JPH0154683B2 - - Google Patents

Info

Publication number
JPH0154683B2
JPH0154683B2 JP61039652A JP3965286A JPH0154683B2 JP H0154683 B2 JPH0154683 B2 JP H0154683B2 JP 61039652 A JP61039652 A JP 61039652A JP 3965286 A JP3965286 A JP 3965286A JP H0154683 B2 JPH0154683 B2 JP H0154683B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
core
optical fibers
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61039652A
Other languages
Japanese (ja)
Other versions
JPS62196604A (en
Inventor
Akira Yanagi
Keiji Oosaka
Yasuo Asano
Michito Matsumoto
Atsushi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3965286A priority Critical patent/JPS62196604A/en
Publication of JPS62196604A publication Critical patent/JPS62196604A/en
Publication of JPH0154683B2 publication Critical patent/JPH0154683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は複数の光フアイバを間隔をおいて並行
に配置しこれらに共通の被覆層を設けてフラツト
状に形成した多心光フアイバ心線の光フアイバを
一括融着接続する接続機において、切替スイツチ
の操作によつて単心光フアイバをも接続可能とし
た光フアイバの多心.単心両用接続装置に関す
る。 (従来技術及び解決しようとする課題) 光フアイバ心線には単心光フアイバ心線と多心
光フアイバ心線がある。第1図イは単心光フアイ
バ心線3の斜視図で、直径0.125mmφの光フアイ
バ1の外周上に被覆部2が設けられている。一
方、多心光フアイバ心線2心、4心、5心が開発
されているが、第1図ロに示す5心フラツト型光
フアイバ心線4が標準となつており、間隔をおい
て並列に配置した直径0.125mmφの光フアイバ1
の外周上に共通な被覆部2′を設け0.45mm×1.6mm
のフラツト状に形成されている。 このような多心光フアイバ心線4の光フアイバ
1を一括して融着接続する場合は、光フアイバ心
線4の端部付近の被覆部2′を除去して光フアイ
バ1を露出させ、これら光フアイバ1の先端を切
り揃えた後、融着接続装置に装着し、光フアイバ
1の接続端面を相互に突合せた状態で放電加熱に
よつて溶着し接続する。 単心光フアイバ心線3の光フアイバ1の接続も
本質的には前記の多心光フアイバ心線4の場合と
同様であるが、融着接続装置としては単心と5心
の違いから接続の設定条件が異なるため、それぞ
れ多心用融着接続と単心用接続装置が個々に開発
され使用されているのが現状である。 一方、光フアイバの多心化と共に幹線は多心光
フアイバ心線の使用が多くなり、末端部になると
単心光フアイバ心線の接続が主体となつてきてい
る。又多心.単心複合型光フアイバケーブルや分
岐接続する場合もあることから、多心接続装置と
単心接続装置の両方を必要とする接続が多くなつ
てきており、多心.単心両用の接続装置の開発が
急務となつている。 (課題を解決するための手段) 本発明は上述の問題点を解消し、多心光フアイ
バの融着接続装置を用いて多心光フアイバの接続
を可能とした多心、単心両用接続装置を提供する
もので、その特徴は、複数の光フアイバをV溝に
並列状に整列配置し、相対向させた端面の軸を合
わせて光フアイバを固定する把持部と、光フアイ
バをその軸方向に移動させる移動機構及び前記光
フアイバの端面同志を放電電極のアーク放電の熱
によつて溶融接続する加熱電源を具えた光フアイ
バの融着接続装置において、前記光フアイバの把
持部が5心光フアイバを固定するV溝を具えてお
り、光フアイバの移動機構が単心光フアイバ接続
時の移動量と5心光フアイバ接続時の移動量の2
つの駆動機能を具えており、加熱電源によつて電
極間に流れる電流値が単心接続用と5心接続用の
2段階の電流値設定機能を具えており、接続する
光フアイバが単心光フアイバか多心光フアイバか
に応じて光フアイバの移動量及び放電電流値を切
替えスイツチの操作により単心用か多心用かに切
替えて融着接続するよう構成したことにある。 (発明の内容) 光フアイバの融着接続装置の基本構成を第6図
に示す。通常AC100Vの商用電源を入力電源と
し、AC/DCスイツチングレギユレーター41、
高周波放電電源42、メカ駆動部43、放電融着
部44、接続部観察装置45より構成されている
が、光フアイバの心数によつてそれに適した接続
条件が設定される。 接続条件設定値は光フアイバを低損失に接続す
るために、あらかじめ接続装置に付与しておく条
件で、 光フアイバの端面を突合わせて放電熱によつ
て溶かす熱量で、実際には電極間に流す電流を
設定する。 上記の放電電流を流す時間。 放電電極の対向する先端の間隔。 光フアイバ端面を一定間隔(通常20μm)で
相対向させ、放電と同時に、光フアイバ端面同
志が接触し溶融されるまで光フアイバをその軸
方向に移動する押し込み移動量。 が不可欠な条件項目である。 下表に単心光フアイバ用と5心光フアイバ用の
融着接続装置の相違点を示す。
(Industrial Application Field) The present invention is a method for collectively welding optical fibers of a multi-core optical fiber core, which is formed into a flat shape by arranging a plurality of optical fibers in parallel at intervals and providing them with a common coating layer. A multi-core optical fiber that allows you to connect even single-core optical fibers by operating a switch on the connecting device. Regarding a single-fiber dual-use connecting device. (Prior art and problems to be solved) Optical fibers include single-core optical fibers and multi-core optical fibers. FIG. 1A is a perspective view of a single-core optical fiber 3, in which a coating portion 2 is provided on the outer periphery of the optical fiber 1 having a diameter of 0.125 mmφ. On the other hand, 2-, 4-, and 5-core multi-core optical fibers have been developed, but the 5-core flat type optical fiber 4 shown in Figure 1 (b) has become the standard, and the optical fibers are arranged in parallel at intervals. Optical fiber 1 with a diameter of 0.125mmφ placed in
A common covering part 2' is provided on the outer circumference of 0.45mm x 1.6mm.
It is formed in a flat shape. When fusion splicing the optical fibers 1 of such a multi-core optical fiber 4 all at once, the coating portion 2' near the end of the optical fiber 4 is removed to expose the optical fiber 1. After trimming the tips of these optical fibers 1, they are mounted on a fusion splicing device, and the optical fibers 1 are welded and connected by electric discharge heating with their connecting end surfaces abutting each other. The connection of the optical fiber 1 of the single-core optical fiber 3 is essentially the same as that of the multi-core optical fiber 4 described above, but as a fusion splicing device, the connection is different from the single-core and the 5-core. Because of the different setting conditions, multi-fiber fusion splicing and single-fiber splicing devices are currently being developed and used separately. On the other hand, as optical fibers become more multi-core, multi-core optical fibers are increasingly used for trunk lines, and single-core optical fibers are now mainly used for connections at the terminal ends. Matatashin. Since there are cases where single-fiber composite optical fiber cables and branch connections are used, there are an increasing number of connections that require both multi-fiber connection equipment and single-fiber connection equipment. There is an urgent need to develop a connecting device that can be used for both single-fiber connections. (Means for Solving the Problems) The present invention solves the above-mentioned problems and makes it possible to connect multi-fiber and single-fiber optical fibers using a fusion splicing device for multi-fiber optical fibers. Its features include a gripping part that arranges a plurality of optical fibers in parallel in a V-groove, and fixes the optical fibers by aligning the axes of the opposing end faces; In the optical fiber fusion splicing apparatus, the optical fiber fusion splicing apparatus includes a moving mechanism for moving the optical fibers to each other and a heating power source for melting and splicing the end faces of the optical fibers together using the heat of the arc discharge of the discharge electrode. It is equipped with a V-groove for fixing the fiber, and the optical fiber movement mechanism has two movements: the amount of movement when connecting a single optical fiber and the amount of movement when connecting a five-fiber optical fiber.
The current value flowing between the electrodes by the heating power source can be set in two stages, one for single-fiber connection and one for five-fiber connection. The present invention is configured to perform fusion splicing by switching the amount of movement of the optical fiber and the discharge current value depending on whether it is a single fiber or a multi-core optical fiber by operating a switch. (Contents of the Invention) The basic configuration of an optical fiber fusion splicing device is shown in FIG. AC/DC switching regulator 41, which normally uses AC100V commercial power as input power,
It is composed of a high frequency discharge power source 42, a mechanical drive section 43, a discharge fusion section 44, and a connection section observation device 45, and connection conditions suitable for the number of optical fibers are set. The connection condition setting value is a condition that is given to the connection device in advance in order to connect the optical fibers with low loss.It is the amount of heat that is melted by the discharge heat when the end faces of the optical fibers are butted together. Set the current to flow. Time to flow the above discharge current. Distance between opposing tips of discharge electrodes. The amount of pushing movement in which the end faces of optical fibers are faced to each other at a fixed interval (usually 20 μm) and the optical fiber is moved in the axial direction until the end faces of the optical fibers come into contact with each other and melt at the same time as discharge occurs. is an essential condition item. The table below shows the differences between fusion splicing devices for single-core optical fibers and for five-core optical fibers.

【表】 本発明者らは上表の相違点の中から、大は小を
兼ねるの諺通り、多心用の接続設定条件の中に単
心用の接続条件も含まれていることを見出し、部
品等を取替えて調整することなく、多心用の接続
条件を電気的操作によつて単心用の接続条件に切
替え、単心光フアイバの接続も出来る接続装置を
開発した。 即ち、上表の多心.単心接続条件設定の中で多
心用の接続条件を変えないと単心接続が不可能な
項目は D−(1) 放電電流値 D−(4) 放電時の光フアイバ押込み移動量の2
点である。なお、D−(2)の放電時間については、
D−(3)の電極間隔による電流密度分布の違いか
ら、放電電流値(D−1)の調整により単心の場
合も6秒(電極間隔2.5mmで放電電流15mA)で問
題のないことを実験により確認した。 第7図は放電融着部に光フアイバを相対向させ
整列軸合わせして位置決め図を示し、同図イは5
心光フアイバの位置決め図で、V溝51に5心の
光フアイバを挿入してクランプ52で固定し、同
図ロのように電極53より発するアーク放電54
の熱により光フアイバが溶着される。この際の放
電熱は電極間に流れる電流を19mAに設定するこ
とで5心光フアイバが均一に溶着される。 又同図ハは同装置を用いた単心光フアイバの位
置決め状態で、同図ニは放電状態を示し、この時
の放電55電流は15mAに設定するこことで、単
心光フアイバが良好に溶着される。 (実施例) 前記2点の相違点を切替スイツチにより電気的
に設定する方法について以下に説明する。 D−(1) 放電電流値 第3図は前表Bの高周波放電電源の回路図を示
す。同図イは従来の回路図で、11は放電電極
棒、12は高周波トランス、13は制御部、14
は放電電流値を調整する可変抵抗で、この可変抵
抗14を調整し電極棒11間に14〜20mAの放電
電流をコントロールする。 同図ロは改良図で可変抵抗4と同じ可変抵抗1
4a,14bを並列に配置し切替スイツチ15と
接続した。14aの可変抵抗は放電電流が19mA
になるよう設定、14bの可変抵抗は放電電流が
15mAになるように設定しておき、切替スイツチ
15の操作により放電電流値は多心用と単心用に
選択できる。 D−(4) 放電時の光フアイバ押込み移動量 第4図は接続時の光フアイバ1の動きを示すフ
ローチヤート図である。 (イ) 突当板9の両側に光フアイバ1をセツトす
る。 (ロ) 光フアイバ1を矢印の方向に進行させて突当
板9に当て、光フアイバ1を位置決めする。 (ハ) 光フアイバ1を突当板9から矢印の方向に少
し後退させる。 (ニ) 突当板9を降下させ、光フアイバ1を再び前
進させる。この時の光フアイバ間隔lは単心の
場合は20μmで、この位置が原点となり、これ
以降の光フアイバ1の動きが押込移動量とす
る。 光フアイバ1が上記の位置において予備放電
を行ない、光フアイバ1端面を清浄する。 (ニ′) 多心光フアイバの場合であり、5心の
光フアイバ端面が不揃いであるため、その不揃
い分だけ単心光フアイバよりも押込み移動量を
大きくする必要がある。 (ホ) 融着接続のための放電を開示し、光フアイバ
1をお互いに押込む。 (ヘ) 接続終了した状態を示し、(ε)は融着時押
込んでクロスした量を示す。 単心の場合、この融着時押込んでクロスする量
(ε)が20μmで最も良好な接続損失が得られる
が、多心の場合は5心のそれぞれ端面の長さに
20μm程度のバラツキが発生するため、単心と同
じ押込み移動量では接続できない。 従つて、多心の場合の押込み移動量の設定は、
予備放電間隔l′20μm+(片端光フアイバ端面の長
さバラツキ最大量×2)とする必要があり、20+
(30×2)=80μmとなる。 このように、押込み移動量は単心接続時40μm、
多心接続時80μmとなるが、この2つの設定条件
に切替える方法を第5図について説明する。 第5図イは従来の押込み移動量設定の機構の説
明図で、21は駆動モータ、22は送りネジ、2
3は光フアイバ固定台、24はギアー、25は原
点位置割出板、26は原点検出センサー、27は
押込み移動量検出割出板、28は押込み移動量検
出センサーである。このような機構を用いて2つ
の押込み移動量を設定する場合、押込み移動量割
出板27の回転角位置を調整しなければならず、
調整には高度なスキルと時間が必要である。 同図ロは改良された押込み移動量設定の機構の
説明図で、同図イの従来の装置に、1組の押込み
移動量検出割出板29とセンサー30を追加する
と共に、これらを切替スイツチ31に接続し、切
替スイツチ31の切替により押込み移動量を単心
用27,28、多心用29,30として設定可能
にしたものである。 上述のように、改良された高周波放電電源の回
路及び押込み移動量設定機構を用いることによ
り、多心.単心の接続条件のうち相違する2点、
即ちD−(1)の放電電流値及びD−(4)の放電時の光
フアイバ押込み移動量を、切替スイツチの操作に
より設定でき、多心.単心の融着接続が実現でき
る。 上述した本発明において、各切替スイツ15,
31を1つのスイツチにまとめ、この切替えスイ
ツチを操作することにより、多心.単心のそれぞ
れの接続条件が得られ、ワンタツチ操作で多心.
単心の融着接続が実現できる。 なお、本発明の装置を用いて現在開発されつつ
ある4心及び2心の光フアイバも接続可能である
ことを実験により確認した。この場合の光フアイ
バの放電融着部の位置決めを第8図イ(4心の場
合)及び同図ロ(2心の場合)に示す。いずれの
場合も押し込み量は80μmであるが、放電電流値
は4心は5心と同様の19mA、2心は16mAで接
続可能である。 (発明の効果) 上述した本発明の多心.単心両用接続装置によ
れば、多心光フアイバ、単心光フアイバを接続す
る場合、従来は2台の装置が必要であつたが、本
発明の装置を用いれば1台で両用でき、装置の製
作コストも安くなる。
[Table] Among the differences in the above table, the present inventors found that, as the saying goes, "big is also small," and that the connection setting conditions for multi-fiber also include the connection conditions for single-fiber. We have developed a connecting device that can switch multi-fiber connection conditions to single-fiber connection conditions by electrical operation, and can also connect single-core optical fibers, without replacing or adjusting parts. In other words, the polycore in the table above. Among the single-fiber connection condition settings, the items for which single-fiber connection is not possible unless the multi-fiber connection conditions are changed are: D-(1) Discharge current value D-(4) 2 of the optical fiber push-in movement amount during discharge
It is a point. Regarding the discharge time of D-(2),
From the difference in current density distribution due to the electrode spacing in D-(3), it was found that by adjusting the discharge current value (D-1), there was no problem even in the case of a single core in 6 seconds (discharge current 15 mA with an electrode spacing of 2.5 mm). Confirmed by experiment. Figure 7 shows a positioning diagram of the optical fiber facing the discharge fusion part and aligning the alignment axes.
In the positioning diagram of the optical fiber, a five-core optical fiber is inserted into the V-groove 51 and fixed with a clamp 52, and an arc discharge 54 is generated from the electrode 53 as shown in the figure (b).
The optical fiber is welded by the heat. At this time, the discharge heat is uniformly welded to the five-core optical fiber by setting the current flowing between the electrodes to 19 mA. In addition, Figure C shows the positioning state of a single-core optical fiber using the same device, and Figure D shows the discharge state.The discharge current at this time is set to 15 mA, and the single-core optical fiber is well-positioned. Welded. (Example) A method of electrically setting the above two points of difference using a changeover switch will be described below. D-(1) Discharge current value Figure 3 shows the circuit diagram of the high frequency discharge power supply shown in Table B above. Figure A is a conventional circuit diagram, where 11 is a discharge electrode rod, 12 is a high frequency transformer, 13 is a control unit, and 14 is a conventional circuit diagram.
is a variable resistor for adjusting the discharge current value, and by adjusting this variable resistor 14, the discharge current of 14 to 20 mA between the electrode rods 11 is controlled. Figure B is an improved diagram, variable resistor 1 is the same as variable resistor 4.
4a and 14b were arranged in parallel and connected to the changeover switch 15. The discharge current of variable resistor 14a is 19mA.
The variable resistor 14b is set so that the discharge current is
The discharge current value is set to 15 mA, and by operating the selector switch 15, the discharge current value can be selected for multi-core or single-core. D-(4) Optical fiber push-in movement amount during discharge FIG. 4 is a flowchart showing the movement of the optical fiber 1 during connection. (a) Set the optical fibers 1 on both sides of the abutting plate 9. (b) Move the optical fiber 1 in the direction of the arrow and hit the abutting plate 9 to position the optical fiber 1. (c) Move the optical fiber 1 back a little from the abutting plate 9 in the direction of the arrow. (d) Lower the abutting plate 9 and move the optical fiber 1 forward again. At this time, the optical fiber spacing l is 20 μm in the case of a single fiber, and this position is the origin, and the subsequent movement of the optical fiber 1 is the pushing movement amount. The optical fiber 1 is pre-discharged at the above position to clean the end face of the optical fiber 1. (D') In the case of a multi-core optical fiber, the end faces of the five-core optical fiber are uneven, so the amount of pushing movement must be made larger than that for a single-core optical fiber by the amount of the unevenness. (E) Open the discharge for fusion splicing and push the optical fibers 1 into each other. (f) Indicates the state where the connection has been completed, and (ε) indicates the amount of crossing when fused. In the case of a single fiber, the best splice loss can be obtained when the amount of crossing (ε) during fusion is 20 μm, but in the case of multiple fibers, the length of the end face of each of the five fibers
Since there is a variation of about 20 μm, it is not possible to connect with the same amount of push-in movement as with a single core. Therefore, the setting of the pushing movement amount in case of multiple cores is as follows:
The pre-discharge interval l'20μm + (maximum length variation of the end face of the optical fiber at one end x 2) must be set to 20+
(30×2)=80 μm. In this way, the pushing distance is 40μm when connecting a single core,
The thickness is 80 μm when multiple fibers are connected, and a method for switching between these two setting conditions will be explained with reference to FIG. Figure 5A is an explanatory diagram of the conventional mechanism for setting the pushing movement amount, in which 21 is a drive motor, 22 is a feed screw, 2
3 is an optical fiber fixing base, 24 is a gear, 25 is an origin position indexing plate, 26 is an origin detection sensor, 27 is a pushing movement amount detection indexing plate, and 28 is a pushing movement amount detection sensor. When setting two pushing movement amounts using such a mechanism, it is necessary to adjust the rotation angle position of the pushing movement amount indexing plate 27,
Adjustment requires advanced skill and time. Figure B is an explanatory diagram of an improved mechanism for setting the amount of pushing movement, in which a pair of pushing movement amount detection index plate 29 and sensor 30 are added to the conventional device shown in Figure A, and these are replaced by a changeover switch. 31, and by switching the changeover switch 31, the amount of pushing movement can be set as 27, 28 for single cores or 29, 30 for multiple cores. As mentioned above, by using the improved high-frequency discharge power supply circuit and push-in movement amount setting mechanism, multi-core. Two differences among the connection conditions for single cores:
That is, the discharge current value of D-(1) and the amount of optical fiber push-in movement during discharge of D-(4) can be set by operating a changeover switch. Single-core fusion splicing can be achieved. In the present invention described above, each switching switch 15,
31 into one switch, and by operating this changeover switch, multi-core... You can obtain the connection conditions for each single fiber, and connect multiple fibers with a single touch operation.
Single-core fusion splicing can be achieved. It has been confirmed through experiments that the device of the present invention can also be used to connect four-core and two-core optical fibers, which are currently being developed. The positioning of the discharge welded portion of the optical fiber in this case is shown in FIG. 8A (for the case of 4 fibers) and FIG. 8B (for the case of 2 fibers). In either case, the push-in amount is 80 μm, but the discharge current value for 4-core wires is 19 mA, which is the same as for 5-core wires, and for 2-core wires, it is possible to connect at 16 mA. (Effect of the invention) The above-mentioned multicore of the present invention. According to the single-fiber dual-use connecting device, when connecting multi-fiber optical fibers and single-fiber optical fibers, two devices were conventionally required, but with the device of the present invention, one device can be used for both purposes, and the device The production cost will also be lower.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単心光フアイバ心線イ及び多心光フア
イバ心線ロの斜視図、第2図イ,ロは放電電極間
隔の説明図を示す。第3図イは高周波数放電電源
の従来の回路図、同図ロは改良された回路図を示
す。第4図は接続時の光フアイバの動きを示すフ
ローチヤート図、第5図イは従来の押込み移動量
設定の機構図、同図ロは改良された機構図を示
す。第6図は融着接続装置の基本構成の説明図で
ある。第7図イは5心光フアイバの位置決め状態
図、同図ロは放電状態図、同図ハは単心光フアイ
バの位置決め状態図、同図ニは放電状態図であ
る。第8図イ及びロはそれぞれ4心光フアイバ、
2心光フアイバの位置決め状態図である。 1……光フアイバ、3……単心光フアイバ心
線、4……多心光フアイバ心線、5……放電電極
棒、9……突当板、11……放電電極棒、14,
14a,14b……可変抵抗、15……切替スイ
ツチ、25……原点位置割出板、26……原点検
出センサー、27,29……押込み移動量検出割
出板、28,29……押込み移動量検出センサ
ー、31……切替スイツチ。
FIG. 1 is a perspective view of a single optical fiber (a) and a multi-core optical fiber (b), and FIG. 2 (a) and (b) are illustrations of the discharge electrode spacing. FIG. 3A shows a conventional circuit diagram of a high frequency discharge power supply, and FIG. 3B shows an improved circuit diagram. FIG. 4 is a flowchart showing the movement of the optical fiber during connection, FIG. FIG. 6 is an explanatory diagram of the basic configuration of the fusion splicing device. 7A is a positioning state diagram of a five-core optical fiber, FIG. 7B is a discharge state diagram, FIG. 7C is a positioning state diagram of a single-core optical fiber, and FIG. 7D is a discharge state diagram. Figure 8 A and B are 4-core optical fibers, respectively.
It is a positioning state diagram of a two-core optical fiber. DESCRIPTION OF SYMBOLS 1...Optical fiber, 3...Single-core optical fiber core wire, 4...Multi-core optical fiber core wire, 5...Discharge electrode rod, 9...Abutment plate, 11...Discharge electrode rod, 14,
14a, 14b...Variable resistor, 15...Selector switch, 25...Origin position index plate, 26...Origin detection sensor, 27, 29...Pushing movement amount detection index plate, 28, 29...Pushing movement Amount detection sensor, 31...changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の光フアイバをV溝に並列状に整列配置
し、相対向させた端面の軸を合わせて光フアイバ
を固定する把持部と、光フアイバをその軸方向に
移動させる移動機構及び前記光フアイバの端面同
志を放電電極のアーク放電の熱によつて溶融接続
する加熱電源を具えた光フアイバの融着接続装置
において、前記光フアイバの把持部が最も多い多
心光フアイバを固定するV溝を具えており、光フ
アイバの移動機構が単心光フアイバ接続時の移動
量と多心光フアイバ接続時の移動量の2つの駆動
機能を具えており、加熱電源によつて電極間に流
れる電流値が単心接続用と多心接続用の2段階の
電流値設定機能を具えており、接続する光フアイ
バが単心光フアイバか多心光フアイバかに応じて
光フアイバの移動量及び放電電流値を切替えスイ
ツチの操作により単心用か多心用に切替えて融着
接続するよう構成したことを特徴とする光フアイ
バの多心、単心両用接続装置。
1. A gripping part for arranging a plurality of optical fibers in parallel in a V-groove and fixing the optical fibers by aligning the axes of opposing end surfaces, a moving mechanism for moving the optical fibers in the axial direction, and the optical fibers. In an optical fiber fusion splicing device equipped with a heating power source that melts and connects the end faces of the fibers to each other by the heat of the arc discharge of the discharge electrode, the optical fiber has a V-groove for fixing the multi-core optical fiber with the largest number of gripping parts. The optical fiber moving mechanism has two driving functions: the amount of movement when connecting a single optical fiber and the amount of movement when connecting multiple optical fibers, and the current value flowing between the electrodes by the heating power source has a two-step current value setting function for single-fiber connection and multi-fiber connection, and the amount of optical fiber movement and discharge current value can be adjusted depending on whether the optical fiber to be connected is a single-core optical fiber or a multi-core optical fiber. 1. An optical fiber multi-fiber and single-fiber splicing device characterized in that the optical fiber is configured to switch between single fiber and multi-fiber fusion splicing by operating a switch.
JP3965286A 1986-02-24 1986-02-24 Device for splicing both multicore and single core of optical fiber Granted JPS62196604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3965286A JPS62196604A (en) 1986-02-24 1986-02-24 Device for splicing both multicore and single core of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3965286A JPS62196604A (en) 1986-02-24 1986-02-24 Device for splicing both multicore and single core of optical fiber

Publications (2)

Publication Number Publication Date
JPS62196604A JPS62196604A (en) 1987-08-31
JPH0154683B2 true JPH0154683B2 (en) 1989-11-20

Family

ID=12559014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3965286A Granted JPS62196604A (en) 1986-02-24 1986-02-24 Device for splicing both multicore and single core of optical fiber

Country Status (1)

Country Link
JP (1) JPS62196604A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620301B2 (en) * 1988-05-09 1997-06-11 住友電気工業株式会社 Fusion splicing method and fusion splicing apparatus for multi-core optical fiber
JP2620302B2 (en) * 1988-05-09 1997-06-11 住友電気工業株式会社 Fusion splicing method and fusion splicing apparatus for multi-core optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357052A (en) * 1976-11-03 1978-05-24 Showa Electric Wire & Cable Co Method of and apparatus for fusion bonding of light transmitting fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357052A (en) * 1976-11-03 1978-05-24 Showa Electric Wire & Cable Co Method of and apparatus for fusion bonding of light transmitting fiber

Also Published As

Publication number Publication date
JPS62196604A (en) 1987-08-31

Similar Documents

Publication Publication Date Title
US4049414A (en) Method and apparatus for splicing optical fibers
US4118618A (en) Device for welding optical fibres end to end
JP2721346B2 (en) Forming optical fiber connections
IE43638B1 (en) Method of connecting optical fibres
JPH0154683B2 (en)
JP2004325990A (en) Fusion splicing method and fusion splice machine for different diameter optical fibers
JPH03146910A (en) Automatic laser melting system for highly intense optical fiber splicing
JPH02195304A (en) Fusion splicing method for optical fiber
JPS57135909A (en) Connection method for multicore fiber cable
JPS60150011A (en) Manufacture of optical demultiplexing and multiplexing part
US20020122631A1 (en) Optical fiber coupler, manufacturing method and apparatus thereof
JPS6235643B2 (en)
JPS61219011A (en) Formation of reinforcing part for optical fiber connection part and peinforcing member used for formation
JPH027006A (en) Discharge fusion splicing method of optical fiber
JPH0470607A (en) Method and device for fusion splicing connection between optical waveguide and optical fiber
JP2860831B2 (en) Batch fusion splicing of multi-core optical fiber
JP3607642B2 (en) Optical fiber fusion splicer
JP4080309B2 (en) Fusion splicing method of optical fiber
JPS6155615A (en) Manufacture of light branching and coupling section
JPS6146909A (en) Reinforcing heater of optical fiber welded and connected part
JPS58154813A (en) Connecting device of optical fiber core by fusion bonding
JPH0449924B2 (en)
US20100239214A1 (en) Apparatus and arrangement for trimming and splicing of optical waveguides
JPS6395404A (en) Simultaneous welding and connecting device for multiple cores of optical fibers
JP2004029228A (en) Optical fiber fusion splicer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term