JPH0155219B2 - - Google Patents

Info

Publication number
JPH0155219B2
JPH0155219B2 JP13819982A JP13819982A JPH0155219B2 JP H0155219 B2 JPH0155219 B2 JP H0155219B2 JP 13819982 A JP13819982 A JP 13819982A JP 13819982 A JP13819982 A JP 13819982A JP H0155219 B2 JPH0155219 B2 JP H0155219B2
Authority
JP
Japan
Prior art keywords
weight
raw material
alc
raw materials
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13819982A
Other languages
Japanese (ja)
Other versions
JPS5930754A (en
Inventor
Isao Shiozaki
Kenji Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13819982A priority Critical patent/JPS5930754A/en
Publication of JPS5930754A publication Critical patent/JPS5930754A/en
Publication of JPH0155219B2 publication Critical patent/JPH0155219B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

水蒸気養生軽量気泡コンクリート(以下ALC
と略す)の製造において、けい酸質原料と石灰質
原料の品質の選択は整品の理的性状を確保するう
えで重要である。 特にけい酸質原料の場合、アルカリ含有率の高
いものは不適当として使用されていないのが現状
である。 本発明は、従来使用されていなかつたアルカリ
含有率の高いけい酸質原料を使用してALCを製
造する方法に関するものである。 ALCは、粉砕されたけい砂、けい石等のけい
酸質原料と、石灰及びセメント等の石灰質原料
に、水を適当な割合に混合し、これにアルミニウ
ム等の金属粉末を加えて撹拌するか、あるいは空
気を吹き込む等の方法によつて、気泡を含有せし
めたのち半硬化させ、さらにオートクレーブに移
して高温高圧水蒸気養生を行なつて製造されてい
る。 このようにして製造されるALCは建築用材料
として必要な物理的性能を確保するためには、主
要原料の選択は重要である。 特にけい酸質原料としてのけい砂、けい石の品
質はALCの材質に大きく影響する。 ALC製造の際の基本的な反応として知られる
水熱反応におけるけい酸カルシウム水和物の生成
において、好ましい物質である高い結晶性物質
(11Åトベルモライト)を多量に生成せしめるた
めにはNa2O、K2O等のアルカリ分が全けい酸質
原料中で0.5重量%以下と少ないけい酸質原料を
使用することが必要な条件であると一般に云われ
ている。従つて、これまでアルカリ分の多いけい
酸質原料をALCの主要原料として使用している
例はみられない。 アルカリ含有率の高いけい砂としては、硝子製
造工場の磨板硝子工程より発生する磨き廃砂
(Na2O+K2O、1重量%以上)、長石含有の山砂
(Na2O+K2O、1重量%以上)等がある。 これらのアルカリ含有率の高いけい砂、けい石
をけい酸質原料とし、生石灰及びセメント等の石
灰質原料と共に使用して製造されたALCは、オ
ートクレーブ内における正常な水熱反応が阻害さ
れる。 即ち、粉砕されたけい砂、けい石中の微細物
は、アルカリ含有率の高いスラリー中では石英分
が早期にゲル化し、比較的低温域で石灰分と反応
し、多量のゲル状けい酸カルシウム水和物を生成
する。 従つてオートクレーブ内での正常な水熱反応に
よる高い結晶性を有するけい酸カルシウム水和物
の均質な生成が一部阻害されることになるものと
思われる。 この現象が結果的に製品の機械的強度の発現を
妨害し湿乾収縮率を大きくするなど物理的性質を
低下させることになる。 本発明は、以上説明したように従来ALCの原
料として不適当とされていた、アルカリ含有率の
高いけい砂、けい石を使用して、従来のALC製
品と同等な圧縮強度、湿乾収縮率等を有する
ALCを製造する方法を提供することを目的とす
る。 この目的を達成するため本願発明者等は、けい
砂、けい石等の全けい酸質原料中でアルカリ金属
酸化物の含有量が0.5重量%以上となるけい酸質
原料を使用した場合、これに従来使用しているセ
メント及び粉末生石灰の石灰質原料を混合する際
に、前記した良好なけい酸カルシウム水和物生成
を阻害する現象を緩和する目的で、その添加物に
ついて鋭意研究したところ、前記主要原料中に8
〜16重量%の硫酸カルシウムを含有するように二
水塩の石膏を添加することによつて充分な成果が
得られることを実験的に見出したものである。 こゝに使用されるけい酸質原料と石灰質原料の
混合割合は従来法と同様で良く、新たに添加され
る二水塩の石膏量を内割で8〜16重量%のCaSO4
を含有するようにするのは、実施例に示したよう
に、この範囲を外れると添加量が少なくても多過
ぎても圧縮強度が低下するためである。 以下本発明を詳細に説明する。 ALCの製造において、原料混合物に硫酸カル
シウムを半水石膏又は二水石膏の形で添加するこ
とは公知である。硫酸カルシウムは、粉末生石灰
の消化制御に役立つため石灰の消化が早過ぎるこ
とによつて起るALCの亀裂や空洞の発生を防止
する役目をする。 また、ある領域での硫酸カルシウムの使用は物
理的機械的強度を上昇させることも知られてい
る。 例えば特公昭47−15359号公報によると微粉石
灰1部に対してセメント3部を含有する水蒸気養
生のガスコンクリート製造において、モルタル混
合物に硫酸カルシウムをSO3として2.5〜3.5重量
%含有させることで圧縮強度を30〜50%増加させ
ている。 本発明者等も特公昭55−27030号公報で石灰に
対するセメントの重量比を1対0.5〜3.5とした石
灰質原料とけい酸質原料等の混合物に対し、硫酸
カルシウムを6.5〜12重量%含有する如く二水塩
の石膏を添加することで圧縮強度が約52〜65%増
加すると提案している。 本発明は、以上述べた硫酸カルシウム含有量を
更に増加させることによつて、今日までALC原
料として使用不可能とされていたアルカリ
(Na2O+K2O)含有率の高い、磨き廃砂や長石
を含有するけい砂等を使用して、従来の製品と同
等のALCを製造する方法を確立した。 前記磨き廃砂は、磨板硝子製造時に硝子の研磨
剤として使用されたけい砂に硝子粉が混入したも
ので、これまで廃棄されていた。この廃砂と、長
石を含有している山砂の組成は例えば第1表に示
す如くアルカリ分が相当高いものである。
Steam-cured lightweight aerated concrete (ALC)
In the production of silicic acid raw materials and calcareous raw materials, selection of the quality of silicic acid raw materials and calcareous raw materials is important to ensure the physical properties of finished products. Particularly in the case of silicic acid raw materials, those with a high alkali content are currently not used as they are considered inappropriate. The present invention relates to a method for producing ALC using a silicic acid raw material with a high alkali content, which has not been used in the past. ALC is made by mixing silicic acid raw materials such as crushed silica sand and silica stone, and calcareous raw materials such as lime and cement with water in an appropriate ratio, adding metal powder such as aluminum, and stirring. Alternatively, it is manufactured by incorporating air bubbles by blowing air into it, semi-curing it, and then transferring it to an autoclave and curing it with high-temperature, high-pressure steam. In order to ensure that the ALC produced in this way has the physical performance necessary as a building material, the selection of the main raw materials is important. In particular, the quality of silica sand and silica stone as silicic acid raw materials greatly influences the material quality of ALC. In the production of calcium silicate hydrate in the hydrothermal reaction known as the basic reaction in ALC production, Na 2 It is generally said that a necessary condition is to use a silicic acid raw material with a low alkali content such as O and K 2 O of 0.5% by weight or less based on the total silicic acid raw material. Therefore, there have been no examples of using a silicic acid raw material with a high alkaline content as a main raw material for ALC. Examples of silica sand with a high alkali content include polishing waste sand (Na 2 O + K 2 O, 1% by weight or more) generated from the polishing process of glass manufacturing plants, and mountain sand containing feldspar (Na 2 O + K 2 O, 1% by weight). % or more). In ALC manufactured by using silica sand and silica stone with high alkali content as silicic acid raw materials together with calcareous raw materials such as quicklime and cement, the normal hydrothermal reaction in the autoclave is inhibited. In other words, fine particles in crushed silica sand and silica stone gel early in the slurry with a high alkali content, react with lime in a relatively low temperature range, and form a large amount of gelled calcium silicate. Produces hydrates. Therefore, it is thought that the homogeneous production of highly crystalline calcium silicate hydrate due to the normal hydrothermal reaction within the autoclave is partially inhibited. As a result, this phenomenon hinders the development of mechanical strength of the product, increases the wet-dry shrinkage rate, and deteriorates the physical properties. As explained above, the present invention uses silica sand and silica stone with a high alkali content, which have been considered unsuitable as raw materials for ALC in the past, and has the same compressive strength and wet-dry shrinkage rate as conventional ALC products. etc.
The purpose is to provide a method for manufacturing ALC. In order to achieve this objective, the inventors of the present application have proposed that when using silicic acid raw materials such as silica sand and silica stone in which the content of alkali metal oxides is 0.5% by weight or more in all silicic acid raw materials, In order to alleviate the above-mentioned phenomenon that inhibits the production of good calcium silicate hydrate when mixing calcareous raw materials such as cement and powdered quicklime, which are conventionally used in 8 in main ingredients
It has been experimentally found that satisfactory results can be obtained by adding dihydrate gypsum to contain ~16% by weight calcium sulfate. The mixing ratio of the silicic acid raw material and the calcareous raw material used here may be the same as in the conventional method, and the amount of gypsum in the newly added dihydrate is 8 to 16% by weight of CaSO4 .
The reason why this is added is because, as shown in the examples, if the amount is outside this range, the compressive strength will decrease whether the amount added is too small or too large. The present invention will be explained in detail below. In the production of ALC, it is known to add calcium sulphate in the form of gypsum hemihydrate or gypsum dihydrate to the raw material mixture. Calcium sulfate helps control the digestion of powdered quicklime, thus preventing the formation of cracks and cavities in the ALC caused by premature lime digestion. It is also known that the use of calcium sulfate in certain areas increases physical mechanical strength. For example, according to Japanese Patent Publication No. 47-15359, in the production of steam-cured gas concrete containing 1 part of pulverized lime and 3 parts of cement, compression is achieved by adding 2.5 to 3.5% by weight of calcium sulfate as SO 3 to the mortar mixture. Strength is increased by 30-50%. The present inventors also disclosed in Japanese Patent Publication No. 55-27030 that calcium sulfate is contained in an amount of 6.5 to 12% by weight in a mixture of calcareous raw materials and silicate raw materials with a weight ratio of cement to lime of 1:0.5 to 3.5. It is proposed that the addition of dihydrate gypsum increases compressive strength by approximately 52-65%. By further increasing the calcium sulfate content as described above, the present invention enables polishing waste sand and feldspar that have a high alkali (Na 2 O + K 2 O) content, which until now has been considered unusable as an ALC raw material. We have established a method for manufacturing ALC equivalent to conventional products using silica sand containing . The polishing waste sand is a mixture of glass powder and silica sand used as a polishing agent for glass during the manufacture of polished glass plates, and has been discarded until now. The composition of this waste sand and mountain sand containing feldspar is, for example, as shown in Table 1, with a considerably high alkaline content.

【表】 尚、磨き廃砂の粒度は10μ以下40.0、10〜
20μ25.0、20〜30μ15.0、30〜40μ15.0、40μ以上5.0
各重量%と極めて微粉末である。 これらの高いアルカリ含有率を示すけい酸質原
料と、粉末状の生石灰及びセメントの組合せに硫
酸カルシウムを添加して高い圧縮強度の製品を得
るには、原料混合物の含有硫酸カルシウムを8〜
16重量%の範囲に規制しなければならない。 ALC原料に添加する硫酸カルシウムの形態と
しては、水と反応して急速に水和反応を起こして
凝結するα及びβ型の半水石膏や型無水石膏よ
りも、水和が極めて緩慢な二水石膏であることが
必要である。 本発明法は適量の硫酸カルシウムを含有せしめ
る以外は、従来方法と同様に操作することができ
る。 本発明法によれば、適切な嵩比重で圧縮強度を
高め、その他の機械的強度や物性を充分に満足す
る製品を得ることができる。 以下実施例について説明する。 実施例 1 45〜60重量%の第1表に示した磨き廃砂と、粉
末生石灰とポルトランドセメント(CaSO43.3重
量%含有)との重量比を1対0.3〜8の比率とし
た35〜45重量%の石灰質原料との混合物全固形分
(灼熱減量なし)に対し内割りで0〜21.8重量%
の二水石膏を添加し以下通常の操作に従つて高温
高圧(180℃、10.5Kg/cm2)水蒸気養生してALC
を製造し、その製品をJIS A−5416−7項によつ
て圧縮強度(Kgf/cm2)を測定した。 その結果を第2表に示す。
[Table] In addition, the particle size of polishing waste sand is 10 μ or less 40.0, 10 ~
20μ25.0, 20~30μ15.0, 30~40μ15.0, 40μ or more 5.0
Each weight% is extremely fine powder. In order to obtain a product with high compressive strength by adding calcium sulfate to a combination of these silicic acid raw materials exhibiting a high alkali content, powdered quicklime, and cement, the calcium sulfate content of the raw material mixture must be 8 to 8.
It must be regulated within a range of 16% by weight. The form of calcium sulfate added to ALC raw materials is dihydrate, which hydrates extremely slowly, rather than α- and β-type hemihydrate gypsum and type anhydrite, which react with water to cause a rapid hydration reaction and solidify. It needs to be plaster. The method of the present invention can be operated in the same manner as the conventional method, except that an appropriate amount of calcium sulfate is included. According to the method of the present invention, it is possible to obtain a product that has an appropriate bulk specific gravity, high compressive strength, and satisfactorily satisfies other mechanical strength and physical properties. Examples will be described below. Example 1 The weight ratio of 45 to 60% by weight of the polishing waste sand shown in Table 1, powdered quicklime and Portland cement (containing 3.3% by weight of CaSO 4 ) was 1 to 0.3 to 8.35 to 45 0 to 21.8% by weight based on the total solid content of the mixture with calcareous raw materials (no loss on ignition)
After adding gypsum dihydrate and curing with steam at high temperature and pressure (180℃, 10.5Kg/cm 2 ) according to the normal procedure, ALC was performed.
was manufactured, and the compressive strength (Kgf/cm 2 ) of the product was measured according to JIS A-5416-7. The results are shown in Table 2.

【表】【table】

【表】 第2表より明らかなように、粉末生石灰とセメ
ントの重量比が1対0.3〜8と広い範囲において
も、全固形分中に8〜16重量%の硫酸カルシウム
を含有するように、二水塩の石膏を添加したもの
は無添加の場合(実験No.1、8、11、14)より圧
縮強度が約44〜50%増加し、含有硫酸カルシウム
が本発明の範囲を外れたもの(実験No.2、3、
7、9、12、15)より約20〜35%同様に圧縮強度
が増加した。 実施例 2 49〜55重量%の第1表に示した長石を含有する
山砂と約9〜10重量%の粉末生石灰と31〜35重量
%のポルトランドセメント(CaSO43.3重量%含
有)との混合物中の全固形分に対し内割りで7.3、
10.9重量%の二水塩石膏を添加し、以下実施例1
と同様にして製品の圧縮強度を測定した。 その結果を第3表に示す。
[Table] As is clear from Table 2, even when the weight ratio of powdered quicklime to cement is in a wide range of 1:0.3 to 8, calcium sulfate is contained in the total solid content in an amount of 8 to 16% by weight. The compressive strength of the products to which dihydrate gypsum was added increased by about 44 to 50% compared to the case without the addition (Experiment Nos. 1, 8, 11, and 14), and the calcium sulfate content was outside the range of the present invention. (Experiment No. 2, 3,
7, 9, 12, 15), the compressive strength increased by about 20 to 35%. Example 2 Mountain sand containing 49-55% by weight of the feldspar shown in Table 1, about 9-10% by weight of powdered quicklime, and 31-35% by weight of Portland cement (containing 3.3% by weight of CaSO 4 ). 7.3 internally based on the total solids in the mixture;
Adding 10.9% by weight of dihydrate gypsum, Example 1 below
The compressive strength of the product was measured in the same manner. The results are shown in Table 3.

【表】 第3表から本発明法を外れた実験No.18と本発明
法実験No.19と比較すると約24%の圧縮強度の増加
となり、これを無添加の場合と比較すると約52%
増と明確に差が見られ本発明法による製品は、物
理的、機械的性状を改善した従来のALCと比較
して遜色のないものであつた。 実施例 3 25重量%の第1表に示した磨き廃砂と24重量%
の硅石粉末との混合物(Na2O+K2O1.10重量%
含有)に20重量%の粉末生石灰と、20重量%のポ
ルトランドセメントに、添加物として二水塩の石
膏を内割りで11重量%添加し、以下実施例1と同
様にしてALCを製造し試験したところ嵩比重
(g/cm2)は0.50、圧縮強度(Kgf/cm2)は53で
あつた。 本発明により従来廃棄されていた高アルカリ含
有の磨き廃砂や長石含有の山砂はALC主要原料
として大量に使用することができるようになり、
大幅なコストダウンにもなる。
[Table] From Table 3, when comparing Experiment No. 18 using the method of the present invention and Experiment No. 19 using the method of the present invention, the compressive strength increased by about 24%, and when compared with the case without additives, it increased by about 52%.
There was a clear difference in the increase, and the product produced by the method of the present invention was comparable to conventional ALC, which had improved physical and mechanical properties. Example 3 25% by weight of polishing waste sand shown in Table 1 and 24% by weight
mixture with silica powder (Na 2 O + K 2 O 1.10% by weight)
ALC was manufactured and tested in the same manner as in Example 1 by adding 11% by weight of dihydrate gypsum as an additive to 20% by weight of powdered quicklime and 20% by weight of Portland cement. As a result, the bulk specific gravity (g/cm 2 ) was 0.50 and the compressive strength (Kgf/cm 2 ) was 53. With the present invention, high alkali-containing waste polishing sand and feldspar-containing mountain sand, which were conventionally discarded, can now be used in large quantities as the main raw materials for ALC.
It will also result in significant cost reduction.

Claims (1)

【特許請求の範囲】[Claims] 1 硅砂、硅石又は磨き廃砂のうち一つ以上から
なる全けい酸質原料中に0.5重量%以上のアルカ
リ金属酸化物を含有する硅酸質原料と、石灰およ
びセメントよりなる石灰質原料とを主要原料とし
て使用し、該主要原料の全固形分中に8〜16重量
%の硫酸カルシウムを含有するように二水塩の石
膏を添加し、高温高圧水蒸気養生することを特徴
とする水蒸気養生軽量気泡コンクリートの製造
法。
1 A siliceous raw material containing 0.5% by weight or more of an alkali metal oxide in a totally silicic raw material consisting of one or more of silica sand, silica stone, or polishing waste sand, and a calcareous raw material consisting of lime and cement. Steam-cured lightweight foam, which is used as a raw material and is characterized by adding dihydrate gypsum so that the total solid content of the main raw material contains 8 to 16% by weight of calcium sulfate, and curing with high-temperature and high-pressure steam. Concrete manufacturing method.
JP13819982A 1982-08-09 1982-08-09 Manufacture of steam-cured lightweight foamed concrete Granted JPS5930754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13819982A JPS5930754A (en) 1982-08-09 1982-08-09 Manufacture of steam-cured lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13819982A JPS5930754A (en) 1982-08-09 1982-08-09 Manufacture of steam-cured lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS5930754A JPS5930754A (en) 1984-02-18
JPH0155219B2 true JPH0155219B2 (en) 1989-11-22

Family

ID=15216392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13819982A Granted JPS5930754A (en) 1982-08-09 1982-08-09 Manufacture of steam-cured lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS5930754A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169123A (en) * 2015-03-13 2016-09-23 住友金属鉱山シポレックス株式会社 Manufacturing method of light weight cellular concrete panel

Also Published As

Publication number Publication date
JPS5930754A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
JP4789466B2 (en) Rapidly setting cement composition
JP3607291B2 (en) Coagulation and curing accelerators for silica based hydraulic binders
US5484480A (en) Use of alumina clay with cement fly ash mixtures
IT8048830A1 (en) PROCEDURE FOR THE PRODUCTION OF A BINDER FOR LIQUID MIX, MORTAR AND CONCRETE.
EP1373160A1 (en) Low density calcium silicate hydrate strength accelerant additive for cementitious products
AU2002302913A1 (en) Low density calcium silicate hydrate strength accelerant additive for cementitious products
CN106946537B (en) A kind of titanium gypsum high performance concrete building materials and preparation method thereof
CN101549982B (en) Calcination-free desulfurized gypsum brick
US8377199B2 (en) Gypsum based compositions
GB1593344A (en) Compression mouldinf of gypsumplaster compositions
CN114956642A (en) Composite expanding agent based on regenerated micro powder and preparation method thereof
JPH0155219B2 (en)
CN115304340A (en) Plastering mortar and preparation method thereof
CN112159190A (en) Special pasting mortar for phosphogypsum and preparation method thereof
KR100544062B1 (en) Crack inhibitor for cement mortar
US3717488A (en) Hydration of silicates
JP4028966B2 (en) Method for producing cement-based composition
JPH0667791B2 (en) ALC manufacturing method
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
KR940005069B1 (en) Manufacturing method of autoclaved lightweight concrete
JP2641102B2 (en) Method for producing porous material using fly ash as main raw material
RU2002717C1 (en) Method for building materials production
SU893943A1 (en) Raw mixture for producing porous concrete
CN117985993A (en) Green light wet-mixed mortar and preparation method thereof
CN117209242A (en) Short-curing high-durability autoclaved aerated concrete and preparation method thereof