JPH0154189B2 - - Google Patents

Info

Publication number
JPH0154189B2
JPH0154189B2 JP63171488A JP17148888A JPH0154189B2 JP H0154189 B2 JPH0154189 B2 JP H0154189B2 JP 63171488 A JP63171488 A JP 63171488A JP 17148888 A JP17148888 A JP 17148888A JP H0154189 B2 JPH0154189 B2 JP H0154189B2
Authority
JP
Japan
Prior art keywords
sleeve
layer
shrinkable
sheet
shrinkage rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP63171488A
Other languages
Japanese (ja)
Other versions
JPH0193341A (en
Inventor
Tadayasu Tsubone
Toshimasa Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP63171488A priority Critical patent/JPH0193341A/en
Publication of JPH0193341A publication Critical patent/JPH0193341A/en
Publication of JPH0154189B2 publication Critical patent/JPH0154189B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は収縮スリーブ形成用シートに関し、
さらに詳述するならば、炭酸飲料等の内圧が加わ
る液体の収納に用いるガラス瓶等に対して被覆保
護する収縮性スリーブの素材としての収縮スリー
ブ形成用シートに関する。 <従来技術及び発明が解決しようとする課題> 従来、ガラス瓶の外面に熱収縮性を有する熱可
塑性樹脂シートからなるスリーブを被せ、加熱に
よつて該スリーブを収縮させ、ガラス瓶の外面形
状に沿つて密着するよう被覆し、ガラス瓶の輸送
保管時における緩衝保護を図ることが行なわれて
いる。 そして、特に炭酸飲料のような内圧の加わるも
のを収納するガラス瓶の場合、被損時における瓶
破片の飛散を防止することが、安全上重要な問題
となる。 そこで、上記安全上の基準としてJIS−S2306
(炭酸飲料用ガラス瓶の飛散防止性能試験方法)
を適用し、保護スリーブとしての適性を判断して
いる。 特に破瓶の際にガラス瓶自体が破壊されてもス
リーブが破断しなければ、ガラス瓶の破片が飛散
せず、安全上非常に好ましいとともに、瓶破片の
始末も容易になる。 そして、上記破損時の安全性を高めるには素材
シートの伸び率と引張強度を向上させるととも
に、両者のバランスも重要になる。 また、保護スリーブとしては、破損時の安全性
だけでなく、ガラス瓶の輸送時等における振動や
衝撃力に対する耐久性も必要とされる。 さらに、素材シートからスリーブへの巻回形成
や瓶への被覆作業を機械化もしくは自動化するに
は、取扱い中にシートが局部的に変形したり折れ
曲らないよう、適度の剛性または腰の強さが必要
となる。 従来スリーブの素材として使用されている各種
合成樹脂シートのうち、ポリ塩化ビニルシートや
延伸ポリスチレンシート等の非発泡シートは衝撃
吸収等の緩衝保護性に劣り、発泡ポリスチレンシ
ートは引張強度や伸び率が悪く、破瓶時の安全性
に劣り、また発泡ポリオレフイン系シートは柔軟
性があり過ぎて、自動瓶巻機等での取扱いが困難
であつた。 そこで、この発明においては、上記従来のスリ
ーブ形成用シートの欠点を解消し、緩衝性、破損
時の安全性あるいは取扱いの容易性等の何れにも
優れたものを提供しようとしている。 <課題を解決するための手段> 上記課題を解決するためのこの発明の構成は、
内層となる収縮性ポリスチレン系発泡シートと、
中間層となる収縮性ポリオレフイン系発泡シート
および、外層となる収縮性ポリオレフイン系非発
泡フイルムまたはゴム分もしくはエチレン−酢酸
ビニル共重合体樹脂を含有する収縮性ポリスチレ
ン系非発泡フイルムとが積層されてあり、上記3
層のうち互に隣接する両層の少なくとも一方の層
には柔軟性のある接着剤分を配合してあり、また
各層の収縮率は、内層が中間層および外層より大
きく形成されてあり、積層されたシートは流れ方
向の収縮率が60%以下、幅方向の収縮率が10%以
下で、且つ流れ方向の収縮率が幅方向の収縮率よ
り大きく、内層側を内面にして流れ方向の両端を
接合することを特徴としている。 <作用> 上記のように構成されたこの発明によれば、中
間層となる発泡ポリオレフイン系シートは、柔軟
性に優れ、伸び率も高いので、ガラス瓶の輸送時
等における振動や衝撃に対する緩衝性に優れたも
のになり、破瓶時の安全性も非常に良好なものと
なる。 中間層の内外両面に、剛性の良いポリスチレン
系発泡シートからなる内層と非発泡フイルムから
なる外層とを積層することによつて、スリーブ全
体の剛性を高め、取扱い中にスリーブの一部が折
れ曲がつたり、変形する不都合を無くすることが
できる。 また、外層の非発泡フイルムは、スリーブ外表
面の平滑性および印刷性を良好にでき、外観性を
高めるとともに、キズもつき難くなるので強度も
向上する。なお、上記非発泡フイルムにてスリー
ブ表面の滑性がよくなる為、ガラス瓶の振動コン
ベアやシユートによる移送もスムーズに行なえ
る。 <実施例> 次いで、この発明の実施例について図を参照し
ながら以下に例示する。 収縮スリーブ形成用シートSは、内層1、中間
層2および外層3の3つの層が順に積層された積
層シートからなり、各層1,2,3は何れも加熱
によつて収縮する、いわゆる熱収縮性を有してい
る。 なお、上記熱収縮性(以下単に収縮性と称す
る)は、各層1,2,3を押出成形にて製造する
際の延伸、あるいは成形後の事後的な延伸加工等
にて付与されるものである。 内層1は、収縮性ポリスチレン発泡シート等の
収縮性ポリスチレン系発泡シートからなる。そし
て、その素材となるポリスチレン系樹脂として
は、スチレン、ビニルトルエン、イソプロピルス
チレン、α−メチルスチレン、核メチルスチレ
ン、クロロスチレン、第三ブチルスチレン等のビ
ニル芳香族モノマーの重合により得られるスチレ
ン重合体、あるいはスチレンモノマーと、1・3
−ブタジエン、アクリル酸ブチル、アクリル酸エ
チル、アクリル酸2−エチルヘキシル等のアクリ
ル酸アルキル、メタクリル酸メチル、メタクリル
酸ブチル、メタクリル酸2−エチルヘキシル等の
メタクリル酸アルキル、アクリロニトリル、ビニ
ルアセテート、α−メチルエチレン、ジビニルベ
ンゼン、ジメチルマレエート、ジエチルマレエー
トとの共重合により得られる、スチレンモノマー
をその50重量%以上含有するスチレン共重合体が
使用される。また、上記樹脂に1〜25重量%のゴ
ム分を含有させれば、後述する引張強度や伸びの
改善調整に好適である。 そして、上記樹脂にプロパン、ブタン、イソブ
タン、ペンタン、ネオペンタン、イソペンタン、
ヘキサン、ブタジエン等の脂肪族炭化水素類、シ
クロブタン、シクロペンタン、シクロヘキサン等
の環式脂肪族炭化水素類及びメチルクロライド、
メチレンクロライド、ジクロロフルオロメタン、
クロロトリフルオロメタン、ジクロロジフルオロ
メタン、クロロジフルオロメタン、トリクロロフ
ルオロメタン等のハロゲン化炭化水素類等の発泡
剤を、例えば押出機中で加えて加熱混練後大気圧
中に押出発泡させることにより発泡シートを形成
する。 上記内装1となる発泡シートの厚みは0.1〜1
mmのものが使用できるが、好ましくは0.1〜0.5で
実施される。 なお、厚みが1mm以上になると本発明のスリー
ブ形成用シートSをロール状に捲回することが困
難であること、析れシワ発生の原因となるので好
ましくない。 なお、上記発泡シートに展着剤、可塑剤その他
の添加剤を配合することができる。また、ゴム分
を含有させれば、伸び率や引張強度が向上し、成
形時の延伸コントロールが行ない易くなる。 次に中間層2としては、収縮性ポリエチレン発
泡シート等の収縮性ポリオレフイン系発泡シート
である。発泡シートを構成するポリオレフイン系
樹脂としては、低密度ポリエチレン、直鎖状低密
度ポリエチレン、高密度ポリエチレン、ポリプロ
ピレン、ポリブテン−1、エチレン−酢酸ビニル
共重合体等のポリオレフイン系樹脂の単独または
共重合体、あるいは混合樹脂が使用できる。 そして、かかる樹脂に、前記ポリスチレン系樹
脂に加えた発泡剤の他の重曹、クエン酸等の反応
型発泡剤、アゾビスイソブチロニトリル、ジニト
ロソペンタメチレンテトラミン、アゾジカルボン
酸アミド等の分解型発泡剤を使用して発泡シート
を得る。 かくして得られた発泡シートの厚みは0.1〜
0.45mm程度で発泡倍率が1.3〜3.0倍のものが好適
に実施できる。 また、中間層2にも内層1と同様に適宜添加剤
を配合しておくことができる。 次に外層3としては、収縮性ポリプロピレン非
発泡フイルム等の収縮性ポリオレフイン系非発泡
フイルム、もしくはゴム分またはエチレン−酢酸
ビニル共重合体樹脂を含有する収縮性ポリスチレ
ン系非発泡フイルムからなるものである。 そして、収縮性ポリオレフイン系非発泡フイル
ムの素材としては、前記中間層2において例示し
た各種ポリオレフイン系樹脂が使用できる。また
収縮性ポリスチレン系非発泡フイルムの素材とし
ては、前記内層1において例示した各種ポリスチ
レン系樹脂が使用でき、ゴム分としては、ブタジ
エン、ブテン等を1重量%以上含有させることが
できる。 上記外層3となる収縮性非発泡フイルムの厚さ
は0.01〜0.15mm好ましくは0.02〜0.07mmのものが
好適に使用できる。また、外層3には、チタンホ
ワイト等の白色顔料を含有させれば、白度を出し
印刷時の発色を良くできる。さらにその他滑剤、
耐候剤、帯電防止剤等の添加剤も必要に応じて配
合される。 以上に説明した3つの層1,2,3を積層して
スリーブ形成用シートSを製造するが、各層同士
の接着性を良好にする為に、柔軟性のある接着剤
分を配合する。 但し、上記接着剤分は、隣接する2つの層のう
ち、少なくとも一方の層のみに配合すればよい。
即ち、中間層2のみ、あるいは内層1と外層3の
みに配合すれば充分であるが、勿論残りの層にも
配合することができる。 接着剤分としては、エチレン−酢酸ビニル共重
合体樹脂が各層1,2,3を構成する樹脂同士に
対する接着性がよく、好適であるとともに、柔軟
性に優れているので成形時の延伸加工やスリーブ
としての使用時にも各層1,2,3が剥離し難く
好適である。また、上記樹脂は各層1,2,3に
配合することによつて、伸び率や引張強度を改善
する効果もある。 なお、柔軟性のある接着剤分としては、上記エ
チレン−酢酸ビニル共重合体樹脂のほかにも、各
種熱可塑性樹脂等からなる接着剤分も使用可能で
ある。 以上のように組成を有する3層1,2,3が積
層された収縮スリーブ形成用シートSを製造する
には、予め別個に押出成形された各層を熱接着等
の手段で積層一体化させてもよいが、同時押出に
て各層の成形と同時に積層するのが能率的であ
る。 同時押出法では、3台の押出機にて別々に溶融
混練された各層用の原料樹脂を、押出金型内で結
合一体化させて同時に押出し、延伸をかけながら
引取用プラグまたはロールも経て、引取機で積層
されたシートを引取る。そして、この際に、冷却
エアーを積層されたシートの内面、即ち、内層1
側のみにかけるか、もしくは内層1側の冷却エア
ーを外面即ち外層3側に比べて強くすることによ
つて、内外両面の冷却度合に差をつけて延伸させ
る。 上記延伸によつてスリーブ形成用シートSの各
層1,2,3に収縮性が生じるのであるが、冷却
度合の大きい内面側が外面側よりも大きな収縮率
を示すことになる。従つて3層のうち、内層1の
収縮率が中間層2、および外層3より大きくな
る。 また、上記延伸時の引取り速度とブローアツプ
比を適当に設定して流れ方向と幅方向の延伸量を
コントロールすることによつて、両方向の収縮率
を調整する。その結果、製造されたスリーブ形成
用シートSの流れ方向の収縮率が60%以下、幅方
向の収縮率が10%以下で、且つ流れ方向の収縮率
が幅方向の収縮率よりも大きくなるように調整す
る。 なお、スリーブ形成用シートSの製造方法とし
て、予め別個に成形した3つの層1,2,3を熱
接着等にて積層する場合には、予め各層を押出成
形する際に延伸量をコントロールして、流れ方向
と幅方向の収縮率を調整するとともに、内層1が
中間層2および外層3より収縮率が大きくなるよ
うにする。 特に、予め内層1および中間層2の押出成形時
に、表裏両面で冷却度合を変え、収縮率に差をつ
けておき、積層する際には外層3に近い側の面に
内層1または中間層2の収縮率が小さい方の面が
配置されるようにして積層すれば、より好適とな
る。 以上のようにして製造されたスリーブ形成用シ
ートSのうち、内層1および中間層2の発泡シー
トに含まれていた発泡剤による残存ガス量を、後
術する使用時即ちスリーブの加熱収縮時点におい
て0.3mol/Kg以下にしておく。これはスリーブ
が収縮する際に残存ガス量が多いと、加熱による
膨脹でスリーブ厚み増加が大きくなつて外層3の
非発泡フイルムの印刷面が剥離したり亀裂がはい
るのを防ぐためであり、上記残存ガスは押出成形
後、自然放置しておいても経時と共に徐々に発散
するが、熱ロール等で加熱押圧して積極的に発散
させて調整してもよく、また予め発泡シートに含
有させる発泡剤の量を加減して調整することもで
きる。 以上のごとく形成されたスリーブ形成用シート
Sには、外層3の非発泡フイルム表面に印刷を施
した後、適宜大きさに裁断されて円筒状のスリー
ブAに形成される。このときスリーブ形成用スリ
ーブSのうち内層1側を内面にすると共に、シー
トの流れ方向がスリーブAの円筒方向になるよう
にして筒状に捲回し、その流れ方向の両端を熱接
着等の手段で接合してスリーブAを形成するもの
である。 そして、このスリーブAを炭酸飲料用等のガラ
ス瓶Gに被せた後、加熱することによつてスリー
ブAを収縮させ、ガラス瓶Gにぴつたり密着させ
て被覆し、ガラス瓶Gの保護を果すものである。
なお、上記スリーブAの大きさは、スリーブAを
ガラス瓶Gに被せたときに、スリーブAの径から
ガラス瓶Gの径を差引くと、0.6〜1.2mm程度の間
〓がスリーブAとガラス瓶Gとの間に生じるよう
に形成されたものが、収縮したときのガラス瓶G
への密着性あるいは外観上の観点から好ましいも
のである。また、スリーブAは円周方向に収縮す
ると同時に厚み方向に厚くなるが、この厚み変化
が極端になると、内層1または中間層2と外層3
の非発泡フイルムとの収縮度合の違いによつて、
印刷面が盛り上がつたり、表面に亀裂が入るおそ
れがある。従つて上記厚みの変化が収縮前後で
2.0倍以下になるように、ガラス瓶Gに対するス
リーブAの大きさを調整して実施する。 なお、この発明の収縮スリーブ形成用シートS
は、炭酸飲料用のガラス瓶Gのほか各種のガラス
瓶や陶磁器製品あるいは合成樹脂製パイプ等の被
覆保護用にも使用できる。 <発明の効果> 以上のごとく構成された、この発明の収縮スリ
ーブ形成用シートSによれば、内層1、中間層
2、および外層3の3種の異なる性質を備えた素
材を組合せて積層していることによつて、収縮ス
リーブに要求される諸性質を完全に満足できるこ
とになる。 即ち、中間層2となる発泡ポリオレフイン系シ
ートは、柔軟性に優れ、伸び率も高いので、ガラ
ス瓶の輸送時等における振動や衝撃に対する緩衝
性に優れたものになり、破瓶時の安全性も非常に
良好なものとなる。 上記破瓶時の安全性向上について詳しく説明す
ると、落下衝撃等によつてスリーブで保護された
ガラス瓶が破損する際には、まず、ガラス瓶Gに
割れ目または亀裂が入つて瓶の破壊が起る。そし
て、この破壊エネルギーが内層1から中間層2を
経て外層3まで伝達されることになる。 そのうち、内層1のポリスチレン系発泡シート
については、上記破壊エネルギーによつて破断が
生じる。しかし、中間層2に伝わつた破壊エネル
ギーは柔軟性のよいポリオレフイン系発泡シート
と外層3の伸びにて分散吸収され、内側のポリオ
レフイン系発泡シートでは部分的に伸びたり変形
し、局部的に破れも生じる。 しかし、外層3の非発泡フイルムまで伝わる単
位面積当りの破壊エネルギーは小さくなり、非発
泡フイルムの破断は起り難くなる。特に、外層3
の非発泡フイルムが、ポリオレフイン系樹脂にて
形成されているか、ゴム分またはエチレン−酢酸
ビニル共重合体樹脂を含有するポリスチレン系樹
脂にて形成されているので伸び率が良く、外層3
に伝わつた破壊エネルギーは良好に吸収されてし
まう。 従つて、外層3の破断が起らなければ、スリー
ブA全体の破断およびガラス瓶破片の飛散は生じ
ず、破瓶時の安全性は非常に高いものになる。 なお、仮りに上記中間層2としてポリスチレン
発泡シートを使用したとすれば、柔軟性が少ない
ので破壊エネルギーを中間層2で充分吸収でき
ず、外層3側に大きな破壊エネルギーが加わり、
外層の非発泡フイルムに破断が生じ易くなり、不
適当である。 上記のように中間層2となるポリオレフイン系
発泡シートは、破瓶時の安全性向上には大きな効
果があるが、柔軟性があり過ぎてスリーブの巻回
形成やガラス瓶への被覆作業等の取扱いが行ない
難い。 そこで、この発明では中間層2の内外両面に、
剛性の良いポリスチレン系発泡シートからなる内
層1と非発泡フイルムからなる外層3とを積層す
ることによつて、スリーブA全体の剛性を高め、
取扱い中にスリーブAの一部が折れ曲がつたり、
変形する不都合を無くすることができる。 また、外層3の非発泡フイルムは、スリーブA
外表面の平滑性および印刷性を良好にでき、外観
性を高めるとともに、キズもつき難くなるので強
度も向上する。なお、上記非発泡フイルムにてス
リーブA表面の滑性がよくなる為、ガラス瓶Gの
振動コンベアやシユートによる移送もスムーズに
行なえる。 従つて、この発明によれば、従来の各種シート
素材の欠点を何れも解消し、破損時の安全性、緩
衝性能、および取扱い易さ等の諸性能に優れたス
リーブ形成用シートを提供できることになる。 <実験例> 次に、この発明の効果を具体的な実験例につい
て詳しいデータとともに下表に示す。
<Industrial Application Field> This invention relates to a sheet for forming a shrinkable sleeve,
More specifically, the present invention relates to a sheet for forming a shrinkable sleeve as a material for a shrinkable sleeve that covers and protects a glass bottle or the like used for storing a liquid subject to internal pressure such as a carbonated beverage. <Prior Art and Problems to be Solved by the Invention> Conventionally, a sleeve made of a heat-shrinkable thermoplastic resin sheet is placed over the outer surface of a glass bottle, and the sleeve is shrunk by heating to conform to the outer shape of the glass bottle. Glass bottles are coated tightly to provide cushioning protection during transportation and storage of glass bottles. Particularly in the case of glass bottles that store items subject to internal pressure, such as carbonated drinks, it is an important safety issue to prevent bottle fragments from scattering in the event of damage. Therefore, as the above safety standard, JIS-S2306
(Test method for anti-scattering performance of glass bottles for carbonated beverages)
is applied to determine its suitability as a protective sleeve. In particular, if the sleeve does not break even if the glass bottle itself is broken when the bottle is broken, the pieces of the glass bottle will not be scattered, which is very desirable from a safety standpoint, and it will also be easier to dispose of the bottle pieces. In order to increase the safety in the event of breakage, it is important to improve the elongation rate and tensile strength of the material sheet, as well as the balance between the two. Furthermore, the protective sleeve is required not only to be safe in the event of breakage, but also to be durable against vibrations and impact forces during transport of the glass bottle. Furthermore, in order to mechanize or automate the process of winding material sheets into sleeves and coating bottles, it is necessary to have appropriate rigidity or strength so that the sheets do not locally deform or bend during handling. Is required. Among the various synthetic resin sheets conventionally used as materials for sleeves, non-foamed sheets such as polyvinyl chloride sheets and stretched polystyrene sheets have poor shock absorption and protection properties, while expanded polystyrene sheets have poor tensile strength and elongation. In addition, the foamed polyolefin sheet was too flexible and difficult to handle in an automatic bottle winding machine. Therefore, the present invention aims to eliminate the drawbacks of the conventional sleeve-forming sheets and provide a sheet that is excellent in cushioning properties, safety in the event of breakage, ease of handling, etc. <Means for Solving the Problems> The structure of the present invention for solving the above problems is as follows:
A shrinkable polystyrene foam sheet that becomes the inner layer,
A shrinkable polyolefin-based foam sheet serving as an intermediate layer and a shrinkable polyolefin-based non-foaming film or a shrinkable polystyrene-based non-foaming film containing a rubber component or ethylene-vinyl acetate copolymer resin serving as an outer layer are laminated. , above 3
A flexible adhesive is added to at least one of the adjacent layers, and each layer has a shrinkage rate larger than that of the middle layer and the outer layer. The resulting sheet has a shrinkage rate of 60% or less in the machine direction, a shrinkage rate of 10% or less in the width direction, and the shrinkage rate in the machine direction is greater than the shrinkage rate in the width direction. It is characterized by joining. <Function> According to the invention configured as described above, the foamed polyolefin sheet serving as the intermediate layer has excellent flexibility and a high elongation rate, so it has excellent cushioning properties against vibrations and shocks during transportation of glass bottles. The resulting product is excellent, and the safety when the bottle is broken is also very good. By laminating an inner layer made of a highly rigid polystyrene foam sheet and an outer layer made of a non-foamed film on both the inside and outside of the intermediate layer, the rigidity of the entire sleeve is increased, and a portion of the sleeve does not bend during handling. It is possible to eliminate the inconvenience of wobbling or deforming. Moreover, the non-foamed film of the outer layer can improve the smoothness and printability of the outer surface of the sleeve, improve the appearance, and also improve the strength because it is less likely to be scratched. Furthermore, since the above-mentioned non-foamed film improves the lubricity of the sleeve surface, glass bottles can be transported smoothly using a vibrating conveyor or chute. <Example> Next, examples of the present invention will be illustrated below with reference to the drawings. The sheet S for forming a shrinkable sleeve is a laminated sheet in which three layers, an inner layer 1, an intermediate layer 2, and an outer layer 3, are laminated in order, and each layer 1, 2, and 3 is a so-called heat shrinkable sheet that shrinks when heated. It has a sexual nature. The above heat shrinkability (hereinafter simply referred to as shrinkability) is imparted by stretching when manufacturing each layer 1, 2, and 3 by extrusion molding, or by a subsequent stretching process after molding. be. The inner layer 1 is made of a shrinkable polystyrene foam sheet such as a shrinkable polystyrene foam sheet. The polystyrene resin used as the material is a styrene polymer obtained by polymerizing vinyl aromatic monomers such as styrene, vinyltoluene, isopropylstyrene, α-methylstyrene, core methylstyrene, chlorostyrene, and tertiary-butylstyrene. , or styrene monomer and 1.3
- Alkyl acrylates such as butadiene, butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, alkyl methacrylates such as methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, acrylonitrile, vinyl acetate, α-methylethylene A styrene copolymer containing 50% by weight or more of styrene monomer, which is obtained by copolymerization with divinylbenzene, dimethyl maleate, or diethyl maleate, is used. Further, if the resin contains 1 to 25% by weight of rubber, it is suitable for improving and adjusting the tensile strength and elongation, which will be described later. Then, propane, butane, isobutane, pentane, neopentane, isopentane,
Aliphatic hydrocarbons such as hexane and butadiene, cycloaliphatic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane, and methyl chloride;
methylene chloride, dichlorofluoromethane,
A foamed sheet is made by adding a blowing agent such as halogenated hydrocarbons such as chlorotrifluoromethane, dichlorodifluoromethane, chlorodifluoromethane, trichlorofluoromethane, etc. in an extruder, heating and kneading, and then extruding and foaming at atmospheric pressure. Form. The thickness of the foam sheet that becomes the interior 1 above is 0.1 to 1.
mm can be used, but preferably 0.1 to 0.5. A thickness of 1 mm or more is not preferable because it is difficult to wind the sleeve-forming sheet S of the present invention into a roll and causes wrinkles to occur. In addition, a spreading agent, a plasticizer, and other additives may be added to the foamed sheet. Furthermore, if a rubber component is contained, the elongation rate and tensile strength are improved, and stretching control during molding becomes easier. Next, the intermediate layer 2 is a shrinkable polyolefin foam sheet such as a shrinkable polyethylene foam sheet. The polyolefin resin constituting the foam sheet may be a single or copolymer of polyolefin resins such as low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polybutene-1, ethylene-vinyl acetate copolymer, etc. , or mixed resins can be used. Then, in addition to the foaming agent added to the polystyrene resin, reactive foaming agents such as baking soda and citric acid, and decomposed foaming agents such as azobisisobutyronitrile, dinitrosopentamethylenetetramine, and azodicarboxylic acid amide are added to the polystyrene resin. A foam sheet is obtained using a foaming agent. The thickness of the foam sheet thus obtained is 0.1~
A foam with a foaming ratio of about 0.45 mm and a foaming ratio of 1.3 to 3.0 times can be suitably used. In addition, the intermediate layer 2 may also contain appropriate additives in the same way as the inner layer 1. Next, the outer layer 3 is made of a shrinkable polyolefin non-foamed film such as a shrinkable polypropylene non-foamed film, or a shrinkable polystyrene non-foamed film containing a rubber component or an ethylene-vinyl acetate copolymer resin. . As the material for the shrinkable polyolefin non-foamed film, the various polyolefin resins exemplified for the intermediate layer 2 can be used. As the material for the shrinkable polystyrene non-foamed film, the various polystyrene resins exemplified for the inner layer 1 can be used, and the rubber content can include 1% by weight or more of butadiene, butene, etc. The thickness of the shrinkable non-foamed film constituting the outer layer 3 is preferably 0.01 to 0.15 mm, preferably 0.02 to 0.07 mm. Further, if the outer layer 3 contains a white pigment such as titanium white, whiteness can be obtained and color development during printing can be improved. In addition, other lubricants,
Additives such as weathering agents and antistatic agents are also added as necessary. The sleeve-forming sheet S is manufactured by laminating the three layers 1, 2, and 3 described above, and in order to improve the adhesion between each layer, a flexible adhesive is added. However, the adhesive component may be blended into at least one of the two adjacent layers.
That is, it is sufficient to mix it only in the intermediate layer 2, or only the inner layer 1 and the outer layer 3, but it is of course possible to mix it in the remaining layers as well. As for the adhesive component, ethylene-vinyl acetate copolymer resin is suitable because it has good adhesion to the resins that make up each layer 1, 2, and 3. It is also excellent in flexibility, so it can be easily used during stretching processing during molding. Even when used as a sleeve, the layers 1, 2, and 3 are difficult to peel off, which is preferable. Further, by blending the above resin into each layer 1, 2, and 3, it has the effect of improving the elongation rate and tensile strength. In addition to the above-mentioned ethylene-vinyl acetate copolymer resin, adhesives made of various thermoplastic resins can also be used as the flexible adhesive. In order to manufacture the shrinkable sleeve forming sheet S in which the three layers 1, 2, and 3 having the composition described above are laminated, each layer, which has been extruded separately in advance, is laminated and integrated by means such as thermal bonding. However, it is more efficient to laminate the layers simultaneously with the molding of each layer by coextrusion. In the co-extrusion method, the raw material resins for each layer are melt-kneaded separately in three extruders, combined into one in an extrusion mold and extruded simultaneously, and then passed through a take-off plug or roll while being stretched. The stacked sheets are picked up by a pulling machine. At this time, the cooling air is applied to the inner surface of the laminated sheets, that is, the inner layer 1.
By applying cooling air only to the inner layer 1 side or by making the cooling air stronger on the inner layer 1 side than on the outer surface, that is, the outer layer 3 side, the stretching is performed with a difference in the degree of cooling between the inner and outer surfaces. The stretching causes shrinkage in each of the layers 1, 2, and 3 of the sleeve-forming sheet S, and the inner surface, which has a higher degree of cooling, exhibits a larger shrinkage rate than the outer surface. Therefore, among the three layers, the shrinkage rate of the inner layer 1 is greater than that of the intermediate layer 2 and the outer layer 3. Further, by appropriately setting the take-up speed and blow-up ratio during the above-mentioned stretching to control the amount of stretching in the machine direction and the width direction, the shrinkage rate in both directions can be adjusted. As a result, the shrinkage percentage in the machine direction of the produced sleeve-forming sheet S was 60% or less, the shrinkage percentage in the width direction was 10% or less, and the shrinkage percentage in the machine direction was larger than the shrinkage percentage in the width direction. Adjust to. In addition, as a manufacturing method for the sleeve-forming sheet S, when three layers 1, 2, and 3, which have been separately molded in advance, are laminated by thermal bonding or the like, the amount of stretching is controlled in advance when extruding each layer. The shrinkage rate in the machine direction and the width direction is adjusted so that the shrinkage rate of the inner layer 1 is larger than that of the intermediate layer 2 and the outer layer 3. In particular, during the extrusion molding of the inner layer 1 and the intermediate layer 2, the cooling degree is changed on both the front and back surfaces to create a difference in shrinkage rate, and when laminating, the inner layer 1 or the intermediate layer 2 is placed on the side closer to the outer layer 3. It is more preferable to laminate the layers so that the surface with the smaller shrinkage rate is arranged. Of the sleeve-forming sheet S manufactured as described above, the amount of residual gas due to the foaming agent contained in the foamed sheets of the inner layer 1 and intermediate layer 2 is determined at the time of post-operative use, that is, at the time of heat shrinkage of the sleeve. Keep it below 0.3mol/Kg. This is to prevent the printing surface of the non-foamed film of the outer layer 3 from peeling off or cracking due to the increase in thickness of the sleeve due to expansion due to heating if there is a large amount of residual gas when the sleeve contracts. After extrusion molding, the residual gas will gradually dissipate over time even if it is left to stand naturally, but it may also be adjusted by heating and pressing with hot rolls to actively dissipate, or it may be contained in the foam sheet in advance. The amount of blowing agent can also be adjusted. The sleeve-forming sheet S formed as described above is printed on the surface of the non-foamed film of the outer layer 3, and then cut into an appropriate size to form a cylindrical sleeve A. At this time, the inner layer 1 side of the sleeve S for forming the sleeve is made the inner surface, and the sheet is wound into a cylindrical shape so that the flow direction is in the cylindrical direction of the sleeve A, and both ends in the flow direction are bonded by means such as thermal bonding. The sleeve A is formed by joining the sleeves. After this sleeve A is placed over a glass bottle G for carbonated drinks, etc., the sleeve A is shrunk by heating and tightly covers the glass bottle G, thereby protecting the glass bottle G. .
The size of the sleeve A is approximately 0.6 to 1.2 mm when the diameter of the glass bottle G is subtracted from the diameter of the sleeve A when the sleeve A is placed over the glass bottle G. The glass bottle G when the one formed so as to occur between
This is preferable from the viewpoint of adhesion to or appearance. In addition, the sleeve A shrinks in the circumferential direction and becomes thicker in the thickness direction at the same time, but if this thickness change becomes extreme, the inner layer 1 or the middle layer 2 and the outer layer 3
Due to the difference in degree of shrinkage from non-foamed film,
The printed surface may bulge or cracks may appear on the surface. Therefore, the change in thickness mentioned above is before and after shrinkage.
Adjust the size of sleeve A relative to glass bottle G so that it is 2.0 times or less. In addition, the shrinkable sleeve forming sheet S of this invention
In addition to glass bottles G for carbonated beverages, it can also be used to cover and protect various glass bottles, ceramic products, synthetic resin pipes, etc. <Effects of the Invention> According to the shrinkable sleeve forming sheet S of the present invention configured as described above, three types of materials having different properties, the inner layer 1, the intermediate layer 2, and the outer layer 3, are combined and laminated. By doing so, it is possible to completely satisfy the various properties required of a shrinkable sleeve. In other words, the foamed polyolefin sheet that forms the intermediate layer 2 has excellent flexibility and a high elongation rate, so it has excellent cushioning properties against vibrations and shocks during transportation of glass bottles, and also provides safety when the bottle breaks. It will be very good. To explain in detail the above-mentioned improvement in safety when a bottle breaks, when a glass bottle protected by a sleeve is broken due to a drop impact or the like, first a crack or a crack appears in the glass bottle G, causing the bottle to break. This breaking energy is then transmitted from the inner layer 1 to the outer layer 3 via the intermediate layer 2. Among them, the polystyrene foam sheet of the inner layer 1 breaks due to the above-mentioned breaking energy. However, the fracture energy transmitted to the intermediate layer 2 is dispersed and absorbed by the flexible polyolefin foam sheet and the elongation of the outer layer 3, and the inner polyolefin foam sheet partially stretches and deforms, causing local tearing. arise. However, the breaking energy per unit area transmitted to the non-foamed film of the outer layer 3 becomes smaller, making it difficult for the non-foamed film to break. In particular, outer layer 3
Since the non-foamed film is made of a polyolefin resin or a polystyrene resin containing a rubber component or an ethylene-vinyl acetate copolymer resin, it has a good elongation rate.
The destructive energy transmitted to the surface is well absorbed. Therefore, if the outer layer 3 does not break, the entire sleeve A will not break and glass bottle fragments will not scatter, resulting in extremely high safety when the bottle breaks. If a polystyrene foam sheet were used as the intermediate layer 2, the intermediate layer 2 would not be able to sufficiently absorb fracture energy due to its low flexibility, and a large amount of fracture energy would be applied to the outer layer 3.
This is inappropriate because the non-foamed film of the outer layer tends to break easily. As mentioned above, the polyolefin foam sheet that forms the middle layer 2 has a great effect on improving safety when a bottle breaks, but it is too flexible and difficult to handle when forming a sleeve or coating a glass bottle. is difficult to do. Therefore, in this invention, on both the inside and outside of the intermediate layer 2,
By laminating the inner layer 1 made of a polystyrene foam sheet with good rigidity and the outer layer 3 made of a non-foamed film, the rigidity of the entire sleeve A is increased,
A part of sleeve A may be bent during handling.
The inconvenience of deformation can be eliminated. In addition, the non-foamed film of the outer layer 3 is the sleeve A
The smoothness and printability of the outer surface can be improved, the appearance is improved, and since it is less likely to be scratched, the strength is also improved. In addition, since the non-foamed film improves the lubricity of the surface of the sleeve A, the glass bottle G can be smoothly transferred by a vibrating conveyor or chute. Therefore, according to the present invention, it is possible to provide a sleeve-forming sheet that eliminates all of the drawbacks of conventional sheet materials and has excellent performance such as safety in the event of breakage, cushioning performance, and ease of handling. Become. <Experimental Examples> Next, the effects of the present invention are shown in the table below along with detailed data regarding specific experimental examples.

【表】【table】

【表】 (シートの構成) 各略号は以下の樹脂名を示す。 PSP……ポリスチレン発泡樹脂 PS……ポリスチレン樹脂 EVA……エチレン−酢酸ビニル共重合体樹脂 PE……ポリエチレン樹脂 PP……ポリプロピレン樹脂 ゴム……ブタジエン等のゴム分 樹脂名の後の無単位数値は配合比率を表し、%
数値は配合重量%を表している。 また、EVA中の酢酸ビニル(VA)含有量は全
て25重量%である。 (伸び率および引張強度) ダンベル試験片を作成し、テンシロン試験機に
てシートの幅方向に沿つて、50mm/minの引取速
度で引張つたときの、伸び率%と引張荷重Kgを測
定した。 (落球衝撃値) サンプルサイズ 70×70mm クランプ 45mmφ穴 鋼 球 28.6mmφ 95g 上記条件で試験を行ない破れが生じる高さを測
定した。 (クラツシユ強度) JIS P8126−1976に準拠 (飛散性能) JIS S2306に準拠して破瓶試験を行う。そし
て、破瓶後に、スリーブの破断箇所を測定した。 破断箇所1ケ所以下……◎ 〃 2ケ所……○ 〃 3ケ所以上……× 上記試験結果において、落球衝撃値は衝撃に対
する緩衝性能を示し、クラツシユ強度はスリーブ
の取扱い容易さを示し、飛散性能は破瓶の際の安
全性を示すものである。 なお、大体において伸び率が高いほど飛散性能
および落球衝撃値が高くなつているが、引張強度
と伸び率とのバランスによつても影響を受けてい
る。
[Table] (Sheet composition) Each abbreviation indicates the resin name below. PSP...Polystyrene foam resin PS...Polystyrene resin EVA...Ethylene-vinyl acetate copolymer resin PE...Polyethylene resin PP...Polypropylene resin rubber...Rubber content such as butadiene Unitless numbers after the resin name are compounds Represents a ratio, %
The numerical value represents the blended weight %. Furthermore, the vinyl acetate (VA) content in all EVA is 25% by weight. (Elongation rate and tensile strength) A dumbbell test piece was prepared, and when it was pulled along the width direction of the sheet at a take-up speed of 50 mm/min using a Tensilon tester, the elongation rate (%) and tensile load (Kg) were measured. (Falling ball impact value) Sample size 70 x 70 mm Clamp 45 mm diameter steel ball Ball 28.6 mm diameter 95 g The test was conducted under the above conditions and the height at which breakage occurred was measured. (Crashing strength) Conforms to JIS P8126-1976 (Scattering performance) Conducts bottle breakage test in accordance with JIS S2306. After the bottle was broken, the location of the sleeve breakage was measured. 1 or less fracture locations...◎ 〃 2 locations...○ 〃 3 or more locations...× In the above test results, the falling ball impact value indicates the shock absorbing performance, the crush strength indicates the ease of handling of the sleeve, and the scattering performance indicates safety in the event of a broken bottle. In general, the higher the elongation rate, the higher the scattering performance and falling impact value, but this is also influenced by the balance between tensile strength and elongation rate.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を例示するものであり、
第1図は断面図、第2図はスリーブの斜視図、第
3図は使用状態の断面図である。 S……収縮スリーブ形成用シート、1……内
層、2……中間層、3……外層、A……スリー
ブ、G……ガラス瓶。
The figure illustrates an embodiment of the invention,
FIG. 1 is a sectional view, FIG. 2 is a perspective view of the sleeve, and FIG. 3 is a sectional view of the sleeve in use. S...Shrink sleeve forming sheet, 1...Inner layer, 2...Middle layer, 3...Outer layer, A...Sleeve, G...Glass bottle.

Claims (1)

【特許請求の範囲】 1 内層となる収縮性ポリスチレン系発泡シート
と、中間層となる収縮性ポリオレフイン系発泡シ
ート、および外層となる収縮性ポリオレフイン系
非発泡フイルムまたはゴム分もしくはエチレン酢
酸−ビニル共重合体樹脂を含有する収縮性ポリス
チレン系非発泡フイルムとが積層されてあり、上
記3層のうち互いに隣接する両層の小なくとも一
方の層には柔軟性のある接着剤分を配合してあ
り、また各層の収縮率は、内層が中間層および外
層より大きく形成されてあり、積層されたシート
は流れ方向の収縮率が60%以下、幅方向の収縮率
が10%以下で、且つ流れ方向の収縮率が幅方向の
収縮率より大きく、内層側を内面にして流れ方向
の両端を接合することを特徴とする収縮スリーブ
形成用シート。 2 柔軟性のある接着剤分がエチレン−酢酸ビニ
ル共重合体樹脂からなる上記特許請求の範囲第1
項記載の収縮スリーブ形成用シート。
[Scope of Claims] 1 A shrinkable polystyrene foam sheet serving as an inner layer, a shrinkable polyolefin foam sheet serving as an intermediate layer, and a shrinkable polyolefin non-foaming film or rubber component or ethylene acetate-vinyl copolymer serving as an outer layer. A shrinkable polystyrene non-foamed film containing a composite resin is laminated, and at least one of the three layers adjacent to each other contains a flexible adhesive. In addition, the shrinkage rate of each layer is such that the inner layer is larger than the middle layer and the outer layer, and the laminated sheets have a shrinkage rate of 60% or less in the machine direction, a shrinkage rate of 10% or less in the width direction, and A sheet for forming a shrinkable sleeve, characterized in that the shrinkage rate is greater than the shrinkage rate in the width direction, and the inner layer side is the inner surface and both ends in the flow direction are joined. 2. Claim 1 above, in which the flexible adhesive component is comprised of an ethylene-vinyl acetate copolymer resin
A sheet for forming a shrinkable sleeve as described in Section 1.
JP63171488A 1988-07-08 1988-07-08 Sheet for forming shrinkable sleeve Granted JPH0193341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171488A JPH0193341A (en) 1988-07-08 1988-07-08 Sheet for forming shrinkable sleeve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171488A JPH0193341A (en) 1988-07-08 1988-07-08 Sheet for forming shrinkable sleeve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58242744A Division JPS60132750A (en) 1983-12-21 1983-12-21 Sheet for forming shrinkable sleeve

Publications (2)

Publication Number Publication Date
JPH0193341A JPH0193341A (en) 1989-04-12
JPH0154189B2 true JPH0154189B2 (en) 1989-11-17

Family

ID=15924027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171488A Granted JPH0193341A (en) 1988-07-08 1988-07-08 Sheet for forming shrinkable sleeve

Country Status (1)

Country Link
JP (1) JPH0193341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865938B2 (en) * 2000-02-21 2012-02-01 株式会社フジシールインターナショナル Insulated container
JP2015189039A (en) * 2014-03-27 2015-11-02 積水化成品工業株式会社 Polystyrene resin laminated expanded sheet, molding and expanded container

Also Published As

Publication number Publication date
JPH0193341A (en) 1989-04-12

Similar Documents

Publication Publication Date Title
EP0084360B1 (en) Sheet for forming sleeve and process for producing the same
JP4939496B2 (en) Polystyrene resin laminated foam sheet, method for producing the same, and polystyrene resin laminated foam container
JP5433804B1 (en) Heat-shrinkable film, molded product using the film, heat-shrinkable label, and container using the molded product or equipped with the label
US4734304A (en) Heat-shrinkable sheet
JP6870405B2 (en) Heat-shrinkable laminated porous film and coated article
JP3529697B2 (en) Cylindrical shrink label and non-heat resistant container with label
JPH0154189B2 (en)
JPS6365503B2 (en)
JPS6365020B2 (en)
JPS6151981B2 (en)
JP3030186B2 (en) Heat shrinkable sheet
JPS6153224B2 (en)
JP2003112395A (en) Packaging film and shrink package
JPS634789B2 (en)
JPS634788B2 (en)
JPS6359869B2 (en)
JPS60193644A (en) Sheet for forming shrinkable sleeve
JP5695829B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JPS60151044A (en) Sheet for forming shrinkable sleeve
EP2796286B1 (en) Heat-shrinkable film for label with low specific gravity and method for preparing the same
JPS59224336A (en) Sheet for forming shrinkable sleeve
JP5037250B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JPH07102639B2 (en) Heat shrinkable sheet
JPS5929152A (en) Sheet for forming sleeve
JPH0353100B2 (en)