JPH0155888B2 - - Google Patents
Info
- Publication number
- JPH0155888B2 JPH0155888B2 JP56191364A JP19136481A JPH0155888B2 JP H0155888 B2 JPH0155888 B2 JP H0155888B2 JP 56191364 A JP56191364 A JP 56191364A JP 19136481 A JP19136481 A JP 19136481A JP H0155888 B2 JPH0155888 B2 JP H0155888B2
- Authority
- JP
- Japan
- Prior art keywords
- desorption
- gas
- adsorption
- treated
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003795 desorption Methods 0.000 claims description 120
- 238000001179 sorption measurement Methods 0.000 claims description 67
- 239000003960 organic solvent Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 26
- 238000002336 sorption--desorption measurement Methods 0.000 claims description 23
- 239000003463 adsorbent Substances 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 238000012805 post-processing Methods 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000003672 processing method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 116
- 238000010438 heat treatment Methods 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 230000007423 decrease Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000004332 deodorization Methods 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
本発明は、塗装ブース等の有機溶剤ガス発生源
から排出されてくるところの、比較的低濃度の有
機溶剤ガスを含有する被処理気体の処理方法に関
する。
上記のような塗装ブース等から排出される有機
溶剤ガスを含有する被処理気体は低濃度であるた
め、この被処理気体を直接燃焼方法等で燃焼処理
するには、膨大な燃料費を要し、実用的ではな
い。このような被処理気体は、一旦、活性化炭素
などの吸着材に吸着させ、少量の脱着用気体で脱
着して、濃縮した後に処理することが、その処理
効率上望ましい。
そして、脱着に関しては、脱着用気体としてス
チームを用いると、加熱のための必要熱量が比較
的大きく、しかも、脱着後の濃縮ガス中に多量の
水分が混入するため、その後の燃焼処理にも多量
の熱を要し、全体として熱的損失が大きいという
問題があり、また、不活性ガスを脱着用気体とし
て用いると、ガス自体が高価である上に、高圧ガ
スの貯蔵設備が必要で、何れの場合も、経済的見
地からみれば損失の大きいものである。
上記のようなスチームや不活性ガスに代えて、
脱着用気体として燃焼排ガスを利用する技術も提
案されている(例えば特開昭56−70819号公報、
あるいは、実公昭51−38224号公報)。このように
燃焼排ガスを脱着用気体として利用すれば、スチ
ームや不活性ガスを用いた場合のような前述の経
済的損失を解消する上では有効であるが、吸着体
に対して、高温の燃焼排ガスを脱着用気体として
通すため、吸着材の劣化を早め、耐久性が低下
し、この点でランニングコストがアツプすること
となる。
そして、上記提案された技術では、何れも、一
つあるいは二塔以上の塔内で、吸着(または脱
着)が終わつた後に、被処理気体(または脱着用
気体)の供給を止め、脱着用の燃焼排ガス(また
は被処理気体)を供給するように切換えて使用す
る、所謂、バツチ式の処理方法を採るものである
ため、その切換えの都度、脱着用気体に溶剤を混
入させた濃縮ガスの排出側の風量変動が大きく、
その脱着済み濃縮ガスを処理するための後処理装
置の稼動効率が低下し、この点で充分経済的な処
理を行えるものではなかつた。
そこで、従来では、前記低濃度の有機溶剤成分
を含む被処理気体を処理するにあたり、繊維状ま
たは微粉粒体状の吸着材(活性化炭素など)から
なる吸着体に、吸着域部分と脱着域部分とが同時
的に、かつ、別々の部位に形成され、さらに、そ
の吸着域と脱着域とが吸着体上で移り替つて、吸
着処理に引き続いて吸着終了後の吸着体部分が脱
着処理され、脱着処理に引き続いて脱着終了後の
吸着体部分が吸着処理されるように、吸着と脱着
とが同時的に、かつ、平衡して行われるように構
成してある吸脱着装置を用いて処理する方法が採
られていた(例えば、特公昭56−29576号公報)。
この吸脱着装置では、例えば、塔内に充填され
た吸着体に、破過点近くまで被吸着物質を吸着さ
せた後、エンタルピの大きいスチームで脱着する
という完全脱着に近い脱着十分の系で処理する方
法に比べて、破過点より遥かに低い吸着を行い、
かつ、比較的低温の加熱空気を用いて不十分な脱
着を行つて、吸着と脱着とが平衡を保つように脱
着不十分の系で処理するものであるから、脱着用
気体として比較的低温度(80〜140℃)の加熱空
気を用いることができ、所要エネルギーが少なく
て済むことと、比較的低温域で脱着を行うことが
できるものであるために、吸着体の劣化による損
失を低減できることとの相乗により、前述の各従
来技術に対しては、有機溶剤ガスの処理方法とし
て優れたものである。
しかしながら、この従来技術では、吸着量と脱
着量とを平衡させて連続的に処理を行うものであ
るため、脱着量の変動となる要因であるところ
の、脱着エネルギーを任意に変更することはでき
ず、つまり、脱着風量を減らして脱着済みガスの
濃度を上げようとすれば脱着量も減少し、脱着用
気体温度を限度以上に上げて脱着量を増すことに
より脱着済みガスのガス濃度を上げようとすれば
前述の低温域での脱着が行えなくなつて、この種
装置の特性が損なわれてしまうこととなり、結
局、脱着温度としては、所要脱着エネルギーが少
なくて済む比較的低温度で、かつ、吸着体の劣化
による損失を生じない限界近く程度の一定の温度
に定めるのが最適であり、また、脱着風量も、被
処理気体中の有機溶剤が適度の除去率で吸着除去
され続けたときの吸着量にみあつた脱着量を得る
に適正な程度の一定風量とならざるを得ないもの
であり、従つて、比較的低い温度で、かつ、定量
の風量を用いての脱着しか行えないがために、被
処理気体に対する脱着済みガスの濃縮比を充分満
足のいく程度にまで高めることは困難であつた。
一般に濃縮比とは、被処理気体中の有機溶剤成
分濃度CAと脱着済みガス中の有機溶剤成分濃度
CBとの比、つまり、
CB/CA=M(濃縮比)
であり、吸着域での吸着効率を100%とすれば、
濃縮比Mは、被処理気体の供給量QAと脱着用気
体の供給量QBとの比に等しくなり、
CB/CA=QA/QB=M
となるが、一般には、吸着効率(=除去率)をη
とすれば、
M=CB/CA=η・QA/QB
となり、除去率ηが増大すれば濃縮比は増すこと
になる。
しかしながら、除去率ηの向上に起因して濃縮
比が大になるという上記の理論式は、除去率ηの
増大に伴つて吸着量が増したとき、前記脱着用気
体の風量QBを増すことなく、吸着された有機溶
剤成分の全量を完全脱着したときに成り立つ式で
あり、また、脱着すべき有機溶剤成分の量が増え
たときに脱着用気体の風量QBを増すことができ
ないのなら、脱着用気体の温度を上げなければ脱
着エネルギーを増大することができないのも事実
であるから、上記理論式は、脱着用気体の風量
QBのみならず、温度も一定の状態で、しかも、
不完全脱着をすることで吸着と脱着とを平衡させ
ている前述の連続吸脱着式の吸脱着装置を用いた
処理方法には適用できず、エンタルピの大きいス
チームや高温の排ガス等を用いて脱着を行うバツ
チ式の従来例構造の吸脱着装置にしか適用できな
いものと認識されていた。
その上、前記除去率ηを向上させるための手段
としては、
(イ) 除湿装置を用いて被処理気体の絶対湿度を低
下させる。
(ロ) 加温装置を用いて被処理気体の相対湿度を低
下させる。
上記(イ)、(ロ)の手段が考えられるが、前記(イ)の手
段によるときは、除湿装置(濃縮型又は、吸収
型)の設置に伴つて、設備全体が複雑化、大型化
し易く、かつ、イニシヤルコストが膨大になるの
みならず、除湿装置の維持管理に手間を要し設備
の運転効率、ひいては、塗装装置自体の生産性を
悪化する欠点があり、実用的方法とはいえないも
のである。
また、前記(ロ)の手段によれば、(イ)の手段による
欠点を解消するには有効であるが、一般に活性化
炭素の吸着効率は、吸着対象となる気体の温度上
昇に伴つて低減していく傾向を有するため、温度
の上昇による吸着効率の低下割合を相対湿度の低
下による吸着効率向上の割合が上回るにしても、
大幅な湿度低下がなければ充分な吸着効率の向上
を望めないものであり、実験によれば、相対湿度
65%で吸着効率92%のとき、相対湿度を50%まで
低下させても吸着効率は95%までしか向上せず、
この程度の僅かな吸着効率向上では、単に吸着効
率を向上させて処理能力を高める目的では有効で
あるが被処理気体の経済的な処理を目的とした場
合には、前記加熱装置での消費エネルギーを考え
あわせると、吸着効率の向上を図ること自体がさ
ほど有効な手段とは認められていないものであつ
た。
本発明の目的は、上述のような従来の技術常識
を打破し、前記吸着と脱着とを平衡させて連続的
に吸脱着を行う吸脱着装置を用いて、有機溶剤ガ
スを含有する被処理気体の濃縮を、技術的にも経
済的にも有利に実施し得て、処理装置全体の稼動
負荷を低減することにある。
上記目的を達成するための本発明の特徴とする
構成は、繊維状または微粉粒状の活性化炭素を吸
着材とする吸着体に、吸着域部分と脱着域部分と
が同時的に、かつ、別々の部位に形成され、さら
に、その吸着域と脱着域とが吸着体上で移り替つ
て、吸着処理に引き続いて吸着終了後の吸着体部
分が脱着処理され、脱着処理に引き続いて脱着終
了後の吸着体部分が吸着処理されるように、吸着
と脱着とが同時的に、かつ、平衡して行われるよ
うに構成してある吸脱着装置を用いて、有機溶剤
ガスを含有する高相対湿度で常温の被処理気体を
処理する方法であつて、
〔イ〕 前記被処理気体を、吸脱着装置の吸着域を
通過させることにより、前記被処理気体から有
機溶剤成分を吸着除去し、
〔ロ〕 そののち、前記吸脱着装置の脱着域に、脱
着用気体を供給して、前記吸脱着装置に吸着さ
れている有機溶剤成分を脱着し、
〔ハ〕 その脱着された有機溶剤成分と前記脱着用
気体とが混合された濃縮ガスを後処理装置に供
給する
上記〔イ〕〜〔ハ〕の順で被処理気体を処理す
るとともに、前記脱着用気体は、前記被処理気体
の量よりは少量の加熱空気より構成されており、
さらに、前記被処理気体は、所定の吸着効率を維
持したままで脱着後の濃縮ガスの濃縮比をほぼ最
大値に維持せしめる温度に加熱昇温されているこ
とにあり、かかる構成から次の作用効果を奏す
る。
すなわち、吸着と脱着とを平衡させて連続的に
吸脱着を行う吸脱着装置特有の利点、つまり、吸
着体の劣化による損失を極力生じさせないで、し
かも、所要エネルギーが少なくて済む比較的低温
の加熱空気を脱着用気体として用いることのでき
るものでありながら、従来、溶剤等の吸着効率の
向上のためとしか認識されていなかつた相対湿度
の低下の技術に対する観点を変えて、相対湿度が
低下すれば有機溶剤の吸着量は増加しても水分の
吸着量は逆に低減することに着目し、しかも、相
対湿度低下のための加熱温度範囲が、所定の吸着
効率を維持するという条件下で、脱着後の濃縮ガ
スの濃縮比をほぼ最大値に維持する程度の、例え
ば常温から2〜15℃の範囲で昇温する程度であれ
ば、水分吸着量低減に起因して脱着エネルギーを
大幅に低減することのできる領域があることを実
験結果に基づいて知見し、この種の吸脱着装置に
前記相対湿度低下の技術をとり入れることを可能
にし、これに伴つて、大幅な濃縮比の向上を実現
し得たものである。
つまり、相対湿度を低下させたことで有機溶剤
の吸着量が増えれば有機溶剤の脱着量も増加させ
なければならず、そのための脱着エネルギーも必
然的に増加させなければならないのに対し、脱着
エネルギーとしての一定温度の脱着気体の風量
を、濃縮比の低減を避ける上で一定以下に保持し
ておく必要のあるこの種の吸脱着装置では、脱着
エネルギーを増大すること自体が不可能であるよ
うに思われていたが、前記の昇温範囲で相対湿度
を低下させたときには、有機溶剤の吸着量が増え
ても、水分の吸着量が大幅に減少し、しかも、有
機溶剤の吸着量が増えたことによる所要脱着エネ
ルギーの増加割合よりも、水分が減少したことに
よる所要脱着エネルギーの減少割合がはるかに上
回るものであるから、相対湿度を低下させたとき
の全脱着エネルギーが大幅に減少し、従つて、吸
着体の劣化による損失を生じさせない程度の低温
である一定温度の脱着用加熱空気の風量を少なく
して、その脱着用加熱空気中に混入される有機溶
剤成分の濃度を増し、高濃縮比での処理が経済的
に行えるに至つたものである。
このことは、次の表1、表2に示す実験結果か
らより一層明瞭に把握できる。
つまり、相対湿度RHと有機溶剤(ここでは一
例としてトルエンを示す)の平衡吸着量と水分の
平衡吸着量との関係は、
The present invention relates to a method for treating gas containing a relatively low concentration of organic solvent gas discharged from an organic solvent gas generation source such as a painting booth. The gas to be treated containing organic solvent gas discharged from painting booths, etc., as mentioned above, has a low concentration, so burning this gas by direct combustion requires a huge amount of fuel cost. , not practical. From the viewpoint of processing efficiency, it is desirable that such a gas to be treated is first adsorbed onto an adsorbent such as activated carbon, desorbed with a small amount of desorption gas, concentrated, and then treated. Regarding desorption, when steam is used as the desorption gas, the amount of heat required for heating is relatively large, and since a large amount of moisture is mixed into the concentrated gas after desorption, a large amount of water is required for the subsequent combustion process. of heat, resulting in a large overall thermal loss.Furthermore, if an inert gas is used as a desorption gas, not only is the gas itself expensive, but high-pressure gas storage equipment is required. In this case, the loss is also large from an economic standpoint. Instead of using steam or inert gas as mentioned above,
Techniques using combustion exhaust gas as a desorption gas have also been proposed (for example, Japanese Patent Application Laid-open No. 70819/1983,
Or Publication No. 51-38224). Using combustion exhaust gas as a desorption gas in this way is effective in eliminating the economic losses mentioned above when using steam or inert gas. Since exhaust gas is passed through as a desorption gas, the deterioration of the adsorbent is accelerated and its durability is reduced, which increases running costs. In all of the techniques proposed above, after adsorption (or desorption) is completed in one or more towers, the supply of the gas to be treated (or desorption gas) is stopped, and the desorption gas is stopped. Since the so-called batch treatment method is used, in which the supply of combustion exhaust gas (or gas to be treated) is switched, each time the switching is performed, the concentrated gas mixed with the solvent for desorption gas is discharged. There is a large fluctuation in the air volume on the side.
The operating efficiency of the post-processing device for processing the desorbed concentrated gas deteriorates, and in this respect it is not possible to carry out sufficiently economical processing. Therefore, in the past, when treating gases containing organic solvent components at low concentrations, an adsorbent made of a fibrous or finely divided adsorbent (activated carbon, etc.) was used to separate the adsorption area and desorption area. The adsorption zone and desorption zone are formed simultaneously on different sites, and the adsorption zone and desorption zone are switched on the adsorbent, and following the adsorption treatment, the adsorption body portion is subjected to the desorption treatment after the adsorption is completed. , using an adsorption/desorption device configured to carry out adsorption and desorption simultaneously and in equilibrium so that the adsorbent portion after the completion of desorption is adsorbed following the desorption process. (For example, Japanese Patent Publication No. 56-29576). In this adsorption/desorption device, for example, the adsorbent substance packed in the column adsorbs the adsorbed substance up to near the breakthrough point, and then desorbs it using steam with a large enthalpy. Compared to other methods, adsorption is much lower than the breakthrough point,
In addition, since the treatment is performed in a system with insufficient desorption to maintain an equilibrium between adsorption and desorption by performing insufficient desorption using relatively low-temperature heated air, relatively low-temperature gas is used as the desorption gas. (80 to 140°C) heated air can be used, requiring less energy, and since desorption can be performed at relatively low temperatures, losses due to deterioration of the adsorbent can be reduced. Due to the synergistic effect, this method is superior to the above-mentioned conventional techniques as a method for treating organic solvent gas. However, in this conventional technology, since the process is carried out continuously by balancing the amount of adsorption and the amount of desorption, it is not possible to arbitrarily change the desorption energy, which is a factor that causes fluctuations in the amount of desorption. In other words, if you try to increase the concentration of the desorbed gas by reducing the desorption air volume, the amount of desorption will also decrease, and by increasing the desorption amount by increasing the desorption gas temperature above the limit, the concentration of the desorbed gas will increase. If this were to be done, desorption would not be possible in the low-temperature range mentioned above, and the characteristics of this type of device would be impaired.In the end, the desorption temperature would be relatively low, requiring less energy for desorption. In addition, it is optimal to set the temperature at a constant temperature close to the limit that does not cause loss due to deterioration of the adsorbent, and also to set the desorption air volume so that the organic solvent in the gas to be treated continues to be adsorbed and removed at an appropriate removal rate. In order to obtain the amount of desorption commensurate with the amount of adsorption at the time, the air volume must be kept at an appropriate level, and therefore desorption can only be carried out at a relatively low temperature and using a fixed amount of air. Therefore, it has been difficult to increase the concentration ratio of the desorbed gas to the gas to be processed to a sufficiently satisfactory level. In general, the concentration ratio is defined as the organic solvent concentration C A in the gas to be treated and the organic solvent concentration C A in the desorbed gas.
The ratio with C B , that is, C B /C A = M (concentration ratio), and if the adsorption efficiency in the adsorption area is 100%,
The concentration ratio M is equal to the ratio of the supply amount Q A of the gas to be treated and the supply amount Q B of the desorption gas, and C B /C A = Q A /Q B = M. However, in general, adsorption Efficiency (=removal rate) is η
Then, M=C B /C A =η·Q A /Q B , and as the removal rate η increases, the concentration ratio increases. However, the above theoretical formula that the concentration ratio increases due to an increase in the removal rate η means that when the adsorption amount increases with an increase in the removal rate η, the air volume Q B of the desorption gas increases. This equation holds true when the entire amount of the adsorbed organic solvent component is completely desorbed, and if the air volume Q B of the desorption gas cannot be increased when the amount of organic solvent component to be desorbed increases. It is also true that the desorption energy cannot be increased unless the temperature of the desorption gas is increased, so the above theoretical formula is based on the air volume of the desorption gas.
Not only Q B but also the temperature is constant, and
It cannot be applied to the treatment method using the aforementioned continuous adsorption/desorption type adsorption/desorption equipment, which balances adsorption and desorption by performing incomplete desorption, and desorption is performed using steam with high enthalpy or high-temperature exhaust gas, etc. It was recognized that this method could only be applied to a conventional batch-type adsorption/desorption device that performs the following steps. Furthermore, as means for improving the removal rate η, (a) lowering the absolute humidity of the gas to be treated using a dehumidifying device; (b) Lower the relative humidity of the gas to be treated using a heating device. The above methods (a) and (b) are possible, but when using the above method (a), the entire equipment tends to become complicated and large due to the installation of a dehumidifier (concentration type or absorption type). However, this method is not only a practical method, but also has the drawback that it requires a lot of effort to maintain and manage the dehumidification equipment, which deteriorates the operating efficiency of the equipment and, by extension, the productivity of the coating equipment itself. It's something that doesn't exist. Furthermore, although the method (b) above is effective in eliminating the disadvantages of the method (a), the adsorption efficiency of activated carbon generally decreases as the temperature of the gas to be adsorbed increases. Therefore, even if the rate of increase in adsorption efficiency due to a decrease in relative humidity exceeds the rate of decrease in adsorption efficiency due to a rise in temperature,
A sufficient improvement in adsorption efficiency cannot be expected unless there is a significant decrease in humidity, and experiments have shown that the relative humidity
When the adsorption efficiency is 92% at 65%, even if the relative humidity is reduced to 50%, the adsorption efficiency will only increase to 95%.
This slight improvement in adsorption efficiency is effective for the purpose of simply improving adsorption efficiency and increasing processing capacity, but if the purpose is to economically process the gas to be treated, it is necessary to increase the energy consumption of the heating device. Taking these factors into consideration, improving adsorption efficiency itself was not recognized as a very effective means. An object of the present invention is to break through the conventional technical common sense as described above, and to use an adsorption/desorption device that continuously performs adsorption and desorption by balancing the adsorption and desorption, to process a gas to be treated containing an organic solvent gas. The objective is to be able to carry out the concentration technically and economically advantageously, and to reduce the operating load on the entire processing device. The characteristic configuration of the present invention for achieving the above object is that an adsorption zone portion and a desorption zone portion are simultaneously and separately formed on an adsorbent using fibrous or finely powdered activated carbon as an adsorbent. Furthermore, the adsorption area and desorption area are transferred on the adsorbent, and following the adsorption process, the adsorbent area after the completion of adsorption is subjected to the desorption process, and following the desorption process, the part of the adsorbent after the completion of desorption is processed. At high relative humidity containing an organic solvent gas, an adsorption/desorption device configured to perform adsorption and desorption simultaneously and in equilibrium is used to adsorb the adsorbent part. A method for treating a gas to be treated at room temperature, comprising: [a] passing the gas to be treated through an adsorption zone of an adsorption/desorption device to adsorb and remove an organic solvent component from the gas to be treated, and [b] After that, a desorption gas is supplied to the desorption region of the adsorption/desorption device to desorb the organic solvent component adsorbed by the adsorption/desorption device, and [c] the desorbed organic solvent component and the desorption region are Supply the concentrated gas mixed with gas to the post-processing device. The gas to be treated is processed in the order of [A] to [C] above, and the amount of the desorption gas is smaller than the amount of the gas to be treated. Consists of heated air,
Furthermore, the gas to be treated is heated to a temperature that maintains the concentration ratio of the concentrated gas after desorption at approximately the maximum value while maintaining a predetermined adsorption efficiency. be effective. In other words, the unique advantages of an adsorption/desorption device that performs continuous adsorption and desorption by balancing adsorption and desorption are that it can operate at a relatively low temperature with minimal loss due to deterioration of the adsorbent, and requires less energy. Although heated air can be used as a desorption gas, we have changed the perspective of technology for reducing relative humidity, which was previously only considered to be for improving the adsorption efficiency of solvents, etc., to reduce relative humidity. By doing this, we focused on the fact that even though the amount of organic solvent adsorption increases, the amount of water adsorption decreases.Moreover, under the condition that the heating temperature range for lowering relative humidity maintains a predetermined adsorption efficiency, , if the temperature is raised within the range of 2 to 15℃ from room temperature to maintain the concentration ratio of the concentrated gas after desorption at almost the maximum value, the desorption energy will be significantly reduced due to the reduction in the amount of water adsorption. Based on the experimental results, we found that there is a region in which the relative humidity can be reduced, and we have made it possible to incorporate the above-mentioned relative humidity reduction technology into this type of adsorption/desorption device, thereby significantly improving the concentration ratio. This was possible. In other words, if the amount of organic solvent adsorbed increases by lowering the relative humidity, the amount of organic solvent desorbed must also increase, and the desorption energy for this must also inevitably increase. In this type of adsorption/desorption equipment, where the flow rate of the desorption gas at a constant temperature must be kept below a certain level in order to avoid a reduction in the concentration ratio, it seems impossible to increase the desorption energy itself. However, when the relative humidity is lowered within the temperature range mentioned above, even if the amount of organic solvent adsorbed increases, the amount of water adsorbed decreases significantly, and moreover, the amount of organic solvent adsorbed increases. The rate of decrease in the required desorption energy due to the decrease in water content is far greater than the rate of increase in the required desorption energy due to the increase in the rate of increase in the required desorption energy due to the increase in the rate of increase in the required desorption energy. Therefore, the flow rate of heated air for desorption at a constant temperature that is low enough not to cause loss due to deterioration of the adsorbent is reduced, and the concentration of the organic solvent component mixed in the heated air for desorption is increased. This enabled processing at a concentrated ratio to be carried out economically. This can be understood more clearly from the experimental results shown in Tables 1 and 2 below. In other words, the relationship between the relative humidity RH, the equilibrium adsorption amount of an organic solvent (toluene is shown here as an example), and the equilibrium adsorption amount of water is as follows.
【表】
上記表1に示すように、相対湿度RHの低下で
トルエンの吸着量は増し、水分の吸着量は減るこ
とが解かる。[Table] As shown in Table 1 above, it can be seen that as the relative humidity RH decreases, the amount of toluene adsorbed increases and the amount of water adsorbed decreases.
【表】
上記表2に示すように、相対湿度RHの低下は
脱着エネルギーの低減にきわめて有効であること
が解かる。つまり、相対湿度RHが低下したこと
で、前記表1に示すようにトルエンの吸着量は増
加し、その増加したトルエンの脱着のためのエネ
ルギーも増大するが、それにも増して、水分の吸
着量が減り、この水分の脱着のためのエネルギー
が大幅に減少することで、全脱着エネルギーが大
きく節減できるのである。
以下に本発明の実施例をそれに使用する装置と
共に説明する。
第1実施例(第1図参照)
1は塗装ブースであつて、その底部には、該ブ
ース1内の空気を水洗いして塗料ミストを除去す
る水洗装置2が設けられてあり、この水洗装置2
を通過して排出されるところの塗装ブース1から
排出される有機溶剤ガスを含む被処理気体Aは相
対湿度が約75〜95%、温度が夏期で28〜32℃、冬
期で18〜23℃となつている。
3は前置ヒータであつて、前記被処理気体Aを
約2〜15℃の範囲で昇温させるように加熱するも
のであり、この前置ヒータ3としては、一般に空
気加熱用として汎用されている蒸気ヒータ又は温
水ヒータを使用する。
4はフイルターであつて、前記前置ヒータ3の
上流に設けられてあつて、前記被処理気体A中に
残留している微小なミストを除去するものであ
る。
5は吸着と脱着とを平衡させて連続的に吸脱着
処理を行うための吸脱着装置であつて、活性化炭
素繊維や活性化炭素粉粒体を他の繊維と混抄して
紙状にしたものを筒状のハニカム状ロータ6に組
立て、このロータ6をその中心線回りで一定方向
に回転する駆動装置7を設け、このロータ6を、
その吸着域6aが前記前置ヒータ3を通過した被
処理気体Aの通過経路に位置し、かつ、その脱着
域6bが比較的低温の加熱空気よりなる脱着用気
体Bの通過経路に位置する状態に配置して、その
位置での回転に伴い連続的に吸脱着作用を行うも
のである。尚、この吸脱着装置5の具体構造は前
記特公昭56−29576号公報に示されるように、当
業者において一般に周知なものであるからこれ以
上の詳しい説明は省略する。
10は脱着用気体に混入した有機溶剤成分を処
理する後処理装置であつて、次の構成を有してい
る。
前記吸脱着装置5の脱着域6bを通過した脱着
用気体Bは第1熱交換器9の加熱側を通つて加熱
され、この加熱された脱着用気体は、加熱装置を
兼ねる触媒酸化装置8に供給され、この触媒酸化
装置8において溶剤ガスは触媒燃焼されて脱臭処
理される。そして、脱臭処理後の排ガスは、前記
第1熱交換器9の被熱側を通つて前記脱着用気体
Bの予熱源として使用される。そして、この第1
熱交換器9を通つた排ガスは、第2熱交換器11
の放熱側を通つて外気へ排出される。この第2熱
交換器11の加熱側には前記吸着装置5に向かう
脱着用気体Bが通り、ここで加熱されるもので、
加熱される脱着用気体Bはフイルタ12を通つて
浄化された外気である。
13は前記第2熱交換器11を迂回するバイパ
ス路であつて、前記第2熱交換器11による加熱
作用によつて脱着用に適した温度に調整するため
のものである。
14は前記触媒酸化装置8内に設けた予熱用バ
ーナである。15は触媒である。この様にして、
脱着用気体Bを燃焼脱臭すると共に、その燃焼脱
臭にて生じた熱を脱着用気体Bの加熱用に利用し
てある。なお、上記各部の具体的構造は周知であ
るから、これ以上詳しい説明は省略する。
該実施例の装置による実験結果を第5図に示
す。
第5図のグラフにおいて縦軸は被処理気体(空
気)中の有機溶剤ガス濃度CAと、脱着式の気体
中の有機溶剤ガス濃度CBとの比、つまり濃縮比
Mを示す。
CB/CA=M
同横軸は前記前置ヒータ3によつて加熱され被
処理気体の温度T(℃)変化を示す。
吸着域6aでの吸着効率を100%とすれば、濃
縮被Mは、被処理気体の供給量QAと、脱着域6
bを通る脱着用気体Bの供給量QBとの比に等し
くなり、
CB/CA=QA/QB=M
となる。一般には、吸着効率(=除去率)をη
(%)とすれば、
M=CB/CA=η・QA/QB
である。
同グラフ中線aは次の条件設定における実験
結果を示す。
QA=1200m3/h
tO=32℃(加熱前温度)
吸着前の被処理気体濃度=100ppm
吸着後の被処理気体濃度=4.5ppm
吸着効率η=95.5%
前置ヒータ加熱前相対湿度=80%
脱着用気体の脱着域供給温度=120℃
被処理気体に含有される有機溶剤ガスはトル
エンを主成分とする。
同グラフ中線bは次の条件設定における実験
結果を示す。
QA=1200m3/h
tO=31℃
x=23g/Kg′〔絶対温度〕
吸着前の被処理気体濃度=175ppm
吸着後の被処理気体濃度=10.0ppm
吸着効率η=90%
前置ヒータ加熱前相対湿度=80%
脱着用気体の脱着域供給温度=120℃
被処理気体に含有される有機溶剤ガスは1PA
とキシレンの1:1混合比とする。
同グラフ中線cは次の条件設定における実験
結果を示す。
QA=1200m3/h
tO=30℃
X=20g/Kg′
吸着前の被処理気体濃度=128ppm
吸着後の被処理気体濃度=11.5ppm
吸着効率η=91%
前置ヒータ加熱前相対湿度=75.5%
脱着用気体の脱着域供給温度=120℃
被処理気体に含有される有機溶剤ガスは1PA
を主成分とする。
次に脱着時の吸着物質(水分を含む)の出口濃
度と相対湿度との関係を示すと第6図に示すグラ
フの通りである。ただし脱着条件は同一とする。
このグラフでは風量一定で脱着用気体Bの温度は
120℃とした。同図イは相対湿度RH=80%での
水分X1の濃度と有機溶剤X2の濃度とを示し、水
分X1はg/Kgで、かつ、有機溶剤はCH4PPM(メ
タン換算濃度)で夫々表してある。同様に同図ロ
は相対湿度RH=65%の場合、同図ハは相対湿度
RH=50%の場合を示す。このグラフに示される
ように、相対湿度RHが低下するほど水分X1の出
口濃度は低くなり、有機溶剤X2に対して脱着エ
ネルギーが有効に作用していることが判り、ま
た、相対湿度RHが高いときには水分X1が有機溶
剤X2に先立つて脱着され、このための脱着エネ
ルギーが無駄に消費されていることが判る。
第2実施例(第2図参照)
前記前置ヒータ3を間接熱交換器とし、この加
熱側に前記第1熱交換器9と第2熱交換器11と
の間の脱着用気体を一部通過させ、脱着用気体の
燃焼脱臭により生じた熱量を被処理気体の燃焼脱
臭に利用したものである。その他は前記第1実施
例と同様の構成とする。なお、第2熱交換器11
を通過した脱着用気体の一部を前記前置ヒータ3
である熱交換器の加熱側を通すのも良い。
第3実施例(第3図参照)
後処理装置10の加熱装置8を以下の通りに構
成する。その他は前記第1実施例と同様な構成と
する。
フイルタ16を通つた外気を間接熱交換器17
の加熱側に通し、次にヒータ18を通して前記吸
脱着装置5の脱着域6bを通過させ、次に前記間
接熱交換器17の吸熱側を通つてクーラ19に入
り、そして、溶剤回収装置20に入つて、溶剤ガ
ス等を液化して分離回収するように構成する。
上記各部の構成については、夫々周知であり、
これ以上の詳しい説明は省略する。
第4実施例(第4図参照)
前記第3実施例のものにおいて、その前置ヒー
タ3を間接熱交換器とし、その吸熱側に前記加熱
装置8の熱交換器17からクーラ19間における
脱着用気体の一部をバイパスさせること。その他
は前記第3実施例と同様とする。
前記の各実施例において、以下の一つ又は複数
の組合わせで実施するも良い。
前記ロータ6に対する被処理気体あるいは脱
着用気体の通過方向を半径方向とすること。
前記前置ヒータ3を、バーナ加熱式とするこ
と。
前記後処理装置10の燃焼脱臭については、
触媒燃焼に限らずバーナ燃焼とすること。[Table] As shown in Table 2 above, it can be seen that lowering the relative humidity RH is extremely effective in reducing desorption energy. In other words, as the relative humidity RH decreases, the amount of toluene adsorbed increases as shown in Table 1 above, and the energy for desorption of the increased toluene also increases. The energy required for desorption of this water is greatly reduced, and the total desorption energy can be greatly reduced. Embodiments of the present invention will be described below along with devices used therein. First Embodiment (See Figure 1) Reference numeral 1 denotes a painting booth, and a water washing device 2 is provided at the bottom of the booth 1 to wash the air inside the booth 1 with water to remove paint mist. 2
The gas to be treated A containing organic solvent gas discharged from the coating booth 1 through which it is discharged has a relative humidity of approximately 75 to 95% and a temperature of 28 to 32 degrees Celsius in summer and 18 to 23 degrees Celsius in winter. It is becoming. Reference numeral 3 denotes a preheater, which heats the gas A to be treated so as to raise the temperature in the range of about 2 to 15°C, and this preheater 3 is generally used for heating air. Use a steam heater or hot water heater. A filter 4 is provided upstream of the preheater 3 to remove fine mist remaining in the gas A to be treated. 5 is an adsorption/desorption device for continuously performing adsorption/desorption processing by balancing adsorption and desorption, and is made by mixing activated carbon fibers or activated carbon powder with other fibers to form paper. The rotor 6 is assembled into a cylindrical honeycomb rotor 6, and a drive device 7 is provided to rotate the rotor 6 in a fixed direction around its center line.
A state in which the adsorption region 6a is located in the passage path of the gas to be processed A that has passed through the preheater 3, and the desorption region 6b is located in the passage path of the desorption gas B made of heated air at a relatively low temperature. The device is placed at a position where it continuously performs adsorption and desorption operations as it rotates at that position. The specific structure of this adsorption/desorption device 5 is generally well known to those skilled in the art, as shown in Japanese Patent Publication No. 56-29576, and therefore further detailed explanation will be omitted. Reference numeral 10 denotes a post-treatment device for treating the organic solvent component mixed in the desorption gas, and has the following configuration. The desorption gas B that has passed through the desorption zone 6b of the adsorption/desorption device 5 is heated through the heating side of the first heat exchanger 9, and this heated desorption gas is sent to the catalytic oxidation device 8 which also serves as a heating device. The solvent gas is catalytically combusted and deodorized in the catalytic oxidizer 8. The exhaust gas after the deodorization process passes through the heated side of the first heat exchanger 9 and is used as a preheating source for the desorption gas B. And this first
The exhaust gas that has passed through the heat exchanger 9 is transferred to the second heat exchanger 11
is discharged to the outside air through the heat dissipation side of the The desorption gas B heading for the adsorption device 5 passes through the heating side of the second heat exchanger 11 and is heated here.
The desorption gas B to be heated is outside air that has been purified through the filter 12. A bypass passage 13 bypasses the second heat exchanger 11, and is used to adjust the temperature to a temperature suitable for desorption by the heating action of the second heat exchanger 11. 14 is a preheating burner provided in the catalytic oxidation device 8. 15 is a catalyst. In this way,
The deodorizing gas B is deodorized by combustion, and the heat generated by the combustion deodorizing is used to heat the desorbing gas B. Note that since the specific structure of each of the above parts is well known, further detailed explanation will be omitted. The experimental results using the apparatus of this example are shown in FIG. In the graph of FIG. 5, the vertical axis indicates the ratio of the organic solvent gas concentration C A in the gas to be treated (air) to the organic solvent gas concentration C B in the desorption type gas, that is, the concentration ratio M. C B /C A =M The horizontal axis shows the change in temperature T (°C) of the gas to be processed heated by the preheater 3. Assuming that the adsorption efficiency in the adsorption zone 6a is 100%, the concentration target M is equal to the supply amount Q A of the gas to be treated and the desorption zone 6
It is equal to the ratio of the supply amount Q B of the desorption gas B passing through b, and C B /C A =Q A /Q B =M. In general, adsorption efficiency (=removal rate) is defined as η
(%), M=C B /C A = η・Q A /Q B. The middle line a in the graph shows the experimental results under the following condition settings. Q A = 1200m 3 /h t O = 32℃ (temperature before heating) Concentration of gas to be treated before adsorption = 100ppm Concentration of gas to be treated after adsorption = 4.5ppm Adsorption efficiency η = 95.5% Relative humidity before preheater heating = 80% Desorption zone supply temperature of desorption gas = 120°C The organic solvent gas contained in the gas to be treated is mainly toluene. The middle line b in the graph shows the experimental results under the following condition settings. Q A = 1200m 3 /h t O = 31℃ x = 23g/Kg' [absolute temperature] Concentration of gas to be treated before adsorption = 175ppm Concentration of gas to be treated after adsorption = 10.0ppm Adsorption efficiency η = 90% Preheater Relative humidity before heating = 80% Desorption zone supply temperature of desorption gas = 120℃ Organic solvent gas contained in the gas to be treated is 1PA
and xylene in a 1:1 mixing ratio. The middle line c in the graph shows the experimental results under the following condition settings. Q A = 1200m 3 /h t O = 30°C =75.5% Desorption zone supply temperature of desorption gas = 120℃ Organic solvent gas contained in the gas to be treated is 1PA
The main component is Next, the relationship between the outlet concentration of adsorbed substances (including water) during desorption and relative humidity is shown in the graph shown in FIG. 6. However, the conditions for attachment and detachment are the same.
In this graph, when the air volume is constant, the temperature of desorption gas B is
The temperature was 120℃. Figure A shows the concentration of moisture They are respectively expressed in . Similarly, the figure B shows the relative humidity when RH=65%, and the figure C shows the relative humidity.
The case where RH=50% is shown. As shown in this graph, as the relative humidity RH decreases, the outlet concentration of water X 1 decreases, indicating that desorption energy is effectively acting on the organic solvent It can be seen that when is high, water X 1 is desorbed before organic solvent X 2 , and the desorption energy for this is wasted. Second embodiment (see Figure 2) The preheater 3 is an indirect heat exchanger, and a part of the desorption gas between the first heat exchanger 9 and the second heat exchanger 11 is supplied to the heating side. The amount of heat generated by combustion deodorization of the desorption gas is used for combustion deodorization of the gas to be treated. The rest of the structure is the same as that of the first embodiment. Note that the second heat exchanger 11
A part of the desorption gas that has passed through is transferred to the preheater 3.
It is also good to pass it through the heating side of a heat exchanger. Third Embodiment (See FIG. 3) The heating device 8 of the post-processing device 10 is configured as follows. The rest of the structure is the same as that of the first embodiment. The outside air that has passed through the filter 16 is transferred to the indirect heat exchanger 17
, then passes through the heater 18 and the desorption zone 6b of the adsorption/desorption device 5, then passes through the endothermic side of the indirect heat exchanger 17, enters the cooler 19, and then enters the solvent recovery device 20. The system is configured to liquefy and separate and recover solvent gas, etc. The configurations of each of the above parts are well known,
Further detailed explanation will be omitted. Fourth Embodiment (See Figure 4) In the third embodiment, the preheater 3 is an indirect heat exchanger, and on the heat absorption side there is a connection between the heat exchanger 17 and the cooler 19 of the heating device 8. Bypassing a portion of the gas for use. The rest is the same as the third embodiment. In each of the embodiments described above, one or more of the following combinations may be used. The direction in which the gas to be treated or the gas for desorption passes through the rotor 6 is the radial direction. The preheater 3 is of a burner heating type. Regarding the combustion deodorization of the after-treatment device 10,
Burner combustion should be used instead of catalytic combustion.
図面は本発明に係る有機溶剤ガスの処理方法の
実施例を示し、第1図は第1実施例を示すフロー
チヤート、第2図は第2実施例を示すフローチヤ
ート、第3図は第3実施例を示すフローチヤー
ト、第4図は第4実施例を示すフローチヤート、
第5図および第6図は実験結果を示すグラフであ
る。
5……吸脱着装置、6a……吸着域、6b……
脱着域、A……被処理気体、B……脱着用気体。
The drawings show an example of the method for treating organic solvent gas according to the present invention, FIG. 1 is a flowchart showing the first embodiment, FIG. 2 is a flowchart showing the second embodiment, and FIG. 3 is a flowchart showing the third embodiment. Flowchart showing the embodiment, FIG. 4 is a flowchart showing the fourth embodiment,
FIGS. 5 and 6 are graphs showing experimental results. 5...Adsorption/desorption device, 6a...Adsorption area, 6b...
Desorption area, A... gas to be treated, B... gas for desorption.
Claims (1)
とする吸着体に、吸着域6a部分と脱着域6b部
分とが同時的に、かつ、別々の部位に形成され、
さらに、その吸着域6aと脱着域6bとが吸着体
上で移り替つて、吸着処理に引き続いて吸着終了
後の吸着体部分が脱着処理され、脱着処理に引き
続いて脱着終了後の吸着体部分が吸着処理される
ように、吸着と脱着とが同時的に、かつ、平衡し
て行われるように構成してある吸脱着装置5を用
いて、有機溶剤ガスを含有する高相対湿度で常温
の被処理気体Aを処理する方法であつて、 〔イ〕 前記被処理気体Aを、吸脱着装置5の吸着
域6aを通過させることにより、前記被処理気
体Aから有機溶剤成分を吸着除去し、 〔ロ〕 そののち、前記吸脱着装置5の脱着域6b
に、脱着用気体Bを供給して、前記吸脱着装置
5に吸着されている有機溶剤成分を脱着し、 〔ハ〕 その脱着された有機溶剤成分と前記脱着用
気体Bとが混合された濃縮ガスを後処理装置1
0に供給する 上記〔イ〕〜〔ハ〕の順で被処理気体Aを処理
するとともに、前記脱着用気体Bは、前記被処理
気体Aの量よりは少量の加熱空気より構成されて
おり、さらに、前記被処理気体Aは、所定の吸着
効率を維持したままで脱着後の濃縮ガスの濃縮比
をほぼ最大値に維持せしめる温度に加熱昇温され
ていることを特徴とする有機溶剤ガスの処理方
法。[Scope of Claims] 1. An adsorption region 6a portion and a desorption region 6b portion are formed simultaneously and in separate parts in an adsorbent using activated carbon in the form of fibers or fine particles as an adsorbent,
Furthermore, the adsorption zone 6a and the desorption zone 6b are switched on the adsorbent, and following the adsorption treatment, the adsorption body portion after the completion of adsorption is subjected to the desorption treatment, and following the desorption treatment, the adsorption body portion after the completion of desorption is An adsorption/desorption device 5 configured to perform adsorption and desorption simultaneously and in equilibrium is used to absorb an organic solvent gas under high relative humidity and room temperature. A method for treating gas A to be treated, comprising: (a) passing the gas to be treated A through an adsorption zone 6a of an adsorption/desorption device 5 to adsorb and remove an organic solvent component from the gas to be treated A; (b) After that, the desorption area 6b of the adsorption/desorption device 5
, a desorption gas B is supplied to desorb the organic solvent component adsorbed on the adsorption/desorption device 5, and [c] the desorbed organic solvent component and the desorption gas B are mixed to form a concentrated mixture. Gas post-processing device 1
The gas to be treated A is treated in the order of [A] to [C] above, and the desorption gas B is composed of heated air in a smaller amount than the amount of the gas to be treated A, Furthermore, the to-be-treated gas A is heated to a temperature that maintains the concentration ratio of the concentrated gas after desorption to a substantially maximum value while maintaining a predetermined adsorption efficiency. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191364A JPS5892444A (en) | 1981-11-27 | 1981-11-27 | Adsorptive removal of organic solvent gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191364A JPS5892444A (en) | 1981-11-27 | 1981-11-27 | Adsorptive removal of organic solvent gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5892444A JPS5892444A (en) | 1983-06-01 |
JPH0155888B2 true JPH0155888B2 (en) | 1989-11-28 |
Family
ID=16273343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56191364A Granted JPS5892444A (en) | 1981-11-27 | 1981-11-27 | Adsorptive removal of organic solvent gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5892444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012013A (en) * | 2018-06-22 | 2018-12-18 | 佛山市墺林环保科技有限公司 | A kind of method and device of exhaust gas desorption condensing recovery |
CN109012014A (en) * | 2018-06-22 | 2018-12-18 | 佛山市墺林环保科技有限公司 | A kind of method and device of exhaust gas active-carbon adsorption desorption condensing recovery |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622654B2 (en) * | 1985-12-06 | 1994-03-30 | 東洋紡績株式会社 | Method for adsorption removal of halogenated hydrocarbon gas |
JP2002159821A (en) * | 2000-11-28 | 2002-06-04 | Seibu Giken Co Ltd | Organic gas concentrator |
JP4305719B2 (en) * | 2002-09-13 | 2009-07-29 | 東洋紡績株式会社 | Organic solvent processing equipment |
JP2009160583A (en) * | 2009-04-20 | 2009-07-23 | Toyobo Co Ltd | Method for treating organic solvent gas |
JP5744488B2 (en) * | 2010-11-29 | 2015-07-08 | 本田技研工業株式会社 | Exhaust gas treatment equipment |
CN105597490B (en) * | 2014-11-20 | 2020-12-01 | 杰智环境科技股份有限公司 | Organic waste gas adsorption, desorption, concentration and purification system and method thereof |
-
1981
- 1981-11-27 JP JP56191364A patent/JPS5892444A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012013A (en) * | 2018-06-22 | 2018-12-18 | 佛山市墺林环保科技有限公司 | A kind of method and device of exhaust gas desorption condensing recovery |
CN109012014A (en) * | 2018-06-22 | 2018-12-18 | 佛山市墺林环保科技有限公司 | A kind of method and device of exhaust gas active-carbon adsorption desorption condensing recovery |
Also Published As
Publication number | Publication date |
---|---|
JPS5892444A (en) | 1983-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5198001A (en) | Apparatus and process for removing organic compounds from a gas stream | |
US5701762A (en) | Apparatus for recovering high-boiling point solvents | |
JP2557307B2 (en) | NOx adsorption removal method | |
JPS6240285B2 (en) | ||
JP2001500787A (en) | Method and apparatus for removing gaseous organic matter from air | |
CN102049189B (en) | Method for purifying organic waste gas | |
US6294000B1 (en) | Rotary concentrator and method of processing adsorbable pollutants | |
JPH11137944A (en) | Gas treatment equipment | |
US4259301A (en) | Removal of acidic compounds from gaseous mixtures | |
JPH04171019A (en) | Process for removing water content in mixed gas | |
JPH0155888B2 (en) | ||
CN105771582A (en) | Treatment method of waste gas generated by production of modified asphalt waterproof material | |
JP2009226319A (en) | Gas concentration apparatus | |
JP7280694B2 (en) | Adsorbent regeneration device, VOC recovery device, VOC recovery system, and adsorbent regeneration method | |
KR20050107323A (en) | Catalystic combustion system of concentration by adsorption and desorption by counter-flow heating air | |
KR20010099169A (en) | The absorbent of volatile orgarnic compound at paint booth and its regeneration method | |
JPS63294945A (en) | Method for regenerating activated carbon at low temperature | |
JPH1015338A (en) | Deodorizing device | |
JP2021169097A (en) | Organic solvent gas concentrator | |
JP2997134B2 (en) | Exhaust treatment device | |
JP2007021363A (en) | Adsorbing member for gas cleaning apparatus and gas cleaning apparatus | |
JPH0141372B2 (en) | ||
TWM570308U (en) | No heat regeneration system | |
JPS60820A (en) | Deodorization treatment method for odor gas | |
JPS6186928A (en) | Treatment of exhaust gas containing organic solvent |