JPH0466578B2 - - Google Patents
Info
- Publication number
- JPH0466578B2 JPH0466578B2 JP58057890A JP5789083A JPH0466578B2 JP H0466578 B2 JPH0466578 B2 JP H0466578B2 JP 58057890 A JP58057890 A JP 58057890A JP 5789083 A JP5789083 A JP 5789083A JP H0466578 B2 JPH0466578 B2 JP H0466578B2
- Authority
- JP
- Japan
- Prior art keywords
- delay
- delay means
- main
- ultrasonic
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims 1
- 238000005070 sampling Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000003325 tomography Methods 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、電子走査形超音波断層装置の受信整
相器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a receiving phaser for an electronic scanning ultrasonic tomography apparatus.
従来の受信整相器として微小遅延時間の受信信
号を整相する前置遅延手段と比較的大きい遅延時
間の受波信号を整相する主遅延手段とからなる受
信整相器がある。その例は特開昭53−28989号公
報に記載される。ここで、遅延手段としては通常
アナログL―C遅延線、電荷移相素子、デジタル
メモリなどが用いられていた。
As a conventional receiving phaser, there is a receiving phaser including a pre-delay means for phasing a received signal having a minute delay time and a main delay means for phasing a received signal having a relatively long delay time. An example thereof is described in Japanese Patent Application Laid-Open No. 53-28989. Here, as the delay means, an analog LC delay line, a charge phase shift element, a digital memory, etc. are usually used.
また、受信期間に上記前置遅延手段を切換える
ことは切換ノイズ発生のため実現できなかつた。 Furthermore, it has not been possible to switch the predelay means during the reception period because switching noise occurs.
本発明は受信期間中に超音波ビームの収束点に
応じて前置遅延手段を切換えることによりダイナ
ミツクフオーカスを可能とする受信整相器を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reception phaser that enables dynamic focusing by switching the pre-delay means according to the convergence point of the ultrasound beam during the reception period.
かかる目的を達成するため、本発明は保持手段
と記憶手段とをもつ主遅延手段を具備し、上記前
置遅延手段の切換時刻と上記保持手段の保持時刻
とを同期させ、切換時刻に発生した切換ノイズが
消滅した時刻に保持手段により保持することによ
り、切換ノイズの影響を除去し、記憶手段に記憶
し、受信信号を整相しようとするものである。
In order to achieve such an object, the present invention includes a main delay means having a holding means and a storage means, and synchronizes the switching time of the pre-delay means with the holding time of the holding means, and By holding the signal at the time when the switching noise disappears using the holding means, the influence of the switching noise is removed, the signal is stored in the storage means, and the received signal is phased.
以下、本発明を実施例を参照して詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図は受波ダイナミツクフオーカスの説明図
であり、T1,T2,…,Toは配列振動子の各素
子、R1,R2は深度、Ai,Bi(i=1,2,…,
n)は各素子と深度R1,R2と結ぶ直線と円孤OA⌒
i,OB⌒iとの交点でる。ここで、円孤OA⌒i,
OB⌒iはそれぞれ中心がR1,R2、半径1,2
の円孤である。受波ダイナミツクフオーカスを行
うためには1回の超音波パルスの送波後の受波期
間中に、浅い深度での反射波から次第に深い深度
での反射波が素子に到達するのに連動して受波整
相器の使束点を順次切換える必要がある。たとえ
ば深度R1からの受波信号を整相するためには配
列素子T1は1 1の距離に対応する遅延時間を補
償し、深度R2からの受波信号を整相するために
はT1B1の距離に対応する遅延時間を補償する必
要がある。 FIG. 1 is an explanatory diagram of the reception dynamic focus, where T 1 , T 2 , ..., T o are each element of the array transducer, R 1 and R 2 are the depths, and A i , B i (i= 1, 2,...,
n) are the straight line and arc OA⌒ connecting each element to the depths R 1 and R 2
The intersection with i and OB⌒i appears. Here, arc OA⌒i,
OB⌒i has centers R 1 and R 2 and radii 1 and 2 , respectively.
It is the arc of the circle. In order to perform reception dynamic focus, during the reception period after transmitting one ultrasonic pulse, the reflected waves at a shallow depth gradually reach the element at deeper depths. It is necessary to sequentially switch the focus point of the receiving phaser. For example, in order to phase the received signal from a depth R 1 , the array element T 1 compensates for the delay time corresponding to the distance 1 1 , and in order to phase the received signal from the depth R 2 , the array element T 1 compensates for the delay time corresponding to the distance 1 1. It is necessary to compensate for the delay time corresponding to a distance of 1 B 1 .
ここで、1 1>2 2>3 3であるので、
Δ1=1 1−3 3,Δ2=2 2−3 3
の微小距離に対応する微小遅延時間を補償する前
置遅延手段とT3A3に対応する主遅延手段とを持
つことにより受波整相器が実現できる。 Here , since 1 1 > 2 2 > 3 3 , the predelay means and T By having a main delay means corresponding to 3 A 3 , a receiving phaser can be realized.
受波ダイナミツクフオーカスを行うためには各
深度において受波ビームが収束するように前置遅
延手段および主遅延手段を制御すればよい。 In order to perform reception dynamic focus, the pre-delay means and the main delay means may be controlled so that the reception beam converges at each depth.
第2図は本発明の実施例であり、1,2,…,
nは配列素子、10―2……10―(n−1)は
前置遅延素子、11―1……11―mは保持回
路、12―1……12―mは主遅延素子、13―
1……13―mは前置遅延の加算器、19―1…
…19―mは主遅延の出力、20は加算器、30
は受波整相器出力端子である。但しm=n/3
(m:正整数)である。ここで加算器13まで前
置遅延手段、それ以降を主遅延手段とよぶことと
する。ここで、前置遅延素子の素子間の遅延時間
τ1は素子ピツチd、偏向角θ、音速cから
τ1=dsinθ/c ……(1)
で与えられることが知られている。第2図の場合
前置遅延素子10―2,10―5,…,10―
(n−1)の遅延時間はそれぞれの配列素子の位
置から収束点への偏向角θを用いて(1)式で算出さ
れるτ1であり、前置遅延素子10―3,10―
6,…,10―(n−2)の遅延時間は同様にそ
れぞれの配列素子の位置から収束点への偏向角θ
を用いて(1)式で算出されるτ1に対して2τ1である。
また主遅延素子の遅延時間τ2は第1図の作図から
求められるが実際には受波信号は口径中心の素子
に最初に到達するので、口径中心の受波信号を口
径の外側の受波信号に対して遅延させる必要があ
る。なお第2図では素子1,4、もしくはnの受
波信号は微小遅延時間の補償の基準となつている
ので、前置遅延手段の遅延量はゼロであり、遅延
線がこれらの素子チヤネルには挿入されていない
が、一般には超音波ビームの中心位置を素子配列
方向に移動させる必要があるため全ての素子チヤ
ネルに遅延量ゼロのタツプをも有する遅延線が挿
入される。 FIG. 2 shows an embodiment of the present invention, 1, 2,...,
n is an array element, 10-2...10-(n-1) is a pre-delay element, 11-1...11-m is a holding circuit, 12-1...12-m is a main delay element, 13-
1...13-m is a pre-delay adder, 19-1...
...19-m is the output of the main delay, 20 is the adder, 30
is the receiver phaser output terminal. However, m=n/3
(m: positive integer). Here, the circuit up to the adder 13 will be referred to as pre-delay means, and the portions thereafter will be referred to as main delay means. Here, it is known that the delay time τ 1 between the elements of the pre-delay element is given by τ 1 =dsin θ/c (1) from the element pitch d, the deflection angle θ, and the speed of sound c. In the case of Fig. 2, the predelay elements 10-2, 10-5,..., 10-
The delay time of (n-1) is τ 1 calculated by equation (1) using the deflection angle θ from the position of each array element to the convergence point, and
Similarly, the delay time of 6,...,10-(n-2) is determined by the deflection angle θ from the position of each array element to the convergence point.
It is 2τ 1 for τ 1 calculated by equation (1) using .
Also, the delay time τ 2 of the main delay element can be found from the drawing in Figure 1, but in reality, the received signal reaches the element at the center of the aperture first, so the received signal at the center of the aperture is transferred to the received signal at the outside of the aperture. It is necessary to delay the signal. In Fig. 2, the received signal of elements 1, 4, or n is the reference for compensation of minute delay time, so the delay amount of the pre-delay means is zero, and the delay line is connected to these element channels. However, since it is generally necessary to move the center position of the ultrasonic beam in the element arrangement direction, a delay line having a tap with zero delay amount is inserted in all element channels.
第2図に示す構成で受波整相が可能でるが、受
波期間中に前置遅延を切換えるタイミングについ
て第3図a及び第3図bを用いて説明する。 Although reception phasing is possible with the configuration shown in FIG. 2, the timing of switching the predelay during the reception period will be explained using FIGS. 3a and 3b.
第3図aの10は前置遅延素子でり、例えばタ
ツプ付インダクタンスL、キヤパシタンスC遅延
線でる。14はマルチプレクサ、αは保持回路1
1および主遅延素子12の制御信号である。つま
りこの制御信号αのタイミングごとの信号値が保
持回路11に順次サンプリングされて値が保持さ
れ、かつ記憶回路12ではその値を順次出力側へ
シフトして行く。βはマルチプレクサ14の制御
信号であり、この制御信号のタイミングで収束点
変更のための遅延線のタツプ切換えが成される。
第3図bに示すように制御信号βを制御信号αに
対して時間τ(>0)だけ先行して同期して発生
させる。ここで切換ノイズはτ時間後に完全に消
滅するとする。このようにすれば、受波期間中に
前置遅延をマルチレクサ14により切換えても、
保持回路11に保持されるデータには、切換ノイ
ズの影響は現われない。 Reference numeral 10 in FIG. 3A is a pre-delay element, such as a tapped inductance L and a capacitance C as a delay line. 14 is a multiplexer, α is a holding circuit 1
1 and a control signal for the main delay element 12. In other words, the signal value of the control signal α at each timing is sequentially sampled by the holding circuit 11 and held, and the storage circuit 12 sequentially shifts the value to the output side. β is a control signal for the multiplexer 14, and the tap switching of the delay line for changing the convergence point is performed at the timing of this control signal.
As shown in FIG. 3b, the control signal β is generated in synchronization with the control signal α, preceding the control signal α by a time τ (>0). Here, it is assumed that the switching noise completely disappears after τ time. In this way, even if the predelay is switched by the multiplexer 14 during the reception period,
The data held in the holding circuit 11 is not affected by switching noise.
次に受波期間中に行う前置遅延の切換回数につ
いて説明する。 Next, the number of times the predelay is switched during the reception period will be explained.
受波ビームの収束点に応じて連続的に前置遅延
を切換えればよいが、主遅延手段のチヤンネル間
指向特性が比較的広いため切換回数が非常に少な
くてよい。 The predelay may be continuously switched depending on the convergence point of the received beam, but since the inter-channel directivity of the main delay means is relatively wide, the number of switches may be very small.
第4図は主遅延手段のチヤンネル間指向特性例
である。 FIG. 4 shows an example of inter-channel directivity characteristics of the main delay means.
いま、第2図に示すように前置遅延により、3
の入力、1の出力とするとき、主遅延のチヤンネ
ル間指向特性は、(2)式において素子ピツチが3d
=1.92mmの場合に対応し、第1零点θ0は
θ0=sin-1λ/3d=13degree …(2)
となる。(ここでd=0.64mm、λ=0.43mmとした)
このように、主遅延手段のチヤンネル間指向特
性が広いため、重複するように数点切換ればよ
い。 Now, as shown in Figure 2, due to the pre-delay, 3
When the input is 1 and the output is 1, the channel-to-channel directional characteristic of the main delay is expressed as
Corresponding to the case of = 1.92 mm, the first zero point θ 0 is θ 0 = sin -1 λ/3d = 13 degree (2). (Here, d = 0.64 mm and λ = 0.43 mm.) Since the main delay means has a wide inter-channel directivity characteristic as described above, it is only necessary to switch several points so that they overlap.
従つて、第1図、第4図に示すように配列素子
の中心から離れた素子では前置遅延の指向特性を
,,,の順に3回切換える必要がある。
一方、中心の配列素子は指向特性のままで切換
える必要はない。 Therefore, as shown in FIGS. 1 and 4, for elements located far from the center of the array element, it is necessary to switch the directivity characteristics of the predelay three times in the order of , , , , , , , , , , , , .
On the other hand, the central array element does not need to be switched with its directional characteristics unchanged.
第5図に示すように、受波口径Dを中心対称に
D1,D2,D3,D4に分割したとき、最外側D4の受
波口径では、前置遅延の制御信号β4は指向特性を
〜に順次変化させる。部分口径D3,D2,D1
については図の如く順次変化させるがその切換点
が減少する。 As shown in Figure 5, the receiving aperture D is centered symmetrically.
When divided into D 1 , D 2 , D 3 , and D 4 , at the receiving aperture of the outermost D 4 , the control signal β 4 of the predelay sequentially changes the directivity to ~. Partial diameter D 3 , D 2 , D 1
are changed sequentially as shown in the figure, but the number of switching points decreases.
以上の説明において、切換点の数は受波口径、
深度、前置遅延の構成により種々変形されること
は明らかでる。 In the above explanation, the number of switching points is the receiving aperture,
It is clear that various modifications can be made depending on the depth and the configuration of the predelay.
また、以上の説明においては、リニア型振動子
を仮定したが、第6図に示すようなコンベツクス
型振動子についても同様である。ここでR0は振
動子の曲率半径、Dは受波全口径でる。 Further, in the above description, a linear type vibrator is assumed, but the same applies to a convex type vibrator as shown in FIG. Here, R 0 is the radius of curvature of the vibrator, and D is the total receiving aperture.
第6図において、受波口径の外側の振動子T1
〜T3の前置遅延が同位相ならば主遅延のチヤン
ネル間指向特性はVとなる。受波ビームは収束点
Rに形成させる必要があるので外側の振動子T1
〜T3の指向特性はの方向に形成されるように
前置遅延を制御する必要がある。 In Figure 6, the transducer T 1 outside the receiving aperture
If the pre-delays of ~ T3 are in phase, the inter-channel directivity characteristic of the main delay will be V. Since the receiving beam needs to be formed at the convergence point R, the outer transducer T 1
It is necessary to control the predelay so that the directional characteristic of ~T 3 is formed in the direction of .
このように上記期間中に前置遅延を切換えて
も、切換ノイズの影響を受けずに主遅延が動作す
るので、受波ダイナミツクフオーカスが可能とな
り、超音波断層装置の性能向上に寄与する所、大
である。
In this way, even if the pre-delay is switched during the above period, the main delay operates without being affected by the switching noise, making reception dynamic focus possible and contributing to improved performance of the ultrasonic tomography device. The place is large.
第1図は本発明の説明図、第2図は本発明の実
施例を示す図、第3図aは本発明の実施例を示す
図、第3図bはその動作を示す図、第4図、第5
図は本発明の動作を説明する図、第6図はコンベ
ツクス型振動子における前置遅延の指向特性を示
す図である。
10…前置遅延素子、11…保持回路、12…
主遅延素子、20…加算器。
FIG. 1 is an explanatory diagram of the present invention, FIG. 2 is a diagram showing an embodiment of the present invention, FIG. 3 a is a diagram showing an embodiment of the present invention, FIG. 3 b is a diagram showing its operation, and FIG. Figure, 5th
The figure is a diagram for explaining the operation of the present invention, and FIG. 6 is a diagram showing the directivity characteristics of the predelay in a convex type vibrator. 10... Pre-delay element, 11... Holding circuit, 12...
Main delay element, 20...adder.
Claims (1)
射波を配列振動子により受波し、前記配列振動子
の各素子からの各受波信号の位相を制御して加算
することにより収束する超音波ビームを形成して
超音波像を得る装置において、前記配列振動子を
隣切する複数素子ごとにグループとして各グルー
プ内の各素子からの受波信号の相互の微小遅延時
間を補償する前置遅延手段と、微小遅延時間が補
償されたグループ内素子からの受波信号を各グル
ープごとにそれぞれ加算する第1の加算手段と、
加算された各グループの受波信号の相互の遅延時
間を補償する主遅延手段と、該主遅延手段を経た
各受波信号を加算する第2の加算手段とを備え、
前記前置遅延手段はそれぞれタツプ切換機能を備
えて各素子チヤネルごとに設けられた遅延線から
成り、一方前記主遅延手段はそれぞれサンプリン
グした信号を遅延時間分だけ記憶してから続み出
す記憶手段から成り、かつ超音波ビームの収束点
を切り換えるために前記前置遅延手段のタツプ切
換を行なう時刻からその切換により生じるノイズ
が消滅するまでの時間が経過した後に前記主遅延
手段におけるサンプリングが実行されるよう前記
前置遅延手段及び前記主遅延手段に制御信号を発
生する手段を有することを特徴とする超音波受信
整相器。1 Ultrasonic waves that are converged by receiving reflected waves generated by sending an ultrasonic pulse to a target by an array transducer, and controlling and adding the phases of each received signal from each element of the array transducer In a device that forms a beam to obtain an ultrasonic image, the array transducer is grouped into multiple adjacent elements, and a pre-delay compensates for the mutual minute delay time of received signals from each element in each group. and a first adding means for adding the received signals from the elements within the group whose minute delay times have been compensated for each group, respectively;
comprising a main delay means for compensating the mutual delay time of the added received signals of each group, and a second addition means for adding the received signals that have passed through the main delay means,
The pre-delay means each have a tap switching function and consist of a delay line provided for each element channel, while the main delay means each include a storage means that stores each sampled signal for a delay time and then continues the process. and the sampling in the main delay means is performed after a time elapses from the time when the pre-delay means is switched to switch the convergence point of the ultrasonic beam until the noise generated by the switch disappears. 1. An ultrasonic receiving phaser, comprising means for generating a control signal to the pre-delay means and the main delay means so as to control the pre-delay means and the main delay means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58057890A JPS59183742A (en) | 1983-04-04 | 1983-04-04 | Ultrasonic receiving phasing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58057890A JPS59183742A (en) | 1983-04-04 | 1983-04-04 | Ultrasonic receiving phasing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59183742A JPS59183742A (en) | 1984-10-18 |
JPH0466578B2 true JPH0466578B2 (en) | 1992-10-23 |
Family
ID=13068578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58057890A Granted JPS59183742A (en) | 1983-04-04 | 1983-04-04 | Ultrasonic receiving phasing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183742A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60207651A (en) * | 1984-03-30 | 1985-10-19 | 株式会社島津製作所 | Ultrasonic diagnostic apparatus |
JPH01195844A (en) * | 1988-01-29 | 1989-08-07 | Yokogawa Medical Syst Ltd | Ultrasonic wave receiving phasing circuit |
JPH01201240A (en) * | 1988-02-05 | 1989-08-14 | Yokogawa Medical Syst Ltd | Ultrasonic wave receiving phasing circuit |
JPH069554B2 (en) * | 1988-02-23 | 1994-02-09 | 横河メディカルシステム株式会社 | Ultrasonic wave reception phasing circuit |
-
1983
- 1983-04-04 JP JP58057890A patent/JPS59183742A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59183742A (en) | 1984-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5784336A (en) | Delay scheme and apparatus for focussing the transmission and reception of a summed ultrasonic beam | |
KR100280197B1 (en) | Ultrasonic Signal Concentration Method and Apparatus in Ultrasonic Imaging System | |
EP0642036B1 (en) | Ultrasonic diagnostic equipment | |
US4180790A (en) | Dynamic array aperture and focus control for ultrasonic imaging systems | |
US4241610A (en) | Ultrasonic imaging system utilizing dynamic and pseudo-dynamic focusing | |
US6494842B2 (en) | Ultrasound receive beamforming apparatus using multi stage delay devices | |
JPS6140944B2 (en) | ||
US6315723B1 (en) | Ultrasonic diagnostic imaging system with synthesized transmit focus | |
JPH0235389A (en) | Calibration system for phased array ultrasonic probe | |
JPH0679606B2 (en) | Method and apparatus for delaying ultrasonic signal | |
US4215584A (en) | Method for transmission and reception of ultrasonic beams using ultrasonic transducer element array | |
US6839303B2 (en) | Matched filter, receiving beam-forming apparatus and sonar system | |
JP2003511173A (en) | Ultrasound diagnostic imaging system with synthetic transmission focus at high frame rates | |
US4460987A (en) | Variable focus sonar with curved array | |
US5088496A (en) | Ultrasonic echography apparatus utilizing a digital device for forming channels, in the receiving mode | |
US4455630A (en) | Device for forming an image by means of ultrasound | |
JPH0466578B2 (en) | ||
GB2333842A (en) | Cylindrical beam former | |
JPS6284748A (en) | Ultrasonic receiving and phasing circuit | |
JPH0113546B2 (en) | ||
JP3215023B2 (en) | Ultrasound diagnostic equipment | |
JP2632846B2 (en) | Phased Array Sonar | |
JPH0375172B2 (en) | ||
JPH10127629A (en) | Ultrasonic diagnostic system | |
JPH0429032B2 (en) |