JP4305719B2 - Organic solvent processing equipment - Google Patents

Organic solvent processing equipment Download PDF

Info

Publication number
JP4305719B2
JP4305719B2 JP2002268907A JP2002268907A JP4305719B2 JP 4305719 B2 JP4305719 B2 JP 4305719B2 JP 2002268907 A JP2002268907 A JP 2002268907A JP 2002268907 A JP2002268907 A JP 2002268907A JP 4305719 B2 JP4305719 B2 JP 4305719B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
organic solvent
treated
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002268907A
Other languages
Japanese (ja)
Other versions
JP2004105807A (en
Inventor
友明 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002268907A priority Critical patent/JP4305719B2/en
Publication of JP2004105807A publication Critical patent/JP2004105807A/en
Application granted granted Critical
Publication of JP4305719B2 publication Critical patent/JP4305719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、大気への有機溶剤の飛散を最小限として、有機溶剤を最大限に回収することを可能とした有機溶剤処理装置に関するものである。
【0002】
【従来の技術】
近年、有害大気汚染物質に対する排出濃度規制が強化されてきており、有機溶剤処理装置からの排ガス中の有機溶剤濃度を最大限に低減することが望まれている。
【0003】
従来、上記処理装置には吸着材として活性炭素繊維や粒状活性炭が充填されている吸着槽が2基以上設けられている他に、各吸着槽に対する有機溶剤が含有した被処理ガスを供給する手段と水蒸気を噴出する脱着手段とを設け、前記吸着槽にて被処理ガスを吸着処理する吸着工程と脱着手段にて脱着を行う脱着工程とを交互に切り替える手段が設けて構成してあった。
【0004】
吸着に関与する細孔が粒状活性炭ではマクロポアであるのに対し活性炭素繊維ではミクロポアであることなどから、有機溶剤の吸着・脱着速度が活性炭素繊維の方が速く、また脱着時間が短時間で終了するため回収溶剤の品質が良いことが挙げられる。また、吸着材を水蒸気にて脱着を行うと、一旦吸着材が湿ることにより、吸着性能を長期間の運転において維持するには吸着材を次の脱着までに乾燥させる必要がある。この乾燥が不十分であると運転が進むに連れ吸着材の湿る部分が広がり、吸着性能を大幅に低下させる。活性炭素繊維は粒状活性炭に比べ乾燥が極めて速く行われることから、吸着工程が乾燥を兼ねるケースが一般的であった。
【0005】
しかしながら、被処理ガスの有機溶剤濃度が増すに連れ、処理風量当たりの吸着材の多くなることから、乾燥を吸着工程で兼ねることは困難となっていき、下記の様々な対策が取られてきた。
(1)単独にて乾燥工程を設ける:乾燥用の吸着槽をもう1槽追加する 必要があることから、装置が大型化となる上、処理系統が複雑にな る問題がある。
(2)被処理ガスの吸着前温度を上げる(特許文献1参照):吸着温度 を上げるに従い、吸着効率が低下する問題がある。
(3)被処理ガスの吸着前相対湿度を下げる:水分除去の付属装置が必 要である。
(4)被処理ガスを希釈して風量を増加させる(特許文献1参照4): 吸着する有機溶剤濃度が下がるため、吸着効率も下がる。
【0006】
これらの対策を行っても、吸着工程特に吸着初期においては乾燥が十分でなく、吸着材が湿っており高温であることから吸着能力が完全に回復していないため処理済ガス中に有機溶剤が漏れだすことがあった。また、吸着材の取付部の隙間や充填による隙間が極微量ではあるが発生するため、これらの隙間から被処理ガスが漏れ出すなどにより、1段のみの吸着工程での除去性能は98〜99%が限界となり、さらに除去性能を高めるには直列接続の多段吸着処理を行う必要があった。
【0007】
メタノール、エタノール、イソプロピルアルコール等の低級アルコールを吸着処理する場合、分子径が小さく、極性が高いため、吸着材における吸着は物理吸着よりもむしろ吸着材に吸着した水分への吸収による吸着が寄与することから、脱着から吸着に切り替わった直後は吸着性能が高く、その後乾燥が進むにつれ吸着性能が低下するため、吸着時間の経過により吸着材の出口濃度が短時間で急激に上昇する。この対策としては、上記のように吸着材の乾燥を優先に行うのではなく、加湿等にて被処理ガスの相対湿度を上げて、吸着材の湿りを維持させる方策により吸着性能の低下を防いできた。
【0008】
【特許文献1】
特開昭58−92444号公報
【0009】
【発明が解決しようとする課題】
近年の環境認識の向上に伴い、排出ガス中の有機溶剤含有量の規制が強化されたことから、有機溶剤含有量の低減化が活発となって来ている。被処理ガスの有機溶剤濃度が高濃度の場合においては、除去性能が99%以上を求められるため、直列多段処理を行うケースが増して来ている。直列多段処理の順序としては、被処理ガスを最初に吸着処理する1段目の工程を第1吸着工程とし、その後に処理効率が上がるに従い処理経路に直列に接続された吸着処理工程を2段目(第2吸着工程)、3段目(第3吸着工程)と増していくことになる。尚、脱着効率を落とさないために、脱着は吸着処理の1段目である第1吸着工程が終了した後に行うことが最良であり、直列2段吸着処理の例に取ると、特定の吸着槽での処理サイクルは脱着→第2吸着工程→第1吸着工程→脱着となる。
【0010】
しかし、直列2段以上の処理の場合、第1吸着工程では高濃度有機溶剤の吸着熱により、吸着材に吸着していた水分が蒸発し、この水分が次工程の第2吸着工程に移り、第2吸着工程での乾燥を阻害させてしまう。さらに、この水分が第1吸着工程と第2吸着工程との間で循環し、最終的には吸着材の乾燥不良となり、吸着材が湿りだし最終的には濡れることにより吸着効率が大幅に低下する。
【0011】
この吸着熱は有機溶剤濃度に比例することから、濃度が高ければ高い程吸着熱の発生量が増し、吸着材の温度上昇、処理済ガスの温度上昇及び水分の蒸発などが発生するため、第1吸着工程の吸着材の吸着効率を低下させるだけでなく、後工程である第2吸着工程へ悪影響を及ぼすことを考慮して細心の注意を払って装置設計に取り組む必要があった。また、被処理ガスが高濃度で低風量の場合に顕著となる。吸着熱の発生を抑制する方法としては、被処理ガスの有機溶剤濃度を希釈などにより下げる方法があるが、吸着濃度を下げすぎると吸着効率も大きく低下することから吸着材量を多くしなければならい。また、外気による希釈では加熱手段も用いることのより、年間を通して、ある程度第1吸着工程への乾燥効果に関してある程度期待出来るが、相対湿度(水分濃度)が安定しないため、メタノール等の低級アルコールの吸着効率が大きく変動し、例えば夏期の処理性能は良くて冬期は悪くなるなどの問題があった。
【0012】
本発明は高濃度(1万ppm以上)のメタノール等の低級アルコールを含んだ有機溶剤処理において、高濃度であることから希釈にて吸着熱の影響を回避する場合、第1吸着工程から吸着熱により蒸発した水分を含んだ出口の処理済ガスの一部を第1吸着工程の入口に戻すことにより、第1吸着工程入口処理前ガスの風量及び相対湿度を上げることが出来ることから、従来よりもコンパクトでありランニングコストも安価となる有機溶剤処理装置を提供するものである。
【0013】
【課題を解決するための手段】
即ち、本発明は高濃度(1万ppm以上)のメタノール等の低級アルコールを含んだ有機溶剤処理において、高濃度であることから希釈にて吸着熱の影響を回避する場合、1段目吸着槽出口から1段目吸着槽入口に戻す経路及び流量調節弁を設けて、第1吸着工程から吸着熱により蒸発した水分を含んだ出口の処理済ガスの一部を第1吸着工程の入口の希釈用として使用することにより、第1吸着工程入口の処理ガスの相対湿度を上げて、吸着材の湿り状態を維持し、吸着(乾燥)の進行によるメタノール等の低級アルコールの吸着性能低下を防ぐことが出来る。
【0014】
被処理ガスに付加する希釈風量(戻り風量)を増やしていき、吸着する有機溶剤の濃度が下がり吸着熱の発生による吸着処理後のガスの温度上昇幅が15℃以下に好ましくは10℃以下となるように調整される。
【0015】
濃度が非常に高く(数万ppm以上)希釈倍率を高くとる場合には第1吸着工程出口の処理済ガスの一部を戻すだけでは不足するため、外気取り入れ手段を設けることにより不足分を補うことも可能である。
【0016】
上記は吸着材の湿り状態を維持させる方法であるが、乾燥が全く不十分となり吸着材が濡れる場合においては、第2吸着工程入口にて処理ガスを外気にて希釈し第2吸着工程に流れる処理ガスの風量を増す方法及び冷却・加熱手段により第2吸着工程に流れる処理ガスの相対湿度を下げる方法等を取ることにより、第1吸着処理によって低濃度となったメタノール等の低級アルコールの吸着処理を行う第2吸着工程においての乾燥を促進させて吸着材が濡れることを防止することがある。
【0017】
第1吸着工程出口の処理済ガスの一部を用いて第1吸着工程入口において被処理ガスの希釈を行うと、吸着熱によって蒸発した水分の一部が第1吸着工程入口に戻ることにより、第1吸着工程の入口ガスの相対湿度が上がり吸着材の温度上昇を抑えて乾燥を抑制する効果がある。
【0018】
この結果、本発明により連続的に高濃度有機溶剤含有ガスを高効率に除去することが可能となり非常に操作性に優れるとともに、長期期間にわたっての高性能を維持することが可能となった。
【0019】
【発明の実施の形態】
本発明の一実施形態を図1にて説明する。有機溶剤含有ガスAは第1吸着出口の処理済ガスの一部と混合されて、送風機1にて自動ダンパー11の開閉により第1吸着工程となっている吸着槽2に送られ、有機溶剤は吸着槽2内の吸着材を通過中に吸着されて被処理ガスとなって排出される。しかしこの被処理ガス中には第1吸着工程で漏れだした有機溶剤が含まれていることから、さらに吸着処理を行うため、第2吸着工程へ送風機5にて送られ、第2吸着工程となっている吸着槽2にて処理後清浄ガスとなって系外へ排出される。第2吸着工程の後、第1吸着工程が終了した吸着槽2は脱着工程に切り替わり自動ダンパー11で封鎖され、吸着槽2内に水蒸気を噴出して、すでに吸着材に吸着された有機溶剤ガスを脱着する。脱着された有機溶剤ガスはコンデンサー6へ送られる。脱着された有機溶剤ガスと水蒸気はコンデンサー6にて凝縮し、凝縮した有機溶剤は回収溶剤として得られる。
【0020】
第1吸着工程から吸着熱により蒸発した水分を含んだ出口の処理済ガスの一部Hを流量調節弁14の開閉により、第1吸着工程の入口の希釈用として送風機1の吸い込み側にて有機溶剤含有ガスAと混合する経路を設けることにより、第1吸着工程入口の処理ガスの相対湿度を上げて、吸着材の湿り状態を維持し、吸着(乾燥)の進行によるメタノールの吸着性能低下を防ぐ。
【0021】
第1吸着工程出口の処理済ガスの一部を用いて第1吸着工程入口において被処理ガスの希釈を行うと共に、吸着熱によって蒸発した水分の一部が第1吸着工程入口に戻ることにより、第1吸着工程の入口ガスの相対湿度が上がり吸着材の温度上昇を抑えて乾燥が抑制され、長期間の連続運転においても、第1吸着工程出口さらに第2吸着工程出口から排出されるメタノール濃度を低減することが可能となった。
【0022】
【実施例】
図1に示す有機溶剤処理装置を基本フローとして、以下に活性炭素繊維を吸着材として使用した有機溶剤処理装置での実施例を示す。[実施例1]メタノールを20000ppm含む30℃の溶剤混合ガス風量50Nm3/分と第1吸着工程出口の一部である50Nm3/分とを混合し希釈した後、送風機1、吸着槽2、送風機3、吸着槽2の順に流し被処理ガスの吸着処理を行った。吸着時間8分間及び脱着時間6分間にて切替を行い、脱着されたメタノールと水蒸気はコンデンサー6へ送られ、コンデンサー7にて凝縮し、メタノールを回収した。
【0023】
吸着熱の発生により第1吸着工程出口の処理済ガスは吸着前に比べ、温度が32.5℃から35℃に、露点が22.5℃から24℃に上昇しており、
第1吸着工程出口の一部を戻した第1吸着工程入口の未処理ガスの温度は32.5℃、露点は22.5℃となり、外気で希釈した比較例2及び希釈を行わなかった比較例1に比べ露点が上昇している。第1吸着工程出口中のメタノール濃度は平均170ppm(除去率98.3%)、第2吸着工程出口中のメタノール濃度は平均4ppm(除去率97.6%)となった。
【0024】
[比較例1]メタノールを20000ppm含む30℃の溶剤混合ガス風量50Nm3/分と外気50Nm3/分とを混合し希釈した後、送風機1、吸着槽2、送風機3、吸着槽2の順に流し被処理ガスの吸着処理を行った。吸着時間8分間及び脱着時間6分間にて切替を行い、脱着されたメタノールと水蒸気はコンデンサー6へ送られ、コンデンサー7にて凝縮し、メタノールを回収した。
【0025】
外気によって希釈された第1吸着工程入口の未処理ガスの温度は30℃、露点は16.5℃となり、被処理ガスに比べ露点が6℃低下している。第1吸着工程出口中のメタノール濃度は平均650ppm(除去率93.5%)、第2吸着工程出口中のメタノール濃度は平均20ppm(除去率96.9%)となった。
【0026】
[比較例2]メタノールを20000ppm含む30℃の溶剤混合ガスを、風量50Nm3/分で送風機1、吸着槽2、送風機3、吸着槽2の順に流し被処理ガスの吸着処理を行った。吸着時間8分間及び脱着時間6分間にて切替を行い、脱着された塩化メチレンと水蒸気はコンデンサー6へ送られ、コンデンサー6にて凝縮し、メタノールを回収した。
【0027】
吸着熱の発生により第1吸着工程出口の処理済ガスは吸着前に比べ、温度が30℃から45℃に、露点が21℃から24.5℃に上昇している。第1吸着工程出口中のメタノール濃度は平均1470ppm(除去率92.7%)、第2吸着工程出口中のメタノール濃度は平均68ppm(除去率95.4%)となった。
【0028】
実施例、比較例1、比較例2の処理結果を下記の表1に示す。
【表1】

Figure 0004305719
【0029】
【発明の効果】
以上の様に本発明の有機溶剤処理装置によれば、高濃度(1万ppm以上)のメタノール等の低級アルコールを含んだ有機溶剤処理において、高濃度であることから希釈にて吸着熱の影響を回避する場合、第1吸着工程から吸着熱により蒸発した水分を含んだ出口の処理済ガスの一部を第1吸着工程の入口に戻すことにより、第1吸着工程入口処理前ガスを希釈すると共に乾燥を抑制させることが出来ることから、吸着効率が大幅に向上し、従来よりもコンパクトでありランニングコストも安価となる有機溶剤処理装置を提供するものである。
【図面の簡単な説明】
【図1】有機溶剤処理装置の実施例の基本処理フロー図
【図2】有機溶剤処理装置の比較例の基本処理フロー図
【符号の説明】
1:送風機
2:吸着槽
3:送風機
6:コンデンサー
11:自動ダンパー
12:水蒸気弁
13:脱着ガス弁
A:有機溶剤被処理ガス
B:第1吸着工程出口ガス
C:第2吸着工程入口ガス
D:清浄ガス
E:外気
H:戻りガス[0001]
[Technical field to which the invention belongs]
The present invention relates to an organic solvent processing apparatus capable of maximally recovering an organic solvent while minimizing the scattering of the organic solvent to the atmosphere.
[0002]
[Prior art]
In recent years, emission concentration regulations for harmful air pollutants have been strengthened, and it is desired to reduce the organic solvent concentration in the exhaust gas from the organic solvent treatment apparatus to the maximum.
[0003]
Conventionally, the treatment apparatus is provided with two or more adsorption tanks filled with activated carbon fibers or granular activated carbon as an adsorbent, and means for supplying a gas to be treated containing an organic solvent for each adsorption tank And a desorption means for ejecting water vapor, and a means for alternately switching between an adsorption process for adsorbing the gas to be treated in the adsorption tank and a desorption process for desorption by the desorption means.
[0004]
The pores involved in adsorption are macropores in granular activated carbon, but micropores in activated carbon fiber. Therefore, the adsorption and desorption rate of organic solvents is faster with activated carbon fiber, and the desorption time is shorter. Since the process is completed, the quality of the recovered solvent is good. Further, when the adsorbent is desorbed with water vapor, the adsorbent is once moistened, so that it is necessary to dry the adsorbent before the next desorption in order to maintain the adsorption performance in a long-term operation. If this drying is insufficient, as the operation proceeds, the portion of the adsorbent that gets wet spreads and the adsorption performance is greatly reduced. Since activated carbon fibers are dried much faster than granular activated carbon, the case where the adsorption process also serves as a drying is common.
[0005]
However, as the concentration of the organic solvent in the gas to be treated increases, the amount of adsorbent per processing air volume increases, so it is difficult to combine drying with the adsorption process, and the following various measures have been taken. .
(1) Establishing a drying process independently: Since it is necessary to add another adsorption tank for drying, there is a problem that the apparatus becomes large and the processing system becomes complicated.
(2) Raising the pre-adsorption temperature of the gas to be treated (see Patent Document 1): There is a problem that the adsorption efficiency decreases as the adsorption temperature is raised.
(3) Lowering the relative humidity before adsorption of the gas to be treated: A water removal accessory is required.
(4) Diluting the gas to be treated to increase the air volume (see Patent Document 1 4): Since the concentration of the adsorbed organic solvent is lowered, the adsorption efficiency is also lowered.
[0006]
Even if these measures are taken, drying is not sufficient in the adsorption process, particularly in the early stage of adsorption, and the adsorption capacity is not completely recovered because the adsorbent is moist and high temperature. There was a leak. Further, since the gap between the adsorbent attachment portions and the gap due to filling is generated in a very small amount, the removal performance in only one stage of the adsorption process is 98 to 99 due to leakage of the gas to be treated from these gaps. % Was the limit, and in order to further improve the removal performance, it was necessary to perform a multi-stage adsorption treatment connected in series.
[0007]
When adsorbing lower alcohols such as methanol, ethanol, and isopropyl alcohol, the molecular diameter is small and the polarity is high. Therefore, the adsorption in the adsorbent contributes to the adsorption to the moisture adsorbed to the adsorbent rather than the physical adsorption. Therefore, immediately after switching from desorption to adsorption, the adsorption performance is high, and as the drying proceeds thereafter, the adsorption performance decreases, so that the outlet concentration of the adsorbent rapidly increases in a short time as the adsorption time elapses. As a countermeasure against this, rather than prioritizing drying of the adsorbent as described above, the relative humidity of the gas to be treated is increased by humidification or the like to prevent the adsorption performance from being lowered. did it.
[0008]
[Patent Document 1]
JP-A-58-92444 [0009]
[Problems to be solved by the invention]
With the recent improvement in environmental awareness, regulations on the content of organic solvents in exhaust gas have been strengthened, so that the reduction of organic solvent content has become active. When the concentration of the organic solvent in the gas to be treated is high, the removal performance is required to be 99% or more, and therefore, the number of cases where serial multistage treatment is performed is increasing. As the order of the serial multi-stage process, the first stage process for first subjecting the gas to be treated to adsorption is the first adsorption process, and thereafter, the adsorption process process connected in series to the treatment path as the treatment efficiency is increased to two stages. The number will increase with the second stage (second adsorption process) and the third stage (third adsorption process). In order not to reduce the desorption efficiency, it is best to perform desorption after the completion of the first adsorption process, which is the first stage of the adsorption process. In the example of the series two-stage adsorption process, a specific adsorption tank is used. The treatment cycle is as follows: desorption → second adsorption step → first adsorption step → desorption.
[0010]
However, in the case of the treatment of two or more stages in series, the moisture adsorbed on the adsorbent is evaporated by the adsorption heat of the high concentration organic solvent in the first adsorption step, and this moisture moves to the second adsorption step of the next step, The drying in the second adsorption process is hindered. Furthermore, this moisture circulates between the first adsorption step and the second adsorption step, eventually resulting in poor drying of the adsorbent, and the adsorbent begins to get wet and eventually gets wet, greatly reducing the adsorption efficiency. To do.
[0011]
Since this heat of adsorption is proportional to the concentration of the organic solvent, the higher the concentration, the greater the amount of heat generated, causing the temperature of the adsorbent to rise, the temperature of the treated gas to rise, the evaporation of moisture, etc. In addition to reducing the adsorption efficiency of the adsorbent in the first adsorption process, it was necessary to pay close attention to the device design in consideration of adverse effects on the second adsorption process, which is a subsequent process. Moreover, it becomes remarkable when the gas to be treated has a high concentration and a low air volume. As a method of suppressing the generation of heat of adsorption, there is a method of lowering the organic solvent concentration of the gas to be treated by dilution, etc. However, if the adsorption concentration is lowered too much, the adsorption efficiency will greatly decrease, so the amount of adsorbent must be increased. Goodbye. In addition, the use of heating means for dilution with outside air can be expected to some extent with respect to the drying effect on the first adsorption process throughout the year, but the relative humidity (moisture concentration) is not stable, so adsorption of lower alcohols such as methanol. The efficiency fluctuated greatly, for example, there was a problem that the processing performance in summer was good and bad in winter.
[0012]
In the present invention, in the treatment with an organic solvent containing a lower alcohol such as methanol having a high concentration (10,000 ppm or more), when the influence of the heat of adsorption is avoided by dilution because of the high concentration, the heat of adsorption is changed from the first adsorption step. Since it is possible to increase the air volume and relative humidity of the gas before the first adsorption step inlet treatment by returning a part of the treated gas at the outlet containing the water evaporated by the above to the inlet of the first adsorption step, The present invention provides an organic solvent processing apparatus that is compact and has a low running cost.
[0013]
[Means for Solving the Problems]
That is, in the present invention, in the treatment of an organic solvent containing a lower alcohol such as methanol having a high concentration (10,000 ppm or more), when the influence of heat of adsorption is avoided by dilution because of the high concentration, the first stage adsorption tank A path for returning from the outlet to the first stage adsorption tank inlet and a flow rate adjusting valve are provided, and a part of the treated gas at the outlet containing moisture evaporated by the heat of adsorption from the first adsorption process is diluted at the inlet of the first adsorption process. By increasing the relative humidity of the processing gas at the inlet of the first adsorption process and maintaining the wet state of the adsorbent, the adsorption performance of lower alcohols such as methanol due to the progress of adsorption (drying) is prevented. I can do it.
[0014]
The dilution air volume (return air volume) added to the gas to be treated is increased, the concentration of the adsorbed organic solvent decreases, and the temperature rise of the gas after the adsorption treatment due to the generation of adsorption heat is 15 ° C. or less, preferably 10 ° C. or less. It is adjusted to become.
[0015]
If the concentration is very high (tens of thousands ppm or more) and the dilution ratio is high, it is not sufficient to return only a part of the treated gas at the outlet of the first adsorption process, so the shortage is compensated by providing outside air intake means. It is also possible.
[0016]
The above is a method for maintaining the wet state of the adsorbent. However, when the adsorbent gets wet because the drying is completely insufficient, the process gas is diluted with the outside air at the second adsorption step inlet and flows to the second adsorption step. Adsorption of lower alcohols such as methanol, etc., which have been reduced in concentration by the first adsorption process by increasing the air volume of the process gas and reducing the relative humidity of the process gas flowing into the second adsorption process by means of cooling / heating. The adsorbent may be prevented from getting wet by promoting drying in the second adsorption step in which the treatment is performed.
[0017]
When the gas to be processed is diluted at the first adsorption process inlet using a part of the treated gas at the first adsorption process outlet, a part of the water evaporated by the adsorption heat returns to the first adsorption process inlet, The relative humidity of the inlet gas in the first adsorption step is increased, and the temperature of the adsorbent is suppressed and drying is suppressed.
[0018]
As a result, according to the present invention, it is possible to continuously remove the high-concentration organic solvent-containing gas with high efficiency, and it is possible to maintain excellent performance over a long period of time while being extremely excellent in operability.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. The organic solvent-containing gas A is mixed with a part of the treated gas at the first adsorption outlet and sent to the adsorption tank 2 which is the first adsorption process by opening and closing the automatic damper 11 by the blower 1. It is adsorbed while passing through the adsorbent in the adsorption tank 2 and discharged as a gas to be treated. However, since the organic solvent leaked in the first adsorption process is included in the gas to be treated, the blower 5 sends the second adsorption process to the second adsorption process in order to perform further adsorption treatment. In the adsorbing tank 2, the gas is treated and cleaned as a clean gas. After the second adsorption process, the adsorption tank 2 after the completion of the first adsorption process is switched to the desorption process, blocked by the automatic damper 11, and water vapor is spouted into the adsorption tank 2 so that the organic solvent gas that has already been adsorbed by the adsorbent. Detach. The desorbed organic solvent gas is sent to the condenser 6. The desorbed organic solvent gas and water vapor are condensed by the condenser 6, and the condensed organic solvent is obtained as a recovery solvent.
[0020]
A part H of the treated gas at the outlet containing moisture evaporated by the heat of adsorption from the first adsorption step is organically formed on the suction side of the blower 1 for dilution of the inlet of the first adsorption step by opening and closing the flow control valve 14. By providing a route for mixing with the solvent-containing gas A, the relative humidity of the processing gas at the inlet of the first adsorption process is increased, the wet state of the adsorbent is maintained, and the adsorption performance of methanol is reduced by the progress of adsorption (drying). prevent.
[0021]
A portion of the treated gas at the first adsorption process outlet is used to dilute the gas to be treated at the first adsorption process inlet, and a part of the water evaporated by the adsorption heat returns to the first adsorption process inlet. The relative humidity of the inlet gas in the first adsorption process is increased, the temperature rise of the adsorbent is suppressed and drying is suppressed, and the methanol concentration discharged from the first adsorption process outlet and further from the second adsorption process outlet even in continuous operation for a long period of time. Can be reduced.
[0022]
【Example】
The organic solvent processing apparatus shown in FIG. 1 is used as a basic flow, and an example of an organic solvent processing apparatus using activated carbon fibers as an adsorbent will be described below. [Example 1] After mixing and diluting 50Nm 3 / min of 30 ° C solvent mixed gas containing 20000 ppm of methanol and 50Nm 3 / min which is a part of the first adsorption step outlet, the blower 1, the adsorption tank 2, The blower 3 and the adsorption tank 2 were flowed in this order to perform the adsorption treatment of the gas to be treated. Switching was performed with an adsorption time of 8 minutes and a desorption time of 6 minutes, and the desorbed methanol and water vapor were sent to the condenser 6 and condensed in the condenser 7 to recover the methanol.
[0023]
Due to the generation of adsorption heat, the treated gas at the first adsorption process outlet has a temperature rising from 32.5 ° C. to 35 ° C. and a dew point from 22.5 ° C. to 24 ° C.
The temperature of the untreated gas at the first adsorption process inlet after returning a part of the first adsorption process outlet was 32.5 ° C., the dew point was 22.5 ° C., and Comparative Example 2 diluted with outside air and comparison without dilution Compared to Example 1, the dew point is increased. The methanol concentration at the outlet of the first adsorption step averaged 170 ppm (removal rate 98.3%), and the methanol concentration at the second adsorption step outlet averaged 4 ppm (removal rate 97.6%).
[0024]
[Comparative Example 1] After mixing and diluting 50Nm 3 / min of solvent mixed gas at 30 ° C. containing 20000 ppm of methanol and 50Nm 3 / min of outside air, the blower 1, the adsorption tank 2, the blower 3 and the adsorption tank 2 are flowed in this order. The gas to be treated was adsorbed. Switching was performed with an adsorption time of 8 minutes and a desorption time of 6 minutes, and the desorbed methanol and water vapor were sent to the condenser 6 and condensed in the condenser 7 to recover the methanol.
[0025]
The temperature of the untreated gas at the inlet of the first adsorption step diluted with outside air is 30 ° C., and the dew point is 16.5 ° C. The dew point is 6 ° C. lower than the treated gas. The methanol concentration at the outlet of the first adsorption step averaged 650 ppm (removal rate 93.5%), and the methanol concentration at the outlet of the second adsorption step averaged 20 ppm (removal rate 96.9%).
[0026]
[Comparative Example 2] A solvent mixed gas containing 20000 ppm of methanol was passed through the blower 1, the adsorption tank 2, the blower 3, and the adsorption tank 2 in this order at an air volume of 50 Nm 3 / min to carry out the adsorption treatment of the gas to be treated. Switching was performed at an adsorption time of 8 minutes and a desorption time of 6 minutes, and the desorbed methylene chloride and water vapor were sent to the condenser 6 and condensed in the condenser 6 to recover methanol.
[0027]
Due to the generation of heat of adsorption, the temperature of the treated gas at the outlet of the first adsorption step is raised from 30 ° C. to 45 ° C. and the dew point is raised from 21 ° C. to 24.5 ° C. compared to before the adsorption. The methanol concentration at the outlet of the first adsorption step averaged 1470 ppm (removal rate 92.7%), and the methanol concentration at the outlet of the second adsorption step averaged 68 ppm (removal rate 95.4%).
[0028]
The processing results of Examples, Comparative Examples 1 and 2 are shown in Table 1 below.
[Table 1]
Figure 0004305719
[0029]
【The invention's effect】
As described above, according to the organic solvent treatment apparatus of the present invention, in the treatment of an organic solvent containing a lower alcohol such as methanol having a high concentration (10,000 ppm or more), the influence of the heat of adsorption due to dilution is high. In order to avoid this, the gas before the first adsorption process inlet treatment is diluted by returning a part of the treated gas at the outlet containing water evaporated by the heat of adsorption from the first adsorption process to the inlet of the first adsorption process. In addition, since the drying can be suppressed, the organic solvent processing apparatus is provided which has a significantly improved adsorption efficiency, is more compact than conventional ones, and has a lower running cost.
[Brief description of the drawings]
FIG. 1 is a basic process flow diagram of an embodiment of an organic solvent treatment apparatus. FIG. 2 is a basic process flow chart of a comparative example of an organic solvent treatment apparatus.
1: Blower 2: Adsorption tank 3: Blower 6: Condenser 11: Automatic damper 12: Water vapor valve 13: Desorption gas valve A: Organic solvent treated gas B: First adsorption process outlet gas C: Second adsorption process inlet gas D : Clean gas E: Outside air H: Return gas

Claims (3)

吸着材で低級アルコールを含んだ有機溶剤含有被処理ガスを吸着処理する吸着槽を有する有機溶剤処理装置であって、直列2段もしくはそれ以上の直列多段吸着方式において、1段目吸着槽出口の処理済ガスの一部を1段目吸着槽前に戻すことにより、1段目吸着処理前ガスの風量及び相対湿度を上げる手段を設けることにより、有機溶剤含有ガス中に含まれる低級アルコールを処理することを特徴とする直列多段吸着方式の有機溶剤処理装置。The containing lower alcohol adsorbent organic solvent-containing gas to be treated by an organic solvent treatment apparatus having a suction tank for adsorption treatment, in series two-stage or more serial multistage adsorption method, the first stage adsorption vessel outlet by returning a portion of the treated gas to the first stage adsorption vessel before, by Rukoto a means to increase the first-stage adsorption process air volume and relative humidity before the gas, a lower alcohol contained in the organic solvent-containing gas An organic solvent processing apparatus of a serial multi-stage adsorption system, characterized in that 前記相対湿度を上げる手段として、1段目吸着槽出口から1段目吸着槽入口に戻す経路及び流量調節弁を設けることを特徴とする請求項1記載の有機溶剤処理装置。The organic solvent treatment apparatus according to claim 1 , wherein a path for returning from the first stage adsorption tank outlet to the first stage adsorption tank inlet and a flow rate adjusting valve are provided as means for increasing the relative humidity. 該吸着材が活性炭素繊維または粒状活性炭であることを特徴とする請求項1または2に記載の有機溶剤処理装置。The organic solvent treatment apparatus according to claim 1 or 2, wherein the adsorbent is activated carbon fiber or granular activated carbon.
JP2002268907A 2002-09-13 2002-09-13 Organic solvent processing equipment Expired - Lifetime JP4305719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268907A JP4305719B2 (en) 2002-09-13 2002-09-13 Organic solvent processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268907A JP4305719B2 (en) 2002-09-13 2002-09-13 Organic solvent processing equipment

Publications (2)

Publication Number Publication Date
JP2004105807A JP2004105807A (en) 2004-04-08
JP4305719B2 true JP4305719B2 (en) 2009-07-29

Family

ID=32266995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268907A Expired - Lifetime JP4305719B2 (en) 2002-09-13 2002-09-13 Organic solvent processing equipment

Country Status (1)

Country Link
JP (1) JP4305719B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085977B2 (en) * 2013-01-31 2017-03-01 東洋紡株式会社 Gas processing apparatus and gas processing method
JP7380571B2 (en) * 2019-01-31 2023-11-15 東洋紡エムシー株式会社 Organic solvent recovery system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892444A (en) * 1981-11-27 1983-06-01 Taikisha Ltd Adsorptive removal of organic solvent gas
JPS6439816U (en) * 1987-09-02 1989-03-09
JPH0332928U (en) * 1989-07-28 1991-03-29
JPH0584417A (en) * 1991-09-26 1993-04-06 Kobe Steel Ltd Method and equipment for recovering solvent
JPH10286426A (en) * 1997-04-15 1998-10-27 Kuraray Eng Kk Continuous adsorption device and utilizing method of the same
JP2000300943A (en) * 1999-04-15 2000-10-31 Toho Kako Kensetsu Kk Method for treatment of solvent-containing gas
JP2001179041A (en) * 1999-12-27 2001-07-03 Toyobo Co Ltd Gas treatment equipment
JP4548891B2 (en) * 2000-02-29 2010-09-22 東邦化工建設株式会社 Organic solvent recovery method

Also Published As

Publication number Publication date
JP2004105807A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CN101632890B (en) Zero gas generator
CN201500497U (en) Zero-air generator
CN109731436A (en) A kind of methylene chloride exhaust gas treatment method
JP6554876B2 (en) Organic solvent recovery system
CN211328803U (en) New-type absorption steam desorption regeneration facility
CN116059784A (en) Method and system for capturing carbon dioxide in flue gas by pressure swing adsorption
JP4305719B2 (en) Organic solvent processing equipment
CN105370348A (en) Activated carbon desorption system for automobile exhaust gas treatment
CN208449008U (en) A kind of combined type organic waste-gas purification and recyclable device
JP3874185B2 (en) Organic solvent processing equipment
JP5581554B2 (en) Adsorption / desorption type concentrator
CN206996195U (en) A kind of controllable organic exhaust gas circulation desorption system of concentration
CN102029100A (en) Dry desorption process for activated carbon adsorption of organic waste gas
CN204522671U (en) Multistage handing-over absorption method oil-gas recovery processing device
JP4548891B2 (en) Organic solvent recovery method
JP2018030052A (en) Organic solvent recovery system
CN105854510B (en) A kind of VOCs processing equipment and method
CN105854515B (en) A kind of Quan Wencheng pressure swing absorption process of pharmaceutical factory treating tail gas
CN211677187U (en) High-efficient oil gas clean system
JP2021169097A (en) Organic solvent gas concentration device
CN207025005U (en) High efficiency high humility organic waste gas treatment system
JP4515571B2 (en) Solvent recovery device and solvent recovery method
CN211098274U (en) Organic waste gas two-stage adsorption recovery processing system
CN111135710A (en) High-efficient oil gas clean system
CN205206916U (en) A active carbon desorption system for treating motor vehicle exhaust gases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

R151 Written notification of patent or utility model registration

Ref document number: 4305719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

EXPY Cancellation because of completion of term