JPH0154545B2 - - Google Patents

Info

Publication number
JPH0154545B2
JPH0154545B2 JP56063422A JP6342281A JPH0154545B2 JP H0154545 B2 JPH0154545 B2 JP H0154545B2 JP 56063422 A JP56063422 A JP 56063422A JP 6342281 A JP6342281 A JP 6342281A JP H0154545 B2 JPH0154545 B2 JP H0154545B2
Authority
JP
Japan
Prior art keywords
intake
load
valve
intake passage
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56063422A
Other languages
Japanese (ja)
Other versions
JPS57179357A (en
Inventor
Yasuyuki Sugiura
Kazuo Nakama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP56063422A priority Critical patent/JPS57179357A/en
Publication of JPS57179357A publication Critical patent/JPS57179357A/en
Publication of JPH0154545B2 publication Critical patent/JPH0154545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10183Engines having intake ducts fed from a separate carburettor or injector, the idling system being considered as a separate carburettor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10275Means to avoid a change in direction of incoming fluid, e.g. all intake ducts diverging from plenum chamber at acute angles; Check valves; Flame arrestors for backfire prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Check Valves (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は複式吸気内燃機関の吸気装置に係
り、特に構造簡単な逆止め弁を使用することによ
り、吸気の2次側リーク現象の発生を、燃焼性能
の悪化を来さない程度に許すこととした複式吸気
内燃機関の吸気装置に関する。 複式吸気路を有する多気筒内燃機関は、いわゆ
る吸気の2次側リーク現象の発生があり、このた
め低負荷域における1次吸気通路の吸気流速が低
下し、燃焼性能が悪化するという不都合があつ
た。そのため、従来の内燃機関は2次吸気通路に
リード弁等の逆流防止弁を設けている。しかし、
これらの弁は高価であり、また所定の通路断面積
を確保するためには、弁本体を大きくしなければ
ならず、装着性が悪化するという不都合があつ
た。 そこでこの発明の目的は、2次側リーク現象の
逆流に対しては燃焼性能の悪化を来さない程度の
少量の逆流を許容することにより構造簡単且つ有
効通路断面積を大きくとることができ装着性の良
好な簡略型逆止め弁を使用することができ、また
大部分の2次側リーク現象を防止することにより
燃焼性能を良好に維持し得る複式吸気内燃機関の
吸気装置を実現するにある。 上述の目的を達成すべく、この発明は次の点に
着目して完成が為されたものである。つまり、2
次側リーク現象の逆流があつても燃焼性能の悪化
を来さない範囲を見極め、この逆流を許容する代
りに構造簡単な逆止め弁を使用し得る、という点
である。 しかして、第1図に示すものは、2次吸気通路
の逆流許容通路断面積、つまり2次逆流通路断面
積S2と、1次吸気通路断面積S1との比たるS2/S1に 対する40Km/h走行抵抗負荷における希薄燃焼限
界空燃比A/Fの実験値を、グラフにしたものであ る。ここで、1次吸気通路断面積S1は、S1−a>
S1−b>S1−cの関係にある。この第1図から、
S2/S1<0.5においては希薄燃料限界空燃比A/F>22 であり、良好な希薄燃焼限界空燃比を示すことが
わかる。すなわち、2次逆流通路断面積S2とし
て、1次吸気通路断面積S1の半分までは許し得
て、燃焼性能の悪化を殆ど来さないものである。 また、第1表には希薄燃焼限界空燃比A/Fが悪 化しない範囲でのST/Sv・sの40Km/h走行抵抗負 荷時の実験値を示すものである。ここにST=S1
S2、つまりSTは1次吸気通路断面積S1と2次逆流
通路断面積の和であり、Sv・sは吸気弁座内断
面積である。
This invention relates to an intake system for a dual-intake internal combustion engine, and in particular, by using a check valve with a simple structure, it is possible to allow the occurrence of secondary side leakage of intake air to an extent that does not cause deterioration of combustion performance. The present invention relates to an intake system for a dual intake internal combustion engine. Multi-cylinder internal combustion engines having dual intake passages have the disadvantage that a so-called secondary side leakage phenomenon of intake air occurs, which reduces the intake flow velocity in the primary intake passage in a low load range and deteriorates combustion performance. Ta. Therefore, conventional internal combustion engines are provided with a backflow prevention valve such as a reed valve in the secondary intake passage. but,
These valves are expensive, and in order to ensure a predetermined passage cross-sectional area, the valve body must be made large, which has the disadvantage of worsening the ease of mounting. Therefore, the purpose of this invention is to allow a small amount of backflow that does not cause deterioration of combustion performance with respect to the backflow caused by the secondary leak phenomenon, thereby simplifying the structure and increasing the effective cross-sectional area of the passage. An object of the present invention is to realize an intake system for a dual intake internal combustion engine in which a simple check valve with good performance can be used and combustion performance can be maintained well by preventing most secondary side leak phenomena. . In order to achieve the above-mentioned object, this invention was completed by paying attention to the following points. In other words, 2
The point is that a check valve with a simple structure can be used instead of allowing this backflow by determining the range in which combustion performance will not deteriorate even if there is backflow due to the next side leakage phenomenon. Therefore, what is shown in FIG. 1 is S 2 /S 1 which is the ratio of the cross-sectional area of the secondary intake passage allowing backflow, that is, the cross-sectional area of the secondary backflow passage S 2 and the cross-sectional area of the primary intake passage S 1 . This is a graph showing experimental values of the lean burn limit air-fuel ratio A/F under a running resistance load of 40 km/h. Here, the primary intake passage cross-sectional area S 1 is S 1 −a>
The relationship is S 1 −b>S 1 −c. From this figure 1,
It can be seen that when S 2 /S 1 <0.5, the lean-fuel limit air-fuel ratio A/F>22, indicating a good lean-burn limit air-fuel ratio. That is, the secondary backflow passage cross-sectional area S2 can be up to half of the primary intake passage cross-sectional area S1 , and combustion performance will hardly deteriorate. Furthermore, Table 1 shows experimental values of S T /Sv·s at a running resistance load of 40 km/h within a range in which the lean burn limit air-fuel ratio A/F does not deteriorate. Here S T =S 1 +
S 2 , that is, S T is the sum of the primary intake passage cross-sectional area S 1 and the secondary backflow passage cross-sectional area, and Sv·s is the internal cross-sectional area of the intake valve seat.

【表】 しかして、第1表から、S1+S2/Sv・s<0.3程度で
あ れば、燃焼性能の悪化を来さないことがわかる。 つまり、結論として、高負荷用2次吸気通路4
に設ける逆止め弁は逆流を完全に阻止する形式で
無くて良く、低負荷用と1次気化器のみが稼動し
ている負荷域で、低負荷用1次吸気通路3から高
負荷用2次吸気通路4への少許の逆流としてS2/S1 =0.5、そしてS1+S2/Sv・s=0.3未満の2次側リーク 吸気の存在を許容しても、燃焼性能を悪化させて
しまう不都合は無いものである。そのため、簡略
な構成の逆止め弁で充分であることを知り得る。 次に、簡略型逆止め弁を使用した吸気装置の実
施例について説明する。第2,3図において、1
は燃焼室、2は吸気弁、2vは吸気弁座、3は低
負荷用1次吸気通路、4は高負荷用2次吸気通
路、5は排気弁、6は排気通路、7は低負荷用1
次気化器、そして8は高負荷用2次気化器であ
る。前記高負荷用の2次吸気通路4には、簡略型
逆止め弁12が夫々各気筒毎に設けられている。 第4〜9図は、この逆止め弁12の第1実施例
を示すもので、逆止め弁12は円錐体たる先鋭体
形状に形成され、弁本体14には弁片16が接合
部18にて接合される。そして、該接合部18は
頂角αを有する頂部20から基部22方向に延在
して設けられる。該接合部18は比較的長く構成
され、接合部18部分の疲労による折損事故を防
止している。なお、前記先鋭体形状とは、2次吸
気通路4の流路方向に直角な内断面積が頂部20
から基部22方向に漸次増加する形状たる円錐形
状等を意味するものである。また、前記弁片16
および弁本体14は、合成樹脂等の薄板弾性材に
より一体的に構成する。そして、逆止め弁12
は、2次吸気通路4の上流方向に頂部20を向け
て装着する。 さすれば、2次吸気通路4の順方向26の吸気
の流れが生ずる高負荷域においては、吸気は弁片
16を弁本体14内に押し込み、通過孔28を形
成し、この逆止め弁12箇所を容易に通過する。
しかし、低負荷域の低負荷用1次気化器7のみが
稼動する領域における第8図の如き逆方向30の
吸気の流れたる2次側リーク現象の逆流の発生に
際しては、該リーク吸気は弁片16を押し開かん
とするが、弁片16の先端16aが通路壁5に当
接し(第9図)、燃焼性能に悪影響を与えない少
許の逆流は許容するものの、大部分の逆流を阻止
するものである。そのため、1次吸気通路3中の
吸気流速は衰えず、スワールの発生が良好とな
り、更に弁片の存在により燃料の微粒化が促進さ
れ、また、通過孔が流量に比例して開口割合を変
化させるので少流量時においても吸気流速を充分
高いものとし得て、燃焼性を改善し得る。更に、
吸気の吹返しによる逆火の発生を防止し得るし、
構造簡単で安価であり、装着も容易で、使用寿命
も長いという効果を有する。 また、弁片16の形成に際し、上述第1実施例
の如く、弁片16を同方向に向けて配設すれば、
通過吸気に施回性を与えることができ好都合であ
る。 なお、上記実施例では先鋭体として円錐体を用
いたが、三角錐や四角錐等の角錐でも良いもので
ある。 また、通過孔28を大とし流量を充分なものと
するには、頂角αを小さく、すなわち、先鋭体を
細長く形成すれば良いものである。 第10,11図は第2実施例を示し、前述第1
実施例では4枚設けた弁片16を、6枚設けたも
のである。このようにすれば、弁片16を柔軟に
構成しても不都合が無く、応答性が向上する。 第12,13図は第3実施例を示すものであ
る。逆流による弁片6の外方への開放動作を阻止
する阻止部32を基部22近傍に設けることによ
り、通路4の直径や流路壁24の壁面状態に影響
されず設計通り逆流防止を果し得る。また、第1
3図の如く接合部18を互に背中合せに設けれ
ば、弁片6の開放による通過孔28の開口度が大
となり、通過抵抗の減少が図れるものである。 第14,15図は第4実施例を示し、弁片16
の折損事故等に備え、弁片やその破片が吸気とと
もに機関内に吸引されるのを防止するため、ネツ
ト等の流去防止手段34を弁本体14の基部22
に設けたものである。更に他の特徴として、第1
5図の如く、弁片6を接合部18から遠ざかるに
従い薄手に構成し、折損に強くすると共に応答性
を向上させた点がある。 第16〜18図は第5実施例を示すもので、そ
の特徴とするところは以下の如くである。頂部2
0を錐状ではなく、頂部αを有し(第16図)、
且つ幅W(第18図)を有するくさび形とし、接
合部18を頂部20近傍にのみ設け、しかも該接
合部18を2次吸気通路4の流路方向に略直角に
延在させる。このように構成すれば、吸気の直進
性を防害する不都合を防止し得るものである。 このように、この発明によれば、複式吸気内燃
機関の低負荷用1次気化器のみが稼動している負
荷域で高負荷用2次吸気通路に2次側リーク吸気
の少許の逆流を許す簡略型の逆止め弁を設けたこ
とにより、2次吸気通路の順方向の吸気の流れが
生ずる高負荷域においては、吸気は逆止め弁箇所
を容易に通過する。しかし、低負荷域の低負荷用
1次気化器のみが稼動する領域における2次側リ
ーク現象の逆流の発生に際しては、燃焼性能に悪
影響を与えない少許の逆流は許容するものの、大
部分の逆流阻止するものである。そのため、1次
吸気通路中の吸気流速は衰えず、スワールの発生
が良好となり、更に弁片の存在により燃料の微粒
化が促進され、また、通過孔が流量に比例して開
口割合を変化させるので、少流量時においても吸
気流速を充分高いものとし得て、燃焼性を改善し
得る。更に、吸気の吹返しによる逆火の発生を防
止し得るし、構造簡単で安価であり、装着も容易
で、使用寿命も長いという効果を有するものであ
る。
[Table] However, from Table 1, it can be seen that if S 1 +S 2 /Sv·s<0.3, the combustion performance will not deteriorate. In other words, the conclusion is that the high-load secondary intake passage 4
The check valve installed in Even if S 2 /S 1 = 0.5 is allowed as a small backflow into the intake passage 4, and secondary side leak intake air of less than S 1 +S 2 /Sv・s = 0.3 is allowed, combustion performance will deteriorate. There are no inconveniences. Therefore, it can be seen that a simple check valve is sufficient. Next, an example of an intake device using a simplified check valve will be described. In Figures 2 and 3, 1
is the combustion chamber, 2 is the intake valve, 2v is the intake valve seat, 3 is the primary intake passage for low load, 4 is the secondary intake passage for high load, 5 is the exhaust valve, 6 is the exhaust passage, 7 is for low load 1
and 8 is a high-load secondary vaporizer. In the high-load secondary intake passage 4, a simplified check valve 12 is provided for each cylinder. 4 to 9 show a first embodiment of this check valve 12. The check valve 12 is formed in the shape of a conical point, and a valve body 14 has a valve piece 16 at a joint 18. and are joined together. The joint portion 18 is provided extending from the top portion 20 having the apex angle α toward the base portion 22 . The joint portion 18 is constructed to be relatively long to prevent breakage of the joint portion 18 due to fatigue. Note that the pointed body shape means that the internal cross-sectional area perpendicular to the flow path direction of the secondary intake passage 4 is the top part 20.
It means a conical shape, etc., which is a shape that gradually increases from the base 22 toward the base 22. Further, the valve piece 16
The valve body 14 is integrally formed of a thin plate elastic material such as synthetic resin. And check valve 12
is installed with the top portion 20 facing upstream of the secondary intake passage 4. Then, in a high load region where the intake air flows in the forward direction 26 of the secondary intake passage 4, the intake air pushes the valve piece 16 into the valve body 14 to form the passage hole 28, and the check valve 12 Pass through the spots easily.
However, when a backflow occurs due to a secondary side leak phenomenon in which intake air flows in the opposite direction 30 as shown in FIG. An attempt is made to push open the valve piece 16, but the tip 16a of the valve piece 16 comes into contact with the passage wall 5 (Fig. 9), and although a small amount of backflow that does not adversely affect combustion performance is allowed, most of the backflow is blocked. It is something to do. Therefore, the intake flow velocity in the primary intake passage 3 does not decline, and swirl generation is improved.Furthermore, the presence of the valve piece promotes atomization of the fuel, and the opening ratio of the passage hole changes in proportion to the flow rate. Therefore, the intake flow velocity can be made sufficiently high even when the flow rate is small, and combustibility can be improved. Furthermore,
It can prevent backfire from occurring due to intake air blowing back, and
It has the advantages of simple structure, low cost, easy installation, and long service life. Furthermore, when forming the valve pieces 16, if the valve pieces 16 are arranged facing in the same direction as in the first embodiment,
This is advantageous because it can give the passing intake air a more manageable effect. In the above embodiment, a cone was used as the sharpened body, but a pyramid such as a triangular pyramid or a square pyramid may also be used. Further, in order to make the passage hole 28 large and to obtain a sufficient flow rate, the apex angle α may be made small, that is, the pointed body may be formed to be elongated. Figures 10 and 11 show the second embodiment, and the first embodiment described above.
In the embodiment, four valve pieces 16 are provided, but six valve pieces 16 are provided. In this way, there is no problem even if the valve piece 16 is configured flexibly, and responsiveness is improved. 12 and 13 show a third embodiment. By providing a blocking portion 32 near the base 22 that prevents the valve piece 6 from opening outward due to backflow, backflow prevention can be achieved as designed without being affected by the diameter of the passage 4 or the wall condition of the flow path wall 24. obtain. Also, the first
If the joint portions 18 are provided back to back as shown in FIG. 3, the degree of opening of the passage hole 28 due to opening of the valve piece 6 will be increased, and passage resistance can be reduced. 14 and 15 show a fourth embodiment, in which the valve piece 16
In order to prevent the valve piece and its fragments from being sucked into the engine together with intake air in case of breakage of the valve body 14, a flow prevention means 34 such as a net is installed at the base 22 of the valve body 14.
It was established in Furthermore, as another feature, the first
As shown in FIG. 5, the valve piece 6 is made thinner as it goes away from the joint 18, making it resistant to breakage and improving responsiveness. 16 to 18 show the fifth embodiment, and its features are as follows. Top 2
0 is not conical, but has an apex α (Fig. 16),
Further, it is formed into a wedge shape having a width W (FIG. 18), and the joint portion 18 is provided only near the top portion 20, and the joint portion 18 extends approximately at right angles to the flow path direction of the secondary intake passage 4. With this configuration, it is possible to prevent the inconvenience of impairing the straightness of intake air. As described above, according to the present invention, a small amount of secondary leak intake air is allowed to flow back into the high-load secondary intake passage in a load range where only the low-load primary carburetor of a dual-intake internal combustion engine is operating. By providing the simple check valve, the intake air easily passes through the check valve in a high load region where intake air flows in the forward direction of the secondary intake passage. However, when backflow occurs due to the secondary side leak phenomenon in a region where only the low-load primary vaporizer operates in a low-load range, a small amount of backflow that does not adversely affect combustion performance is allowed, but most of the backflow It is something to prevent. Therefore, the intake flow velocity in the primary intake passage does not decline, and swirl generation is improved.Furthermore, the presence of the valve piece promotes atomization of the fuel, and the opening ratio of the passage hole changes in proportion to the flow rate. Therefore, the intake flow rate can be made sufficiently high even when the flow rate is small, and combustibility can be improved. Furthermore, it is possible to prevent the occurrence of flashback due to the blowback of intake air, and has the following effects: it is simple and inexpensive in structure, easy to install, and has a long service life.

【図面の簡単な説明】 第1図はS2/S1に対する希薄燃焼限界空燃比A/Fの 変化を示すグラフ、第2図は複式吸気内燃機関の
断面正面図、第3図は多気筒機関の概略平面図で
ある。第4図は逆止め弁の第1実施例を示す一部
切欠き側面図、第5図は第4図の矢視V図、第6
図は順方向の吸気流時の弁片の動作を示す断面側
面図、第7図は第6図の−線断面図、第8図
は逆流時の弁片の動作を示す断面側面図、第9図
は第8図の−線断面図である。第10図は逆
止め弁の第2実施例を示す側面図、第11図は第
10図の矢視XI図である。第12図は逆止め弁の
第3実施例を示す一部切欠き側面図、第13図は
第12図の矢視図である。第14図は逆止め
弁の第4実施例を示す一部切欠き側面図、第15
図は第14図の−線断面図である。第1
6図は逆止め弁の第5実施例を示す一部切欠き側
面図、第17図は第16図の矢視図、第18
図は平面図である。 図において、3は低負荷用1次吸気通路、4は
高負荷用2次吸気通路、7は低負荷用1次気化
器、8は高負荷用2次気化器、12は逆止め弁、
14は弁本体、16は弁片、16aは先端、18
は接合部、αは頂角、S1は1次吸気通路断面積、
S2は2次逆流通路断面積、Sv・sは吸気弁座内
断面積である。
[Brief explanation of the drawings] Figure 1 is a graph showing changes in the lean burn limit air-fuel ratio A/F with respect to S 2 /S 1 , Figure 2 is a cross-sectional front view of a dual intake internal combustion engine, and Figure 3 is a multi-cylinder engine. FIG. 2 is a schematic plan view of the engine. FIG. 4 is a partially cutaway side view showing the first embodiment of the check valve, FIG. 5 is a view taken in the direction of arrow V in FIG.
The figure is a cross-sectional side view showing the operation of the valve piece during forward intake flow, Figure 7 is a cross-sectional view taken along the line - - in Figure 6, and Figure 8 is a cross-sectional side view showing the operation of the valve piece during reverse flow. FIG. 9 is a sectional view taken along the - line in FIG. 8. FIG. 10 is a side view showing a second embodiment of the check valve, and FIG. 11 is a view taken in the direction of arrow XI in FIG. FIG. 12 is a partially cutaway side view showing a third embodiment of the check valve, and FIG. 13 is a view taken in the direction of the arrows in FIG. 12. FIG. 14 is a partially cutaway side view showing the fourth embodiment of the check valve;
The figure is a sectional view taken along the line -- in FIG. 14. 1st
6 is a partially cutaway side view showing the fifth embodiment of the check valve, FIG. 17 is a view taken in the direction of the arrow in FIG. 16, and FIG.
The figure is a plan view. In the figure, 3 is a primary intake passage for low loads, 4 is a secondary intake passage for high loads, 7 is a primary carburetor for low loads, 8 is a secondary carburetor for high loads, 12 is a check valve,
14 is the valve body, 16 is the valve piece, 16a is the tip, 18
is the joint, α is the apex angle, S 1 is the primary intake passage cross-sectional area,
S 2 is the cross-sectional area of the secondary backflow passage, and Sv·s is the internal cross-sectional area of the intake valve seat.

Claims (1)

【特許請求の範囲】 1 低負荷用1次気化器に連なる低負荷用1次吸
気通路と高負荷用2次気化器に連なる高負荷用2
次吸気通路とを有するとともに、前記低負荷用1
次吸気通路と高負荷用2次吸気通路とが単一吸気
弁直上流箇所で合流する複式吸気多気筒内燃機関
において、前記低負荷用1次気化器のみが稼動し
ている負荷域で高負荷用2次吸気通路に2次側リ
ーク吸気の少許の逆流を許す簡略型の逆止め弁を
設けたことを特徴とする複式吸気内燃機関の吸気
装置。 2 前記複式吸気内燃機関の1次吸気通路断面積
S1と2次吸気通路断面積S2と吸気弁座内断面積
Sv・sとの関係が、S2/S1<0.5且つS1+S2/Sv・s<0
.3で あることを特徴とする特許請求の範囲第1項記載
の逆止め弁を有する複式吸気内燃機関の吸気装
置。 3 前記簡略型の逆止め弁が、所定の頂角を有す
る頂部を有し、弁片の弁本体への接合部は所定の
長さを有するとともに該接合部の一部は少なくと
も頂部近傍にあり、前記弁片の先端の一部は少な
くとも基部近傍にあり、前記弁片および弁本体は
薄板弾性材により一体的に構成され、流路方向に
直角な内断面積が該頂部から基部方向に漸次増加
する先鋭体形状からなることを特徴とする特許請
求の範囲第1項記載の複式吸気内燃機関の吸気装
置。
[Claims] 1. A low-load primary intake passage connected to a low-load primary vaporizer, and a high-load primary intake passage connected to a high-load secondary vaporizer.
and a secondary intake passage, and the low load 1
In a dual-intake multi-cylinder internal combustion engine in which the secondary intake passage and the high-load secondary intake passage meet immediately upstream of a single intake valve, the load is high in a load range where only the low-load primary carburetor is operating. An intake system for a dual intake internal combustion engine, characterized in that a simplified check valve is provided in a secondary intake passage for allowing a small amount of backflow of secondary side leak intake air. 2 Primary intake passage cross-sectional area of the dual intake internal combustion engine
S 1 and secondary intake passage cross-sectional area S 2 and intake valve seat internal cross-sectional area
The relationship with Sv・s is S 2 /S 1 <0.5 and S 1 +S 2 /Sv・s<0
.3. An intake system for a dual intake internal combustion engine having a check valve according to claim 1. 3. The simplified check valve has a top portion having a predetermined apex angle, and the joint portion of the valve piece to the valve body has a predetermined length, and at least a portion of the joint portion is located near the top portion. , a portion of the tip of the valve piece is at least near the base, the valve piece and the valve body are integrally formed of a thin plate elastic material, and the internal cross-sectional area perpendicular to the flow path direction gradually increases from the top to the base. 2. An intake system for a dual intake internal combustion engine according to claim 1, characterized in that the intake system has an increasing point shape.
JP56063422A 1981-04-28 1981-04-28 Intake device for double-intake type internal combustion engine Granted JPS57179357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56063422A JPS57179357A (en) 1981-04-28 1981-04-28 Intake device for double-intake type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063422A JPS57179357A (en) 1981-04-28 1981-04-28 Intake device for double-intake type internal combustion engine

Publications (2)

Publication Number Publication Date
JPS57179357A JPS57179357A (en) 1982-11-04
JPH0154545B2 true JPH0154545B2 (en) 1989-11-20

Family

ID=13228829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063422A Granted JPS57179357A (en) 1981-04-28 1981-04-28 Intake device for double-intake type internal combustion engine

Country Status (1)

Country Link
JP (1) JPS57179357A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979548B2 (en) * 2007-11-19 2012-07-18 宗司 中川 Rectification method and structure of intake air of internal combustion engine

Also Published As

Publication number Publication date
JPS57179357A (en) 1982-11-04

Similar Documents

Publication Publication Date Title
US7455044B2 (en) Intake device of internal combustion engine
JPS5844843B2 (en) Internal combustion engine intake passage
US8015799B2 (en) Multicylinder internal combustion engine
US6318336B1 (en) Intake port for an internal-combustion engine
JPH0154545B2 (en)
JP2002089267A (en) Gasoline direct injection engine
US4520776A (en) Intake port structure for internal combustion engines
JPS6232328B2 (en)
JPS5922251Y2 (en) internal combustion engine
JP2501556Y2 (en) Internal combustion engine intake system
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JPH0160668B2 (en)
JPH0238769B2 (en)
JPS6319548Y2 (en)
JPH0346652B2 (en)
JP2881862B2 (en) Combustion chamber structure of internal combustion engine
JPH0247573B2 (en)
JPS61229908A (en) Intake device for internal-combustion engine
JP2523564Y2 (en) Intake device for internal combustion engine
JPS6226590Y2 (en)
JPH0634151U (en) Intake passage for 4-cycle engine
JP3861365B2 (en) Engine intake system
JPH0121345B2 (en)
JPS633423Y2 (en)
JPH0236905Y2 (en)