JPH0154993B2 - - Google Patents

Info

Publication number
JPH0154993B2
JPH0154993B2 JP55153315A JP15331580A JPH0154993B2 JP H0154993 B2 JPH0154993 B2 JP H0154993B2 JP 55153315 A JP55153315 A JP 55153315A JP 15331580 A JP15331580 A JP 15331580A JP H0154993 B2 JPH0154993 B2 JP H0154993B2
Authority
JP
Japan
Prior art keywords
adenosine diphosphate
support
affinity
ligand
affinity chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55153315A
Other languages
Japanese (ja)
Other versions
JPS5777958A (en
Inventor
Katsuhiko Matsumoto
Kaoru Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP55153315A priority Critical patent/JPS5777958A/en
Publication of JPS5777958A publication Critical patent/JPS5777958A/en
Publication of JPH0154993B2 publication Critical patent/JPH0154993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 本発明はアフイニテイークロマトグラフイー用
親和性吸着体に関する。アフイニテイークロマト
グラフイー法は特定のタンパク質を特異的に精製
する方法として非常にすぐれている。リガンドに
ヌクレオチドを有する親和性吸着体としては、ポ
リアデニル酸−セフアローズ4B、ポリウリジル
酸−セフアローズ4B、5′−アデノシンモノリン
酸−セフアローズ4B、2′,5′−アデノシンジリン
酸−セフアローズ4B(セフアローズはフアルマシ
ア社製のアガロースで商標)等があるが、前二者
の吸着体のリガンドは、アデノシンジリン酸、ウ
リジンジリン酸を基質とする酵素であるポリヌク
レオチドフオスフオリラーゼの生成物であるにも
かかわらず、この酵素に対して親和性を示さな
い。 また後二者の吸着体のリガンドは、ポリヌクレ
オチドフオスフオリラーゼの基質の類似体である
が、これ等のリガンドは何れもアデニン塩基で支
持体に結合されているので、例えばポリヌクレオ
チドフオスフオリラーゼのような塩基部分を認識
して結合する酵素と親和性を示さない。従つてこ
れ等の親和性吸着体は、ポリヌクレオチドフオス
フオリラーゼのような酵素の吸着体としては不適
当である。 本発明者らは、ポリヌクレオチドフオスフオリ
ラーゼの様なアデノシンジリン酸に結合能を示す
種々の酵素の発見、精製に広く応用される可能性
があるアフイニテイークロマトグラフイー用親和
性吸着体を開発すべく鋭意検討した結果、本発明
に達した。 第一の発明の要旨は、アデノシンジリン酸を酸
化開裂し、支持体とカツプリングさせた後、還元
して得られるアデノシンジリン酸をリガンドと
し、リボースの2′−Cと3′−Cの位置で支持体に
結合していることを特徴とするアフイニテイーク
ロマトグラフイー用親和性吸着体に存し、第二の
発明の要旨は、アデノシンジリン酸を酸化開裂
し、支持体とカツプリングさせた後、還元して得
られるアデノシンジリン酸をリガンドとし、リボ
ースの2′−Cと3′−Cの位置で支持体に結合して
いる親和性吸着体を用いて、アフイニテイークロ
マトグラフイーにより、混合物からアデノシンジ
リン酸に結合能がある物質を分離する方法に存す
る。 本発明をさらに詳細に説明するに、本発明のア
フイニテイークロマトグラフイー用親和性吸着体
は、アデノシンジリン酸(通常の5′−アデノシン
ジリン酸、以下においても同じ)をリガンドとし
ていることを第一の特徴とし、これにより、アデ
ノシンジリン酸に結合能を示す物質(酵素等)の
精製に広く利用される吸着体となる。第二の特徴
は、リガンドのアデノシンジリン酸が、下記のよ
うにリボースの2′−Cと3′−Cとの位置で支持体
に結合している点にある(下記式において、アデ
ノシンジリン酸はスペーサー(−CH2−)6を介して
アガロースと結合している。 そして、この位置で結合していることにより、
塩基部分はそのまゝの形で存在するので、塩基部
分を認識して結合する酵素に対するリガンドとし
て、その応用価値は大きい利点が得られる。そし
てアデノシンジリン酸に結合しない酵素は、極く
微量に混在する場合も、タンパク質性質が非常に
類似している場合も、明確に未吸着物質として分
離される利点がある。 支持体としては、アガロース誘導体が通常用い
られる。アデノシンジリン酸を支持体に固定化す
る反応としてどのような反応を用いるかによつ
て、アガロース誘導体の種類が選ばれる。その他
の支持体としてはポリアクリルアミド等も利用出
来る。例えば、アデノシンジリン酸の2′−Cと
3′−Cの位置の水酸基をアルデヒド又はカルボキ
シル基に酸化開裂して、支持体とカツプリングさ
せる場合には、ω−アミノアルキル基が導入され
ている支持体が選ばれる。支持体としてはリガン
ドと反応する官能基のほかに、該官能基と基体と
の間にスペーサーをもつものも使用しうる。しか
してこの様な支持体としてはフアルマシア社、P
−Lバイオケミカルズ社、バイオラツドラボラト
リーズ社から市販されているものを用いることが
出来る。本発明のアフイニテイークロマトグラフ
イー用親和性吸着体を調整するには、常法により
支持体とリガンドとをカツプリングさせればよ
い。カツプリング反応は、支持体の種類により適
宜選択すればよく、支持体としてアミノ基をもつ
アガロース誘導体を用いる場合には、下記式のよ
うにアデノシンジリン酸を過ヨウ素酸酸化開裂し
て、次いでカツプリングさせた後、NaBH4で還
元すればよい。還元処理により逆反応が抑止され
て構造が安定化され、また還元前の水酸基への夾
雑タンパク質の吸着等も阻止される。 (式中、Pはリン酸基を、Aはアデニル基を、
R−NH2はアミノ基をもつアガロース誘導体を
示す。) しかして、アデノシンジリン酸をリガンドとし
てアガロース誘導体に結合させる量は、通常4〜
5μmole/ml支持体で十分である。 以上の様にして得られる本発明のアフイニテイ
ークロマトグラフイー用親和性吸着体は、混合物
からアデノシンジリン酸に結合能がある物質を分
離するのに使用することが出来る。例えば、サー
マス・サーモフイラス(Thermus
thermophilus)HB8(ATCC27634)の菌体から
耐熱性ポリヌクレオチドフオスフオリラーゼを分
離精製するのに用いることが出来る。後記の実施
例に示されているように、混合物中のポリヌクレ
オチドフオスフオリラーゼを本発明の親和性吸着
体に特異的に吸着させアデノシンジリン酸もしく
はNaClを含むバツフアーで脱離させるという方
法で高純度のポリヌクレオチドフオスフオリラー
ゼを高収率で得ることが出来る。具体的には菌体
破砕液の50%硫安分画、ジエチルアミノエチルセ
ルロースカラム処理及び本発明の親和性吸着固体
によるアフイニテイークロマトグラフイーの3段
階処理によりポリヌクレオチドフオスフオリラー
ゼを分離精製しうる。 さらに詳細に説明すると、菌体をバツフアー中
アルミナ摩砕によりすりつぶし遠心により上清を
得、この上清に30%飽和まで硫安を加え遠心し、
上清を得再度50%飽和まで硫安を加え遠心により
沈でんを集めバツフアーにて溶解する。そしてバ
ツフアーにて透析后同バツフアーにて平衡化した
ジエチルアミノエチルセルローズカラムに充填し
0Mから0.5MのNaClによる直線濃度勾配で溶出
する。NaCl濃度が0.18〜0.25M付近にポリヌクレ
オチドフオスフオリラーゼが溶出する。この活性
画分を集め透析后同バツフアーにより平衡化した
本発明のアフイニテイークロマトグラフイーにか
け、アデノシンジリン酸を含むバツフアーにより
溶出を行いポリヌクレオチドフオスフオリラーゼ
を得る。ジエチルアミノエチルセルロースのカラ
ムクロマトグラフイーは必ずしも必要でないが、
アフイニテイークロマトグラフイーの支持体の汚
染をさける意味でおこなつてもよい。また、サン
プルにより非特異的吸着が有るので、アフイニテ
イークロマトグラフイーの後に一度ゲル過もし
くはイオン交換クロマトグラフイーを行うことが
好ましい。 以下、本発明を実施例によりさらに詳細に説明
する。なお実施例における酵素活性は次の様にし
て測定した。 下記組成の反応溶液を70℃、20分間保持し、 反応溶液組成 緩衝液 90μ (Ap)3A即ち〔アデニリル−(3′→5′)〕3アデ
ノシンを含む緩衝液 100μ 酵素液 10μ 計200μ 発色溶液組成 6NH2SO4 1容 H2O 2〃 2.5%モリブデン酸アンモニウム 1〃 10%アスコルビン酸 1〃 発色溶液1ml、H2O 0.7mlを加え37℃1時間保
持する。次いでこの溶液のA820の吸光度を測定す
る。酵素活性1単位(ユニツト)は1μmoleのア
デノシンジリン酸を1時間にポリマーへとり込む
酵素量である。 なお、緩衝液は50mMトリスー塩酸(PH9.0)
に2mM MgCl2と2mMアデノシンジリン酸と
10μM(Ap)3Aを加えたものである。 実施例1 (親和性吸着体の調製) AH−セフアローズ4B(アミノヘキシルセフア
ローズ4B、フアルマシア社製)4.6gを0.5M、
NaCl200mlに懸濁し室温で一晩放置した。過し
たのち、0.5M NaCl200mlで洗浄し、さらに水
で、上清にCl-がなくなるまで洗浄した。 次いでこれを0.1Mボラツクス(Borax、4硼
酸ナトリウム)15mlに懸濁し、平衡化した。一
方、0.2M NaIO41.2mlに9mMアデノシンジリン
酸30mlと飽和ボラツクス(Borax)1mlを加え、
PH9.0として4℃で1時間放置しアデノシンジリ
ン酸のリボース部分の過ヨウ素酸酸化をおこなつ
た。 得られた溶液に上記AH−セフアローズ4Bの懸
濁液を加え、撹拌しながら4℃で一晩反応させ、
アデノシンジリン酸とAH−セフアローズ4Bのカ
ツプリングをおこなつた。次に固形のNaBH445
mgを加え、撹拌しながら、2時間放置した。全く
同じ操作を2回繰返した。反応終了后、反応液を
別し、得られた固体に5M NaClを加え、バツ
チ法でA260の吸収がなくなるまで洗浄した。その
後、水、0.1N Borax、水の順序で十分洗浄し
た。次にこれを0.7M飽和酢酸ソーダ35mlに懸濁
し、4℃に保持し無水酢酸0.2mlずつを4回、1
時間で滴下した。さらに1時間4℃で撹拌し残存
するフリーのアミノ基のアセチル化をおこなつ
た。反応液を別后、水、5M NaCl、水、0.1M
ボラツクス、水の順序で洗浄した。得られた固体
はAH−セフアローズ4B1mlに4.6μmoleの割合で
アデノシンジリン酸が結合したAH−セフアロー
ズ4Bであることがわかつた。以下において、こ
こで得られた親和性吸着体をADP−AH−セフア
ローズ4Bと呼ぶ。 実施例 2 (ポリヌクレオチドフオスフオリラーゼの分離
精製) (1) 菌の培養 サーマス サーモフイラスHB8を0.3%イース
トエキス、0.5%ペプトン、0.1%ブドウ糖、0.2%
NaCl、0.05%無機塩ビタミン溶液(水1中に
25g MgCl2・6H2O、5g CaCl2、2g
MnSO4・6H2O、0.5g ZnSO4・7H2O、0.5g
H3BO3、5g FeCl3・6H2O、15mg CuSO4
25mg Na2MoO4・2H2O、50mgCoNO3・6H2O、
20mg NiNO3・6H2O、80mg ピリドキサン、10
mg葉酸、0.5ml H2SO4、10mg チアミンピロリ
ン酸、40mg リボフラビン、80mgニコチンアミ
ド、80mgパラアミノ安息香酸、10mgビオチン、
0.4mgシアノコバラミン、80mgパントテン酸、20
mgリポ酸、200mgイノシトール、50mgコリン、50
mgオロチン酸、100mgスピルミンを含む)を含む
培地を用いて75℃で5〜6時間通気培養し300ク
レツト前後で集菌した。培地1当り約10gの
HB8の菌体を得た。 (2) 酵素の分離精製 (A) 抽出 以上の様にして得られたHB8の菌体湿重量約
1Kgに2の抽出用緩衝液(50mMトリスー塩酸
(PH7.5)、14mM Mg(CH3COO)2、1mM
EDTA、0.14mM、KCl、50mM β−メルカプト
エタノール)を加え、ミルにより摩砕し酵素を抽
出した。抽出液は10000g、20分の遠心で沈でん
と上清に分け、沈でんは再度1の抽出用緩衝液
で抽出、遠心分離し上清を得た。2回の遠心によ
る上清を合わせて粗酵素液2.7とした。 (B) ジエチルアミノエチルセルロース(DEAE−
セルロースDE−32フマルマシア社製)カラム
クロマトグラフイー (A)で得た粗酵素液に硫酸アンモニウムを30%飽
和まで加え、一夜放置后10000g40分間の遠心で
沈でんを除き、得られた上清に50%飽和まで硫酸
アンモニウムを加え、同様に放置、遠心を行い沈
でんを集めた。この沈でんを出来る限り少量の緩
衝液(50mMトリス―HClPH7.5,1mM EDTA)
に溶解し、同緩衝液に対して一夜透析を行つた。
この透析した酸素溶液600mlを同じ緩衝液で平衡
化したDEAEセルローズDE32−カラム(φ5×44
cm)に添加し吸着させ、緩衝液中の塩化ナトリウ
ムの濃度を0Mから0.5Mの直線濃度勾配で溶出を
行つた。塩濃度が0.18M〜0.25Mの間でこの酵素
は溶出される。 (C) ADP−AHセフアローズ4Bアフイニテイー
クロマトグラフイー (B)で得たポリヌクレオチドフオスフオリラーゼ
活性画分を集め10mMトリス―HCl(PH7.5)緩衝
液に対して十分透析を行つた。この透析した酵素
溶液を同じ緩衝液で平衡化したADP−AHセフア
ローズ4Bのカラム(φ1×10cm)に添加し吸着さ
せ0.2MのNaClを含む緩衝液にて溶出を行つた。 得られた活性画分は蛋白量8mg、全活性780単
位、比活性98単位/mg蛋白質であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an affinity adsorbent for affinity chromatography. Affinity chromatography is an excellent method for specifically purifying specific proteins. Affinity adsorbents with nucleotides as ligands include polyadenylic acid-Sepharose 4B, polyuridylic acid-Sepharose 4B, 5'-adenosine monophosphate-Sepharose 4B, 2',5'-adenosine diphosphate-Sepharose 4B (Cepharose is Pharmacia agarose (trademark) made by the company), but despite the fact that the ligand of the former two adsorbents is a product of polynucleotide phosphorylase, an enzyme whose substrates are adenosine diphosphate and uridine diphosphate. , shows no affinity for this enzyme. Furthermore, the ligands of the latter two adsorbents are analogs of the substrates of polynucleotide phosphorylase, but since all of these ligands are bound to the support with an adenine base, e.g. It shows no affinity with enzymes that recognize and bind to base moieties, such as orilase. These affinity adsorbents are therefore unsuitable as adsorbents for enzymes such as polynucleotide phosphorylase. The present inventors have developed an affinity adsorbent for affinity chromatography that has the potential to be widely applied to the discovery and purification of various enzymes that exhibit the ability to bind adenosine diphosphate, such as polynucleotide phosphorylase. As a result of intensive research into development, we have arrived at the present invention. The gist of the first invention is to oxidatively cleave adenosine diphosphate, couple it to a support, and then reduce the adenosine diphosphate, which is obtained as a ligand. The second aspect of the invention resides in an affinity adsorbent for affinity chromatography characterized in that it is bonded to a support, and the gist of the second invention is that after oxidative cleavage of adenosine diphosphate and coupling with the support, The mixture is purified by affinity chromatography using an affinity adsorbent that uses adenosine diphosphate obtained by reduction as a ligand and is bound to a support at the 2'-C and 3'-C positions of ribose. The invention consists in a method for separating substances capable of binding to adenosine diphosphate. To explain the present invention in more detail, the affinity adsorbent for affinity chromatography of the present invention uses adenosine diphosphate (ordinary 5'-adenosine diphosphate, the same applies hereinafter) as a ligand. This makes it an adsorbent that is widely used for purifying substances (such as enzymes) that have the ability to bind adenosine diphosphate. The second feature is that the ligand adenosine diphosphate is bound to the support at the 2'-C and 3'-C positions of the ribose as shown below (in the following formula, adenosine diphosphate is bound to agarose via a spacer ( -CH2- ) 6 . And by joining at this position,
Since the base moiety exists as it is, it has great application value as a ligand for enzymes that recognize and bind to the base moiety. Enzymes that do not bind to adenosine diphosphate have the advantage of being clearly separated as unadsorbed substances, even if they are present in extremely small quantities or have very similar protein properties. Agarose derivatives are commonly used as the support. The type of agarose derivative is selected depending on the reaction used to immobilize adenosine diphosphate on the support. Other supports such as polyacrylamide can also be used. For example, the 2'-C of adenosine diphosphate and
When the hydroxyl group at the 3'-C position is oxidatively cleaved to an aldehyde or carboxyl group and coupled to a support, a support into which an ω-aminoalkyl group has been introduced is selected. As the support, in addition to a functional group that reacts with a ligand, those having a spacer between the functional group and the substrate can be used. However, as such a support, Pharmacia, P.
-Those commercially available from L Biochemicals and Biorats Laboratories can be used. In order to prepare the affinity adsorbent for affinity chromatography of the present invention, a support and a ligand may be coupled together by a conventional method. The coupling reaction may be appropriately selected depending on the type of support. When an agarose derivative having an amino group is used as the support, adenosine diphosphate is cleaved by periodate oxidation as shown in the following formula, and then coupling is performed. After that, it can be reduced with NaBH4 . The reduction treatment suppresses the reverse reaction and stabilizes the structure, and also prevents the adsorption of contaminant proteins to the hydroxyl groups before reduction. (In the formula, P is a phosphoric acid group, A is an adenyl group,
R-NH 2 represents an agarose derivative having an amino group. ) Therefore, the amount of adenosine diphosphate bound to the agarose derivative as a ligand is usually 4 to 4.
5 μmole/ml support is sufficient. The affinity adsorbent for affinity chromatography of the present invention obtained as described above can be used to separate a substance capable of binding to adenosine diphosphate from a mixture. For example, Thermus thermophilus
thermophilus) HB8 (ATCC27634). As shown in the Examples below, the polynucleotide phosphorylase in the mixture was specifically adsorbed to the affinity adsorbent of the present invention and desorbed using a buffer containing adenosine diphosphate or NaCl. High purity polynucleotide phosphorylase can be obtained in high yield. Specifically, polynucleotide phosphorylase can be separated and purified by a three-step treatment of 50% ammonium sulfate fractionation of a disrupted bacterial cell solution, diethylaminoethyl cellulose column treatment, and affinity chromatography using the affinity adsorbed solid of the present invention. To explain in more detail, the bacterial cells were ground by alumina grinding in a buffer, centrifuged to obtain a supernatant, ammonium sulfate was added to this supernatant to 30% saturation, and centrifuged.
Obtain the supernatant, add ammonium sulfate again to 50% saturation, collect the precipitate by centrifugation, and dissolve in a buffer. After dialysis in a buffer, it was packed into a diethylaminoethyl cellulose column equilibrated in the same buffer.
Elute with a linear gradient from 0M to 0.5M NaCl. Polynucleotide phosphorylase elutes when the NaCl concentration is around 0.18-0.25M. The active fractions are collected, dialyzed, subjected to the affinity chromatography of the present invention equilibrated with the same buffer, and eluted with a buffer containing adenosine diphosphate to obtain polynucleotide phosphorylase. Column chromatography of diethylaminoethyl cellulose is not necessarily required, but
This may be done to avoid contamination of the affinity chromatography support. Furthermore, since non-specific adsorption may occur depending on the sample, it is preferable to perform gel filtration or ion exchange chromatography once after affinity chromatography. Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the enzyme activity in the examples was measured as follows. A reaction solution with the following composition was maintained at 70℃ for 20 minutes. Reaction solution composition: Buffer 90μ (Ap) 3 A, that is, [adenylyl-(3'→5')] Buffer containing 3 adenosine 100μ Enzyme solution 10μ Total 200μ Color development Solution composition: 6NH 2 SO 4 1 volume H 2 O 2 2.5% ammonium molybdate 1 10% ascorbic acid 1 Add 1 ml of coloring solution and 0.7 ml of H 2 O and hold at 37°C for 1 hour. The A 820 absorbance of this solution is then measured. One unit of enzyme activity is the amount of enzyme that incorporates 1 μmole of adenosine diphosphate into the polymer in 1 hour. The buffer solution is 50mM Tris-HCl (PH9.0)
with 2mM MgCl2 and 2mM adenosine diphosphate
10 μM (Ap) 3 A was added. Example 1 (Preparation of affinity adsorbent) 4.6 g of AH-Sepharose 4B (aminohexyl Cepharose 4B, manufactured by Pharmacia) was mixed with 0.5M
It was suspended in 200 ml of NaCl and left overnight at room temperature. After filtering, it was washed with 200 ml of 0.5M NaCl, and further washed with water until there was no Cl - in the supernatant. This was then suspended in 15 ml of 0.1M Borax (sodium tetraborate) and equilibrated. Meanwhile, add 30ml of 9mM adenosine diphosphate and 1ml of saturated Borax to 1.2ml of 0.2M NaIO4 ,
The pH was adjusted to 9.0 and the mixture was left at 4°C for 1 hour to oxidize the ribose portion of adenosine diphosphate with periodate. The above suspension of AH-Sepharose 4B was added to the obtained solution, and the mixture was reacted overnight at 4°C with stirring.
Coupling of adenosine diphosphate and AH-Sepharose 4B was performed. Then solid NaBH 4 45
mg was added and left to stand for 2 hours while stirring. Exactly the same operation was repeated twice. After the reaction was completed, the reaction solution was separated, 5M NaCl was added to the obtained solid, and the solid was washed in batches until absorption of A 260 disappeared. Thereafter, it was thoroughly washed with water, 0.1N Borax, and water in that order. Next, this was suspended in 35 ml of 0.7M saturated sodium acetate, kept at 4°C, and 0.2 ml of acetic anhydride was added 4 times, once.
It dripped in time. The mixture was further stirred at 4° C. for 1 hour to acetylate the remaining free amino groups. After separating the reaction solution, water, 5M NaCl, water, 0.1M
Washed with borax and water in that order. The obtained solid was found to be AH-Sepharose 4B in which adenosine diphosphoric acid was bound at a ratio of 4.6 μmole to 1 ml of AH-Sepharose 4B. In the following, the affinity adsorbent obtained here is referred to as ADP-AH-Sepharose 4B. Example 2 (Separation and purification of polynucleotide phosphorylase) (1) Culture of bacteria Thermus Thermophilus HB8 was mixed with 0.3% yeast extract, 0.5% peptone, 0.1% glucose, and 0.2%.
NaCl, 0.05% inorganic salt vitamin solution (in 1 part water)
25g MgCl 2 6H 2 O, 5g CaCl 2 , 2g
MnSO 4・6H 2 O, 0.5g ZnSO 4・7H 2 O, 0.5g
H3BO3 , 5g FeCl36H2O , 15mg CuSO4 ,
25mg Na2MoO4 2H2O , 50mgCoNO36H2O ,
20mg NiNO 3 6H 2 O, 80mg pyridoxane, 10
mg folic acid, 0.5ml H2SO4 , 10mg thiamine pyrophosphate, 40mg riboflavin, 80mg nicotinamide , 80mg para-aminobenzoic acid, 10mg biotin,
0.4mg cyanocobalamin, 80mg pantothenic acid, 20
mg lipoic acid, 200 mg inositol, 50 mg choline, 50
Using a medium containing (mg orotic acid, 100 mg spirmin), aerated culture was carried out at 75°C for 5 to 6 hours, and the bacteria were collected at around 300 creets. Approximately 10g per medium
HB8 bacterial cells were obtained. (2) Separation and purification of enzyme (A) Extraction Approximately 1 kg of the wet weight of the HB8 cells obtained as described above was mixed with extraction buffer (50mM Tris-HCl (PH7.5), 14mM Mg ( CH3COO )). ) 2 , 1mM
EDTA, 0.14mM KCl, 50mM β-mercaptoethanol) were added, and the mixture was ground by a mill to extract the enzyme. The extract was centrifuged at 10,000g for 20 minutes to separate the precipitate and supernatant, and the precipitate was extracted again with extraction buffer 1 and centrifuged to obtain the supernatant. The supernatants from the two centrifugations were combined to obtain crude enzyme solution 2.7. (B) Diethylaminoethylcellulose (DEAE−
Add ammonium sulfate to the crude enzyme solution obtained by cellulose DE-32 (manufactured by Fumarmacia) column chromatography (A) until 30% saturation. Ammonium sulfate was added until saturation, left to stand, and centrifuged in the same manner to collect the precipitate. Transfer this precipitate to as little buffer as possible (50mM Tris-HClPH7.5, 1mM EDTA)
and dialyzed overnight against the same buffer.
A DEAE cellulose DE32-column (φ5×44
cm) for adsorption, and elution was performed using a linear concentration gradient of sodium chloride in the buffer from 0M to 0.5M. The enzyme is eluted at salt concentrations between 0.18M and 0.25M. (C) ADP-AH Sepharose 4B affinity chromatography The polynucleotide phosphorylase active fraction obtained in (B) was collected and thoroughly dialyzed against 10 mM Tris-HCl (PH7.5) buffer. This dialyzed enzyme solution was applied to an ADP-AH Sepharose 4B column (φ1 x 10 cm) equilibrated with the same buffer solution, adsorbed, and eluted with a buffer solution containing 0.2 M NaCl. The obtained active fraction had a protein content of 8 mg, a total activity of 780 units, and a specific activity of 98 units/mg protein.

Claims (1)

【特許請求の範囲】 1 アデノシンジリン酸を酸化開裂し、支持体と
カツプリングさせた後、還元して得られるアデノ
シンジリン酸をリガンドとし、リボースの2′−C
と3′−Cの位置で支持体に結合していることを特
徴とするアフイニテイークロマトグラフイー用親
和性吸着体。 2 アデノシンジリン酸を酸化開裂し、支持体と
カツプリングさせた後、還元して得られるアデノ
シンジリン酸をリガンドとし、リボースの2′−C
と3′−Cの位置で支持体に結合している親和性吸
着体を用いて、アフイニテイークロマトグラフイ
ーにより、混合物からアデノシンジリン酸に結合
能がある物質を分離する方法。 3 混合物が、サーマス サーモフイラスの菌体
破砕抽出液から陰イオン交換体を用いて吸着分離
して得られるアデノシンジリン酸に結合能がある
酵素を含む混合物であり、分離される物質がポリ
ヌクレオチドフオスフオリラーゼである特許請求
の範囲第2項記載の方法。
[Scope of Claims] 1. Adenosine diphosphate is oxidatively cleaved, coupled with a support, and then adenosine diphosphate obtained by reduction is used as a ligand, and the 2'-C of ribose is
An affinity adsorbent for affinity chromatography, characterized in that it is bonded to a support at the and 3'-C positions. 2 Adenosine diphosphate is oxidatively cleaved, coupled with a support, and then reduced, and the adenosine diphosphate obtained is used as a ligand to cleave the 2′-C of ribose.
A method of separating a substance capable of binding to adenosine diphosphate from a mixture by affinity chromatography using an affinity adsorbent bound to a support at the and 3'-C positions. 3. The mixture is a mixture containing an enzyme capable of binding to adenosine diphosphate obtained by adsorption separation using an anion exchanger from a disrupted bacterial cell extract of Thermus thermophilus, and the substance to be separated is a polynucleotide phosphoric acid. The method according to claim 2, which is orilase.
JP55153315A 1980-10-31 1980-10-31 Affinitive adsorbent for affnity chromatography Granted JPS5777958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55153315A JPS5777958A (en) 1980-10-31 1980-10-31 Affinitive adsorbent for affnity chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55153315A JPS5777958A (en) 1980-10-31 1980-10-31 Affinitive adsorbent for affnity chromatography

Publications (2)

Publication Number Publication Date
JPS5777958A JPS5777958A (en) 1982-05-15
JPH0154993B2 true JPH0154993B2 (en) 1989-11-21

Family

ID=15559801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55153315A Granted JPS5777958A (en) 1980-10-31 1980-10-31 Affinitive adsorbent for affnity chromatography

Country Status (1)

Country Link
JP (1) JPS5777958A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193929A (en) * 1982-05-07 1983-11-11 Mitsubishi Electric Corp Multispindle cooler
DE4333674A1 (en) * 1993-10-02 1995-04-06 Merck Patent Gmbh Sorbent containing nucleotides for affinity chromatography

Also Published As

Publication number Publication date
JPS5777958A (en) 1982-05-15

Similar Documents

Publication Publication Date Title
Lowe et al. Affinity chromatography
EP0064833B1 (en) High pressure liquid affinity chromatography
US4308254A (en) Material able to fix reversibly biologial macromolecules, its preparation and its application
US4138287A (en) Purifying and isolating method for hepatitis virus to use in preparing vaccine
EP0648776A1 (en) Surface materials useful for DNA purification by solid phase extraction
US4756834A (en) Phase supports for the partition chromatography of macromolecules, a process for their preparation and their use
JPS6361056B2 (en)
Schnabel et al. Controlled-pore glass as a stationary phase in chromatography
Egly et al. Charge-transfer and water-mediated chromatography: II. Adsorption of nucleotides and related compounds on acriflavin-sephadex
Hedman et al. Protein adsorbents intended for use in aqueous two-phase systems
Cifonelli et al. The purification of hyaluronic acid by the use of charcoal
JPH0154993B2 (en)
Robinson et al. Phenyl-Sepharose-mediated detergent-exchange chromatography: its application to exchange of detergents bound to membrane proteins
GB1597182A (en) Soluble complex former for the affinity specific separation of macromolecular substances its preparation and its use
Dahlqvist The separation of intestinal invertase and three different intestinal maltases on TEAE-cellulose by gradient elution, frontal analysis and mutual displacement chromatography
JP4537070B2 (en) Separation using aromatic thioether ligands
Berglund et al. [18] ATP-and dATP-substituted agaroses and the purification of ribonucleotide reductases
US3951744A (en) Purification of dehydrogenases
JP3298260B2 (en) Chromatographic packing material
US4061591A (en) Selective adsorbent for use in affinity chromatography
Hjertén et al. High-performance chromatofocusing of proteins on agarose columns: I. Macroporous 15–20 μm beads
JP5101102B2 (en) Method for extracting nucleic acids
JPH0154994B2 (en)
Li et al. High-Performance Liquid Chromatography of Proteins on Deformed Nonporous Agarose Beads. Affinity Chromatography of Dehydrogenases Based on Cibacron Blue-Derivatized Agarose
Tsamadis et al. Downstream processing of diagnostic enzymes: Optimised protocols for the simultaneous separation and purification of lactate dehydrogenase and pyruvate kinase from rabbit muscle