the amount of air supplied from the diffuser blower 8 is feedback-controlled. In addition, for wastewater where the ratio of total nitrogen concentration to NH 4 -N concentration is relatively stable, such as secondary treated water, an NH 4 -N analyzer is used instead of a total nitrogen analyzer.
-N analyzer can be used.
次に第3図を参照して本発明のさらに他の実施
例を説明する。この実施例は水温の変動パターン
と窒素負荷の変動パターンがあらかじめ予測でき
る場合に好適な実施例である。すなわち、水温変
動パターンと窒素負荷変動パターンの予測値があ
らかじめ演算制御装置17に入力されている。 Next, still another embodiment of the present invention will be described with reference to FIG. This embodiment is suitable when the fluctuation pattern of water temperature and the fluctuation pattern of nitrogen load can be predicted in advance. That is, predicted values of the water temperature fluctuation pattern and the nitrogen load fluctuation pattern are input into the arithmetic and control device 17 in advance.
以上述べた実施例をブロツク線図に示すと第4
図に示したとおりとなり、また、上述した実施例
は散気により撹拌を行う固定床の例を示したが、
機械撹拌方式の固定床についても撹拌能力を調節
することにより同様の制御が可能である。 If the above-mentioned embodiment is shown in a block diagram,
The results are as shown in the figure, and although the above example shows an example of a fixed bed in which stirring is performed by aeration,
Similar control is possible for mechanically stirred fixed beds by adjusting the stirring capacity.
以上の説明から明らかなように、本発明によれ
ば、浄化槽内の汚水の温度および窒素負荷変動を
測定又は予測して浄化槽内の循環流速を調節でき
るようにしたから、接触材を硝化速度を負荷より
も常に高目に制御することが可能となつてNH4
−Nが処理水中に流出することを防ぐことが可能
となる。また、本発明によれば、汚水中の窒素負
荷の変動に追従して循環流速が設定できるように
散気ブロワをインバータを介して運転するから散
気ブロワの省エネが可能となる。さらに冬期には
循環流速を大きくして硝化速度を増加させた運転
が可能となつて浄化槽の容量を縮少することがで
きる。
As is clear from the above description, according to the present invention, the circulating flow rate in the septic tank can be adjusted by measuring or predicting changes in the temperature and nitrogen load of wastewater in the septic tank. It is possible to control the NH 4 at a level higher than the load.
- It becomes possible to prevent N from flowing out into the treated water. Further, according to the present invention, the diffuser blower is operated via an inverter so that the circulation flow rate can be set in accordance with fluctuations in the nitrogen load in wastewater, so that the diffuser blower can save energy. Furthermore, in winter, it is possible to increase the circulation flow rate to increase the nitrification rate, thereby reducing the capacity of the septic tank.
第1図は本発明による汚水浄化装置の一実施例
を示した制御系統図、第2図および第3図は本発
明の他の実施例による制御系統図、第4図は本発
明による制御方法を示したブロツク線図、第5図
は接触材内流速と硝化速度との関係を示した線
図、第6図は空気流量と接触材内流速との関係を
示した線図、第7図は従来の汚水浄化装置を示し
た系統図である。
1……浄化槽、2……接触材、3……撹拌室、
4……散気管、7……空気供給管、8……散気ブ
ロワ、9……散気弁、15……温度計、18……
空気流量計、21……インバータ、24……全窒
素分析計。
FIG. 1 is a control system diagram showing one embodiment of the sewage purification apparatus according to the present invention, FIGS. 2 and 3 are control system diagrams according to other embodiments of the present invention, and FIG. 4 is a control method according to the present invention. Figure 5 is a diagram showing the relationship between flow velocity in the contact material and nitrification rate, Figure 6 is a diagram showing the relationship between air flow rate and flow velocity in the contact material, and Figure 7 is a diagram showing the relationship between air flow rate and flow velocity in the contact material. is a system diagram showing a conventional sewage purification device. 1... Septic tank, 2... Contact material, 3... Stirring chamber,
4... Air diffuser pipe, 7... Air supply pipe, 8... Air diffuser blower, 9... Air diffuser valve, 15... Thermometer, 18...
Air flow meter, 21...inverter, 24...total nitrogen analyzer.
Claims (1)
槽内の汚水中に設置し、浄化槽内の汚水中に散気
ブロワから送出される空気を供給して接触材の表
面を通過する循環流を生成させ汚水中のアンモニ
ア性窒素を亜硝酸性窒素または硝酸性窒素に硝化
処理するようにした汚水浄化装置において、浄化
槽内の汚水の温度を測定する温度測定手段と、前
記散気ブロワから浄化槽内へ送出する空気の流量
を測定する空気流量測定手段と、上記温度測定手
段および空気流量測定手段からの出力信号とあら
かじめ入力された水温、循環速度および硝化速度
の関係とを比較算する演算制御手段と、この演算
制御手段からの出力信号によつて前記散気ブロワ
から送出される空気流量を制御する手段とを備
え、浄化槽内の散気撹拌能力を調節することによ
つて硝化能力を制御するようにしたことを特徴と
する汚水浄化装置。 2 特許請求の範囲第1項に記載の汚水浄化装置
において、前記散気ブロワから浄化槽へ供給され
る空気流量は、前記測定水温に基づいて算出され
た硝化速度の値があらかじめ設定されている窒素
負荷と一致するように制御されることを特徴とす
る汚水浄化装置。 3 表面に微生物を付着生育させた接触材を浄化
槽内の汚水中に設置し、浄化槽内の汚水中に散気
ブロワから送出される空気を供給して接触材の表
面を通過する循環流を生成させ、汚水中のアンモ
ニア性窒素を亜硝酸性窒素または硝酸性窒素に硝
化処理するようにした汚水浄化装置において、浄
化槽内の汚水の温度を測定する温度測定手段と、
前記散気ブロワから浄化槽内へ送出する空気の流
量を測定する空気流量測定手段と、上記浄化槽内
において処理すべき汚水中に含まれている窒素負
荷を計量する手段と、上記温度測定手段、空気流
量測定手段および窒素負荷計量手段からの出力信
号とあらかじめ入力された水温、循環速度の関係
とを比較演算する演算制御手段と、この演算制御
手段からの出力信号によつて前記散気ブロワから
送出される空気流量を制御する手段とを備え、浄
化槽内の散気能力を調節することによつて硝化能
力を制御するようにしたことを特徴とする汚水浄
化装置。[Claims] 1. A contact material on which fine particles have grown attached is placed in waste water in a septic tank, and air sent from a diffuser blower is supplied into the waste water in the septic tank to remove the contact material. In a sewage purification device that generates a circulating flow passing through a surface to nitrify ammonia nitrogen in sewage into nitrite nitrogen or nitrate nitrogen, a temperature measuring means for measuring the temperature of sewage in a septic tank; an air flow rate measuring means for measuring the flow rate of air sent from the aeration blower into the septic tank; and a relationship between the output signals from the temperature measuring means and the air flow rate measuring means and pre-input water temperature, circulation speed, and nitrification rate; and means for controlling the flow rate of air sent from the aeration blower based on the output signal from the arithmetic control means, and for adjusting the aeration agitation capacity in the septic tank. A sewage purification device characterized in that the nitrification capacity is controlled. 2. In the sewage purification device according to claim 1, the air flow rate supplied from the diffuser blower to the septic tank is nitrogen gas whose nitrification rate value calculated based on the measured water temperature is set in advance. A sewage purification device characterized in that it is controlled to match the load. 3. A contact material with microorganisms attached and grown on its surface is installed in the wastewater in the septic tank, and air from a diffuser blower is supplied into the wastewater in the septic tank to generate a circulating flow that passes through the surface of the contact material. In a sewage purification device that nitrifies ammonia nitrogen in sewage to nitrite nitrogen or nitrate nitrogen, a temperature measuring means for measuring the temperature of sewage in a septic tank;
an air flow rate measuring means for measuring the flow rate of air sent from the aeration blower into the septic tank; a means for measuring the nitrogen load contained in the wastewater to be treated in the septic tank; the temperature measuring means; arithmetic control means for comparing and calculating the output signals from the flow rate measuring means and the nitrogen load measuring means with the relationship between water temperature and circulation speed input in advance; What is claimed is: 1. A sewage purification device, comprising means for controlling the flow rate of air in the septic tank, and the nitrification ability is controlled by adjusting the aeration ability in the septic tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161787A JPS6249994A (en) | 1985-07-24 | 1985-07-24 | Cleaning-up device for sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60161787A JPS6249994A (en) | 1985-07-24 | 1985-07-24 | Cleaning-up device for sewage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6249994A JPS6249994A (en) | 1987-03-04 |
JPH0155913B2 true JPH0155913B2 (en) | 1989-11-28 |
Family
ID=15741899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60161787A Granted JPS6249994A (en) | 1985-07-24 | 1985-07-24 | Cleaning-up device for sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6249994A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01199693A (en) * | 1988-02-04 | 1989-08-11 | Sumitomo Jukikai Envirotec Kk | Activated sludge type water treatment device |
-
1985
- 1985-07-24 JP JP60161787A patent/JPS6249994A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6249994A (en) | 1987-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0546279B2 (en) | ||
WO2021199885A1 (en) | Aerobic biofilm treatment method and device | |
JPH0155913B2 (en) | ||
JP4579450B2 (en) | Operation control method of oxidation ditch | |
JP3379199B2 (en) | Operation control method of activated sludge circulation method | |
JPH0724492A (en) | Method for controlling operation of activated sludge circulation change method | |
JP2579122B2 (en) | Wastewater treatment equipment | |
KR101709452B1 (en) | Method for treating wastewater | |
KR101743346B1 (en) | Apparatus and method for treating wastewater | |
JPH05192688A (en) | Anaerobic-aerobic activated sludge treating device using buffer tank | |
JP3303475B2 (en) | Operation control method of activated sludge circulation method | |
JP3444021B2 (en) | Control method and control device for oxidation ditch type water treatment apparatus | |
JP2000051892A (en) | Method and apparatus for nitrating waste water and activity detector | |
JP3260575B2 (en) | Control method of intermittent aeration type activated sludge method | |
JPH04326989A (en) | Treatment of waste water | |
KR20160141383A (en) | Apparatus for treating wastewater | |
KR20160140552A (en) | Method for treating wastewater | |
JPH06114392A (en) | Method for treating organic waste water and apparatus therefor | |
KR101709449B1 (en) | Method for treating wastewater | |
KR101709448B1 (en) | Method for treating wastewater | |
KR101709450B1 (en) | Method for treating wastewater | |
JPH05317884A (en) | Anaerobic-aerobic activated sludge treating device | |
JPH04317796A (en) | Purifying vessel for sewage and its driving method | |
KR20240080756A (en) | Wastewater treatment apparatus using hybrid vessel | |
JPH03267198A (en) | Operation of waste water treatment plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |