JPH0155432B2 - - Google Patents

Info

Publication number
JPH0155432B2
JPH0155432B2 JP57027490A JP2749082A JPH0155432B2 JP H0155432 B2 JPH0155432 B2 JP H0155432B2 JP 57027490 A JP57027490 A JP 57027490A JP 2749082 A JP2749082 A JP 2749082A JP H0155432 B2 JPH0155432 B2 JP H0155432B2
Authority
JP
Japan
Prior art keywords
delay time
ultrasonic
signal
difference value
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57027490A
Other languages
Japanese (ja)
Other versions
JPS58144767A (en
Inventor
Shinichiro Umemura
Kageyoshi Katakura
Yuriko Takabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP57027490A priority Critical patent/JPS58144767A/en
Publication of JPS58144767A publication Critical patent/JPS58144767A/en
Publication of JPH0155432B2 publication Critical patent/JPH0155432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波受信装置、特に分割振動子を用
いてフオーカス制御を焦点距離に応じて最適な状
態に変更しながら受信する(ダイナミツクフオー
カス受信する)装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic receiving device, and particularly to a device that uses a split transducer to receive data while changing the focus control to an optimal state depending on the focal length (dynamic focus receiving). It is.

まず、分割振動子を用いる超音波受信装置にお
いて、受信ビームを形成する目的で各受信信号に
与えるべき遅延時間を概算する。一例として、第
1図のような直線配列型分割振動子について概算
する。第1図において、焦点Fから振動子列Wに
下した垂線の足をO、注目する振動子エレメント
の中央の点をEとし、焦点距離OF=y、E=x
とする。Fから拡散する同一波面がOおよびFに
到達する時刻の時間差Tは、次のように計算され
る。
First, in an ultrasonic receiving apparatus using a split transducer, the delay time that should be given to each received signal for the purpose of forming a receiving beam is roughly estimated. As an example, a rough calculation will be made for a linearly arranged split vibrator as shown in FIG. In Fig. 1, the foot of the perpendicular line drawn from the focal point F to the transducer row W is O, the center point of the transducer element of interest is E, and the focal length OF=y, E=x
shall be. The time difference T between the times when the same wavefront diffusing from F reaches O and F is calculated as follows.

T(x、y)=(√22−y)/C ……(1) ≒x2/2yC ……(2) ここで、媒質2の音速をCとした。 T (x, y) = (√ 2 + 2 - y) / C ... (1) ≒x 2 /2yC ... (2) Here, the sound speed of medium 2 is set to C.

一方、分割振動子のうちの受信口径をD(y)
超音波波長を入とすると、受信装置の方位方向の
理論分解能Δxおよび焦点深度Δyは、それぞれ次
式のように概算される。
On the other hand, the receiving aperture of the split transducer is D(y)
When the ultrasonic wavelength is input, the theoretical resolution Δx and the depth of focus Δy in the azimuth direction of the receiving device are respectively estimated as follows.

Δx=2λy/D ……(3) Δy=2yΔx/D =4λy2/D2=(Δx)2/λ ……(4) 受信ビームを形成するためには、(1)式の時間差
τをエレメント間で補償したのち同位相加算(整
相加算)する。実現すべき方位分解能をΔx、視
野範囲を0≦y≦ynaxとすると、整相加算に必要
な遅延時間の最大値Tnaxは式(2)及び(3)より次の
ように概算される。
Δx=2λy/D ……(3) Δy=2yΔx/D =4λy 2 /D 2 =(Δx) 2 /λ ……(4) In order to form the receiving beam, the time difference τ in equation (1) must be After compensating between elements, in-phase addition (phasing addition) is performed. Assuming that the azimuth resolution to be achieved is Δx and the field of view range is 0≦y≦ ynax , the maximum value of delay time Tnax required for phasing and addition can be estimated as follows from equations (2) and (3). .

Tnax≒T(D(ynax)/2、ynax) =(λ2/2C)ynax/(Δx)2 ……(5) また、視野範囲全域にわたり目的分解能を実現
するには、音源距離に応じて受信系の焦点距離を
可変にする(所謂ダイナミツクフオーカスする)
必要がある。方位分解能ΔXを実現するに要する
焦点の段数Nfを(4)式より概算すると、 Nf=ynax/Δy=λynax/(Δx)2 ……(6) となる。上記(5)及び(6)式をもとに視野範囲全域に
わたり方位分解能Δxを実現するに要する遅延時
間記憶容量を概算できる。すなわち、遅延時間量
子化単位をΔTとしたとき、1データの大きさ
(λ2/2CΔT)ynax/(Δx)2の遅延時間データを
受信エレメント1個あたりλynax/(ΔX)2個記憶
しておく必要がある。データの大きさ、個数とも
に(Δx)2に反比例するので、従来方式のように
遅延時間データそのものを記憶する方式では、高
い方位分解能Δxを実現しようとした場合、必要
な遅延時間記憶容量が著しく増大し、実現する上
での困難が大きかつた。
T nax ≒ T (D (y nax ) / 2, y nax ) = (λ 2 / 2C) y nax / (Δx) 2 ... (5) In addition, in order to achieve the desired resolution over the entire field of view, the sound source Change the focal length of the receiving system depending on the distance (so-called dynamic focusing)
There is a need. When the number of focal stages N f required to realize the azimuth resolution ΔX is roughly estimated from equation (4), it becomes N f =y nax /Δy=λy nax /(Δx) 2 ...(6). Based on equations (5) and (6) above, it is possible to roughly estimate the delay time storage capacity required to realize the azimuth resolution Δx over the entire viewing range. In other words, when the delay time quantization unit is ΔT , two pieces of delay time data of the size of one data (λ 2 /2CΔT)y nax /(Δx) 2 are stored per receiving element. It is necessary to do so. Both the size and number of data are inversely proportional to (Δx) 2 , so in the conventional method of storing the delay time data itself, when trying to achieve high azimuth resolution Δx, the required delay time storage capacity becomes extremely large. The situation has grown and the difficulties in realizing it have been great.

本発明は、以上にのべた従来の問題点を解決
し、高分解能の受信系を小さな記憶容量により実
現可能とするものである。
The present invention solves the above-mentioned conventional problems and makes it possible to realize a high-resolution receiving system with a small storage capacity.

本発明は、整相処理に必要な遅延時間の量子化
値そのものを記憶するのではなく、遅延時間量子
化値の焦点距離に関する差分値を記憶することを
特徴とし、ダイナミツクフオーカスによる高い分
解能の受信を小さな遅延時間記憶容量により可能
とする。整相処理に必要な遅延時間T(x、y)
の焦点距離yに関する差分値での大きさは、式(2)
より、yの小さな変化Δyについて次のように概
算される。
The present invention is characterized in that it stores not the quantized delay time value itself required for phasing processing, but the difference value regarding the focal length of the delay time quantized value, and high resolution due to dynamic focus. can be received with a small delay time storage capacity. Delay time T (x, y) required for phasing processing
The size of the difference value with respect to the focal length y is given by formula (2)
Therefore, a small change in y Δy can be estimated as follows.

τ(x、y)=−∂T(x、y)/∂y・Δy ≒x2Δy/2Cy2 ……(7) 音源距離が焦点深度だけ変化するごとに遅延時
間データを変更しながらダイナミツクフオーカス
受信する場合には、式(7)のΔyに式(4)を代入すれ
ばよく、次のようになる。
τ (x, y) = −∂T (x, y) / ∂y・Δy ≒x 2 Δy / 2Cy 2 ...(7) The delay time data is changed every time the sound source distance changes by the depth of focus. In the case of receiving focus-focused reception, the equation (4) can be substituted for Δy in the equation (7), and the result is as follows.

τ(x、y)≒2λx2/CD2 ……(8) 従つて、遅延時間差分値の必要最大値τnaxは次
のように概算される。
τ (x, y)≈2λx 2 /CD 2 (8) Therefore, the necessary maximum value τ nax of the delay time difference value is approximately calculated as follows.

τnax≒τ(D(y)/2、y) =λ/2C=1/2f ……(9) ここで、fは超音波周波数である。式(9)より、
遅延時間量子化差分値を記憶するに必要な1デー
タの大きさは、方位分解能Δxあるいは最大音源
距離ynaxなどには直接よらず一定であり、1/
2fΔTである。式(5)及び(9)より必要な遅延時間デ
ータの大きさは従来方式の(Δx)2/λynax倍とな
り、実現すべき分解能Δxが Δx<√nax ……(10) のとき、本発明が有利となる。従来との比が
(Δx)2であることから、特に、Δxの小さいとき、
すなわち高い分解能を実現しようとする場合に
は、本発明が著しく有利となる。なお、本発明に
おいても、遅延時間量子化値そのものを受信エレ
メント1個あたり最低限1データは記憶しておく
必要があるが、高分解能装置の場合には焦点の段
数Nfが大きくなるため、受信ビーム形成に必要
な全記憶量に対する上記の値の占める割合は小さ
くなるので、省いて概算した。一例として、標準
的な超音波診断装置について比を求めてみると、
λ≒0.5mm、ynax≒200mm、Δx≒1mmのとき、遅延
時間データの大きさは約1/100で充分となる。
τ nax ≒τ(D(y)/2, y) = λ/2C=1/2f (9) where f is the ultrasonic frequency. From formula (9),
The size of one piece of data required to store the delay time quantization difference value is constant and does not directly depend on the azimuth resolution Δx or the maximum sound source distance y nax , and is 1/
2fΔT. From equations (5) and (9), the size of the required delay time data is (Δx) 2 /λy nax times that of the conventional method, and when the resolution Δx to be achieved is Δx<√ nax ...(10), this Invention is an advantage. Since the ratio compared to the conventional one is (Δx) 2 , especially when Δx is small,
That is, the present invention is extremely advantageous when high resolution is to be achieved. In the present invention, it is also necessary to store at least one delay time quantized value per receiving element, but in the case of a high-resolution device, the number of focal stages N f becomes large. Since the ratio of the above value to the total storage amount required for receiving beam formation is small, it is omitted in the rough calculation. As an example, when calculating the ratio for a standard ultrasound diagnostic device,
When λ≒0.5 mm, y nax ≒200 mm, and Δx≒1 mm, it is sufficient that the size of the delay time data is about 1/100.

以上では、主に直線配列型分解振動子を用いる
場合を例にとつて説明を行なつたが、本発明は直
線配列型に限らず有効である。
Although the above description has mainly been given using an example of using a linear array type resolving oscillator, the present invention is effective not only for the linear array type.

ところで、パルスエコー法による超音波受信の
場合には、反射体距離の小さな信号から大きな信
号の順にパルス信号が各エレメントに受信される
ので、ダイナミツクフオーカスにおける焦点距離
は単調に増加させていけばよい。従つて、本発明
の方式を特にパルスエコー法に適用する場合、記
憶しておいた遅延時間量子化差分値を順番に積算
していくだけで積算の各段階において必要な遅延
時間量子化値が得られるので、差分値から元の値
を再生する機構が簡単化される。従つて、特にパ
ルスエコー法による超音波受信装置の場合、本発
明の方式の効果は大きなものとなる。
By the way, in the case of ultrasonic reception using the pulse echo method, pulse signals are received by each element in the order of signals with a small reflector distance and signals with a large reflector distance, so the focal length in dynamic focus must be monotonically increased. Bye. Therefore, when the method of the present invention is particularly applied to the pulse echo method, the necessary delay time quantization values can be obtained at each step of the integration simply by sequentially integrating the stored delay time quantization difference values. Therefore, the mechanism for reproducing the original value from the difference value is simplified. Therefore, especially in the case of an ultrasonic receiving apparatus using the pulse echo method, the effect of the method of the present invention is significant.

以下、本発明を実施例を参照して説明する。第
2図は、分割振動子を用いた超音波受信系の構成
図であり、E1〜ENは受信口径中の振動子エレメ
ント、D1〜DNは受信ビームを形成するため受信
信号に相異する遅延時間を与える手段、Sは遅延
後の受信信号を加算し受信ビームを得る手段であ
る。第3〜5図は、本発明を第2図のD1〜DN
ついて実施する場合の構成例を示したものであ
る。いずれも、パルスエコー法装置に対し本発明
を実施する場合を例にとつた。
Hereinafter, the present invention will be explained with reference to Examples. Figure 2 is a configuration diagram of an ultrasonic receiving system using a split transducer, where E 1 to E N are transducer elements in the receiving aperture, and D 1 to D N are elements that are used to form a receiving beam, so that the received signal is The means for providing different delay times, S, is means for adding delayed received signals to obtain a received beam. FIGS. 3 to 5 show examples of configurations in which the present invention is implemented with respect to D 1 to D N in FIG. 2. In both cases, the case where the present invention is applied to a pulse echo method apparatus is taken as an example.

第3図は、遅延手段としてタツプ付LC遅延線
DLを用いる場合の構成例である。振動子エレメ
ントEoからの受信信号5はDLに入力され、段階
的に遅延時間の異るDLの入力6はマルチプレク
サMPに入力され、マルチプレクサMPの出力7
は加算器Sへ入力される。マルチプレクサMPの
コントロール信号4を焦点距離に従つて変化させ
信号5から信号7に至る遅延時間を制御すること
によつてダイナミツクフオーカスを行なう。1は
フオーカス状態を変更するごとにアドレスカウン
タCに入力されるクロツク信号であり、アドレス
信号2に従つてメモリMより読み出された遅延時
間量子化差分値3は、アキユムレータACにより
積算され、遅延時間量子化値すなわちマルチプレ
クサMPのコントロール信号4となる。
Figure 3 shows a tapped LC delay line as a delay means.
This is a configuration example when using DL. The received signal 5 from the transducer element E o is input to the DL, the input 6 of the DL with different delay times in stages is input to the multiplexer MP, and the output 7 of the multiplexer MP
is input to the adder S. Dynamic focusing is performed by changing the control signal 4 of the multiplexer MP according to the focal length and controlling the delay time from signal 5 to signal 7. 1 is a clock signal that is input to the address counter C every time the focus state is changed, and the delay time quantized difference value 3 read out from the memory M according to the address signal 2 is accumulated by the accumulator AC and delayed. This becomes the time quantization value, that is, the control signal 4 of the multiplexer MP.

第4図は、遅延手段としてA/D変換器ADと
シフトレジスタSRの組合わせを用いる場合の構
成例である。振動子エレメントEoからの受信信
号8は変換クロツク9に従つてADによりデジタ
ル信号11に変換された後デジタル内挿器IPに
入力される。信号11はIPにより、シフトレジ
スタSRのシフトクロツク10おきの信号5に変
換されたうえSRに入力される。段階的に遅延時
間の異るSRの出力6はマルチプレクサMPに入
力され、MPの出力7は加算器Sへ入力される。
第3図と同じ方式でMPのコントロールを行なう
ことによつてダイナミツクフオーカスを行なう。
FIG. 4 shows a configuration example in which a combination of an A/D converter AD and a shift register SR is used as the delay means. The received signal 8 from the transducer element E o is converted into a digital signal 11 by the AD according to the conversion clock 9 and then input to the digital interpolator IP. The signal 11 is converted by the IP into a signal 5 every tenth shift clock of the shift register SR, and is then inputted to the SR. The outputs 6 of the SRs having different delay times in stages are input to the multiplexer MP, and the output 7 of the MP is input to the adder S.
Dynamic focus is performed by controlling the MP in the same manner as in Figure 3.

第5図は、遅延手段としてサンプル間隔を可変
としたサンプルホールドSHとラインメモリLM
の組合わせを用いる場合の構成例である。この受
信ビーム形成の原理は、視野中に等間隔に直線状
配列した点に仮想的においた反射体から拡散する
波面が注目するエレメントEoに到達すべき時刻
にEoからの信号5をSHによりサンプルホールド
し、その値6をラインメモリLMに書き込むこと
により、上記の配列点に対応する信号値を配列の
順にLMの出力7として得るものである。かかる
装置に本発明を適用する場合、サンプル間隔の規
準値からの差分値が本発明記述中の遅延時間の焦
点距離についての差分値と等価となる。ここで、
サンプル間隔の規準値とは、配列点間隔を超音波
が往復するに要する時間である。焦点距離を変更
せず受信している間は、すべてのエレメントにつ
いてサンプル間隔は規準値のままでよいのに対
し、焦点距離を増加させる場合には、サンプル間
隔を規準値からエレメント位置に応じた量だけ縮
めることになる。サンプルホールドSHのサンプ
ルクロツクは、遅延時間量子化単位を周期とする
基本クロツク1をカウントするカウンタC1のキ
ヤリ出力4として得られる。キヤリ出力4は、同
時に、C1自身のロード信号、LMの書き込みク
ロツク、アドレスカウンタC2のクロツクとして
用いられる。アドレス信号2により読み出された
遅延時間量子化差分値3は、C1にデータとして
ロードされ、遅延時間量子化差分値3の値と基本
クロツク間隔の積の分だけ、次の回のキヤリ出力
パルス間隔すなわちサンプル間隔が規準値に比べ
小さくなる。初回のサンプルホールド時刻の制御
はC1のクリア入力信号8により行なうことがで
きる。なお、LMに書き込まれたデータの読み出
しはクロツク9により制御する。
Figure 5 shows a sample hold SH and a line memory LM with variable sampling intervals as delay means.
This is an example of a configuration in which a combination of the following is used. The principle of this reception beam formation is that the signal 5 from E o is transmitted to the SH at the time when the wavefront diffusing from the reflectors virtually placed at points linearly arranged at equal intervals in the field of view should reach the element E o of interest. By sampling and holding the data and writing the value 6 into the line memory LM, the signal values corresponding to the above array points are obtained as the output 7 of the LM in the order of the array. When the present invention is applied to such an apparatus, the difference value of the sample interval from the reference value is equivalent to the difference value of the focal length of the delay time described in the present invention. here,
The standard value of the sample interval is the time required for the ultrasonic waves to travel back and forth between the array points. While receiving data without changing the focal length, the sample interval for all elements can remain at the standard value; however, when increasing the focal length, the sample interval must be changed from the standard value to the element position. It will only reduce the amount. The sample clock of the sample hold SH is obtained as the carry output 4 of a counter C1 which counts the basic clock 1 whose period is the delay time quantization unit. The carry output 4 is simultaneously used as a load signal for C1 itself, a write clock for LM, and a clock for address counter C2. The delay time quantized difference value 3 read out by the address signal 2 is loaded into C1 as data, and the next carry output pulse is processed by the product of the delay time quantized difference value 3 and the basic clock interval. The interval, that is, the sample interval becomes smaller than the standard value. The initial sample and hold time can be controlled by the clear input signal 8 of C1. Note that the reading of data written in the LM is controlled by the clock 9.

以上では、超音波受信系について本発明を説明
したが、送信においてダイナミツクフオーカスを
行なう場合にも本発明を適用でき、本発明は送信
系についても効果をもつ。
Although the present invention has been described above with respect to an ultrasonic receiving system, the present invention can also be applied to the case where dynamic focus is performed during transmission, and the present invention is also effective for a transmitting system.

以上説明したように、本発明によれば、ダイナ
ミツクフオーカスを活用する高分解能超音波受信
装置を実現するに要する遅延時間記憶容量を、従
来方式に比較してはるかに小さくすることがで
き、本発明の意義大である。本発明による上記記
憶容量節約の効果は実現しようとする方位分解能
の2乗に比例するので、装置の分解能が高ければ
高いほど本発明適用の効果は著しく大となる。
As explained above, according to the present invention, the delay time storage capacity required to realize a high-resolution ultrasonic receiving device that utilizes dynamic focus can be made much smaller than that of conventional methods. This invention is of great significance. Since the storage capacity saving effect of the present invention is proportional to the square of the azimuth resolution to be achieved, the higher the resolution of the device, the more significant the effect of the present invention will be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直線配列型分割振動子と焦点の位置関
係を示す図、第2図は分割振動子を用いた超音波
受信装置の概略構成を示す図、第3図、第4図及
び第5図は、それぞれ第2図における遅延手段の
構成を示すブロツク図である。
Fig. 1 is a diagram showing the positional relationship between a linearly arranged segmented transducer and a focal point, Fig. 2 is a diagram showing a schematic configuration of an ultrasonic receiving device using segmented transducers, and Figs. 3, 4, and 5. Each figure is a block diagram showing the structure of the delay means in FIG. 2.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個のエレメントからなる超音波振動子
と、各エレメントにて受信された超音波信号へ時
間の経過とともに適宜な遅延時間を与え移動焦点
を形成する手段とを備えた超音波受信装置におい
て、前記各エレメントの受信信号へ与える遅延時
間を移動焦点間の遅延時間量子化差分値として記
憶する記憶手段と、焦点の移動毎に前記記憶手段
より読み出した差分値を積算して各エレメントの
受信信号を遅延させる手段とを設けたことを特徴
とする超音波受信装置。
1. In an ultrasonic receiver equipped with an ultrasonic transducer made up of a plurality of elements, and means for forming a moving focus by giving an appropriate delay time to the ultrasonic signal received by each element over time, storage means for storing a delay time given to the received signal of each element as a delay time quantized difference value between moving focal points; and a storage means for storing the delay time given to the received signal of each element as a delay time quantized difference value between the moving focal points, and a received signal of each element by integrating the difference values read from the storage means each time the focal point moves. What is claimed is: 1. An ultrasonic receiving device characterized by comprising: means for delaying.
JP57027490A 1982-02-24 1982-02-24 Ultrasonic wave receiver Granted JPS58144767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027490A JPS58144767A (en) 1982-02-24 1982-02-24 Ultrasonic wave receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027490A JPS58144767A (en) 1982-02-24 1982-02-24 Ultrasonic wave receiver

Publications (2)

Publication Number Publication Date
JPS58144767A JPS58144767A (en) 1983-08-29
JPH0155432B2 true JPH0155432B2 (en) 1989-11-24

Family

ID=12222570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027490A Granted JPS58144767A (en) 1982-02-24 1982-02-24 Ultrasonic wave receiver

Country Status (1)

Country Link
JP (1) JPS58144767A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645421B2 (en) * 2010-02-23 2014-12-24 キヤノン株式会社 Ultrasonic imaging apparatus and delay control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113623A (en) * 1976-03-19 1977-09-22 Hitachi Medical Corp Electronic scanning ultrasonic deflection system
JPS55149889A (en) * 1979-05-11 1980-11-21 Toshiba Corp Ultrasonic wave receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113623A (en) * 1976-03-19 1977-09-22 Hitachi Medical Corp Electronic scanning ultrasonic deflection system
JPS55149889A (en) * 1979-05-11 1980-11-21 Toshiba Corp Ultrasonic wave receiver

Also Published As

Publication number Publication date
JPS58144767A (en) 1983-08-29

Similar Documents

Publication Publication Date Title
US4173007A (en) Dynamically variable electronic delay lines for real time ultrasonic imaging systems
US4669314A (en) Variable focusing in ultrasound imaging using non-uniform sampling
KR100280197B1 (en) Ultrasonic Signal Concentration Method and Apparatus in Ultrasonic Imaging System
US4809184A (en) Method and apparatus for fully digital beam formation in a phased array coherent imaging system
US4209852A (en) Signal processing and memory arrangement
US6126602A (en) Phased array acoustic systems with intra-group processors
US6494842B2 (en) Ultrasound receive beamforming apparatus using multi stage delay devices
US5419330A (en) Ultrasonic diagnostic equipment
ES8500448A1 (en) Ultrasonic imaging system.
US5666955A (en) Ultrasonic diagnostic apparatus having frame rate higher than TV frame rate
US5353797A (en) Ultrasonic diagnostic apparatus
JP2575603B2 (en) Scanning device
US4079352A (en) Echo sounding technique
US4371953A (en) Analog read only memory
JP2004049926A (en) Digital receiving focusing device
JPH0155432B2 (en)
US4959998A (en) Ultrasonic imaging apparatus
US5490511A (en) Digital phase shifting apparatus
US5261281A (en) Ultrasonic imaging apparatus
JPH0466578B2 (en)
JP2722910B2 (en) Ultrasound diagnostic equipment
JPS6284748A (en) Ultrasonic receiving and phasing circuit
JPS61209385A (en) Method and device for improving state of rendering of image transmitted from side section sonar
JP3290846B2 (en) Super resolution array device
JPH0243155B2 (en)