JPH0154095B2 - - Google Patents

Info

Publication number
JPH0154095B2
JPH0154095B2 JP53047174A JP4717478A JPH0154095B2 JP H0154095 B2 JPH0154095 B2 JP H0154095B2 JP 53047174 A JP53047174 A JP 53047174A JP 4717478 A JP4717478 A JP 4717478A JP H0154095 B2 JPH0154095 B2 JP H0154095B2
Authority
JP
Japan
Prior art keywords
catalyst
solution
nitrate
water
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53047174A
Other languages
Japanese (ja)
Other versions
JPS53135940A (en
Inventor
Piitaa Baatetsuku Josefu
Kaaru Guratsuseri Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Publication of JPS53135940A publication Critical patent/JPS53135940A/en
Publication of JPH0154095B2 publication Critical patent/JPH0154095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルキル芳香族化合物の酸化脱水素触
媒に関する。 例えば、エチルベンゼンのスチレンへの変換の
ような現行の商業的脱水素法は、低い転化率とい
う欠点に問題があり、一方より高転化率の酸化脱
水素法は乏しい選択性に問題がある。スチレンを
製造するための出発原料はその製造費用の80%以
上を占めるので選択性はこの特別な反応において
特に重要である。 かくして副反応をできるだけ少なくし、かつ転
化率を改良するのに一層有効な触媒物質の探索が
続けられている。 アルキル芳香族化合物から側鎖不飽和を有する
誘導体への変換のため、種々のリン酸塩及びピロ
リン酸塩を利用する、多数の触媒並びに触媒系が
開示されてきた。例えば米国特許第3923916号は
アルキル芳香族化合物の酸化脱水素用の優れた触
媒として、ピロリン酸ニツケルをクレームしてい
る。米国特許第3933932号並びに米国特許第
3957897号は、アルキル芳香族の酸化脱水素触媒
としてリン酸のランタン塩、希土類塩及びアルカ
リ土類塩の夫々の使用を開示している。しかしな
がら、本発明の脱水素反応のため顕著な作用を示
したリン酸のヒ素塩、アンチモン塩、ビスマス塩
またはカドミウム塩を含む触媒組成物は、今まで
開示されていなかつた。米国特許第3873633号は
パラフイン炭化水素のモノオレフインあるいはジ
オレフインへの酸化脱水素用触媒としてコバルト
−ビスマス−リン−酸素・組成物を利用している
が、アルキル芳香族化合物から不飽和側鎖誘導体
への変換用の、この種の触媒の使用は今まで知ら
れていなかつた。 本発明は、アルキル置換芳香族化合物から相応
するアルケニル置換芳香族化合物への酸化脱水素
触媒に関する(ただし、該アルキル置換芳香族化
合物は、2〜6個の炭素原子を有する少くとも1
つのアルキル基を含み、しかも該アルキル基は1
つの芳香族環にのみ結合されている。)。該芳香族
化合物は、単環式芳香族化合物または縮合環二環
式芳香族化合物、または相応する窒素含有複素環
式芳香族化合物でもよい。 本発明の触媒上には、水蒸気、二酸化炭素、窒
素、または不活性炭化水素などの希釈剤の存在下
あるいは不存在下に、空気などの分子状酸素及び
アルキル芳香族化合物のガス状混合物が、約300゜
〜650℃の温度で通される。そして、当該触媒は
次の実験式で表わされる組成からなる。 AaMbMc〓Md〓BePyOx (ただし、 Aはカリウムであり、 Mは亜鉛、コバルト又はバリウムであり、 M〓は鉄、クロム、ランタン、セリウム又はデ
イデイミウムであり、 M〓は硼素であり、 Bはビスマスあり、 Pはリンであり、 a=0〜5、 b=4〜20、 c=0.1〜10、 d=0〜4、 e=0.1〜12、 y=8〜16、 xは他の存在元素の原子価要求を満足するのに
必要な酸素数であり、そして2b+3(c+e)が
9より大きく、3yより小さい。) 本発明の触媒は、予期しない程良好な酸化脱水
素触媒である。例えばエチルベンゼンのスチレン
への脱水素において、70%範囲のスチレンへの1
回パス当りの転化率及び90%に達する選択率が得
られる。 本発明の方法で有用な触媒は、単独でまたは担
持されて使用されてもよい。適当な担持物質はシ
リカ、アランダム、チタニア及びムライト及び特
別には、リン酸ジルコニウム、リン酸アンチモ
ン、リン酸アルミニウム及び特別にはリン酸硼素
などのリン酸塩−型担体を含む。一般に、担体は
最終触媒組成物の95重量%以下の量で使用されて
もよく、しかも触媒は被覆、含浸及び共沈により
担体に混合されてもよい。 これらの触媒は共沈によりまたは当業者に公知
の他の方法により調製される。一般にそれらは硝
酸金属塩の水溶液をリン酸二水素アンモニウムの
水溶液と混合し、ついで沈殿を乾燥することによ
り調製される。 触媒はアトリツシヨン抵抗、最適の表面積及び
粒径などの望ましい物理的性質を得るために〓焼
されてもよい。一般には、〓焼された触媒を更に
酸素の存在下で250℃以上の温度でしかも触媒に
有害な温度以下で熱−処理することが好ましい。 本発明の範囲内にあるよう設定されたアルキル
芳香族化合物の中には、例えば、エチルベンゼ
ン、イソプロピルベンゼン、sec−ブチルベンゼ
ンのような−置換芳香族化合物;エチルトルエ
ン、ジエチルベンゼン、t−ブチルエチルベンゼ
ン、などの二置換芳香族化合物;エチルキシレン
類などの三置換芳香族化合物;エチルナフタレ
ン、メチルエチルナフタレン、ジエチルナフタレ
ンなどの縮合環式芳香族化合物;及びエチルピリ
ジン、メチルエチルピリジン、エチルキノリン、
エチルイソキノリンなどの窒素含有複素環式芳香
族化合物などがある。この反応において特に好ま
しい反応体は、容易にスチレンに変換されるエチ
ルベンゼン、エチルスチレンとジビニルベンゼン
の混合物に変換されるジエチルベンゼン、ビニル
ピリジン及びメチルビニルピリジンに夫々変換さ
れるエチルピリジン及びメチルピリジンである。 該反応は固定床反応器または流動床反応器内で
300℃位の低い温度で行なつてもよいが、アルキ
ル側鎖の脱水素のための最適温度は約400゜〜600
℃の範囲内にあり、650℃をはるかに越える温度
で操作することに明白な利点はない。 本発明の触媒が使用される圧力は、略大気圧で
あるが、大気圧をわずか下まわる圧から約3気圧
までの圧力が使用可能である。 本発明の触媒が使用される反応における見かけ
の接触時間は、0.1〜50秒の範囲でよく、しかも
良好な選択性及び収率のためには1〜15秒の接触
時間が好ましい。 反応器に供給される酸素対アルキル芳香族化合
物のモル比は、アルキル芳香族化合物1モル当り
約0.5〜約4モルの酸素の範囲をとることができ
るが、好ましい範囲は芳香族化合物1モル当り約
0.5〜約1.5モルの酸素である。使用する酸素は、
純粋な酸素の形態でよいが、空気の使用が便宜上
好ましい。 水蒸気、二酸化炭素、窒素、不活性炭化水素ま
たは他の不活性ガスなどの稀釈剤もまた使用して
もよく、そしてアルキル芳香族化合物1容積当り
0〜20容積の量が好適である。 以下の実施例により先行技術の触媒と比較し
て、本発明の触媒による酸化脱水素方法において
得られた便利さと改良を説明する。 実施例1〜14は本発明を代表し、比較例A〜E
は先行技術の方法を代表している。 触媒調製 比較例A Ni2P2O7 硝酸ニツケル6水和物(168.5g)を500c.c.の水
に溶かし、ついで酸性度をアンモニアでPH6.4に
調節した。リン酸二水素アンモニウム(77.7g)
を250c.c.の水に溶かし、ついでアンモニアでPH6.8
に調節した。該溶液を混合し15分間室温で撹拌
し、PHをアンモニアで6.0に調節した後、ろ過し
た。ライトグリーンの沈殿をろ過し、110℃で乾
燥し290℃で3時間、427℃で3時間、ついで550
℃で2時間熱−処理して14m2/gの表面積を有す
る黄かつ色の固体を得た。 比較例B Mg2P2O7 硝酸マグネシウム6水和物(309.2g)を60c.c.
の水に加熱して溶かした。リン酸二水素アンモニ
ウム(138.2g)を100c.c.の水に加熱して溶かし
た。該溶液を混合し加熱しながら撹拌し白色の濃
厚ペーストを生成させた。ペーストを110℃で乾
燥し、空気中290℃で3時間、427℃で3時間、つ
いで550℃で16時間熱−処理し21.8m2/gの表面
積を有する白色の固体を得た。 比較例C La4(P2O73 硝酸ランタン6水和物(トロナコード548)
(130g)を31.5c.c.の硝酸に溶かし水で250c.c.に稀
釈した。リン酸二水素アンモニウム(57.1g)を
250c.c.の水に溶かし、ついで25c.c.の硝酸でPH1以
下の酸性にした。該溶液を撹拌しながら混合する
と、乳光(opalescence)が生成した。加熱しな
がら22時間混合した後、乳白色の沈殿が生成し
た。沸騰するまで加熱すると、ゲルが濃縮され
る。ゲルをろ過し、110℃で乾燥し、空気中で290
℃(3時間)、427℃(3時間)ついで550℃(16
時間)で熱−処理し、17m2/gの表面積を有する
白色固体を得た。 比較例D Co7Fe3P12O41.5 硝酸第二鉄9水和物(121.2g)及び硝酸コバ
ルト6水和物(203.8g)を10mlの水に加熱して
溶かした。リン酸二水素アンモニウム(138.0g)
を100mlの水に加熱して溶かした。該溶液を混合
し加熱しながら撹拌し濃厚ペーストを生成させ
た。該ペーストを110℃で乾燥し、ついで空気中
で290℃(3時間)、427℃(3時間)ついで550℃
(3時間)熱−処理し、0.8m2/gの表面積を有す
る青色固体を得た。 比較例E Co2P2O7 硝酸コバルト6水和物(349.1g)を20c.c.の水
に加熱して溶かした。リン酸二水素アンモニウム
(138.0g)を100c.c.の水に加熱して溶かした。該
溶液を混合しついで加熱しながら撹拌して濃厚紫
色ペーストを生成させた。該ペーストを110℃で
乾燥し、ついで290℃(3時間)427℃(3時間)
ついで550℃(16時間)熱−処理し、表面積12.2
m2/gを有する青色固体を得た。 実施例 1 Co7Fe3Bi0.7P12O43 硝酸塩溶液を、硝酸コバルト6水和物(203.8
g)、硝酸第二鉄9水和物(121.2g)、硝酸ビス
マス5水和物(35.1g)及び10c.c.の水からつく
り、ついでこの硝酸塩溶液をリン酸二水素アンモ
ニウム(138.0g)溶液に加えた。次に、得られ
たペーストを空気中290℃(5時間)、427℃(3
時間)、ついで550℃(3時間)で熱−処理した
後、生成青色固体は7.7m2/gの表面積を有して
いた。 実施例 2 50%Co7Fe3Bi1P12O43−50%BPO4 硝酸塩溶液を、硝酸コバルト6水和物(85g)、
硝酸第二鉄9水和物(50.5g)及び硝酸ビスマス
5水和物(20.2g)から5c.c.の水でつくつた。こ
れを水100c.c.中リン酸二水素アンモニウム(57.5
g)溶液に加え、ついでこれに53gのリン酸硼素
を加えた。撹拌し加熱した後、スラリーを110℃
で乾燥し〓焼した。生成青色固体は11.9m2/gの
表面積を有していた。 実施例 3 Co9.5Fe0.5BiP12O42 硝酸塩溶液を、硝酸コバルト6水和物(276.5
g)、硝酸第二鉄9水和物(20.2g)及び硝酸ビ
スマス5水和物(48.5g)からつくつた。それを
水100c.c.中リン酸二水素アンモニウム(138g)の
溶液に加え、110℃で乾燥し、実施例1のように
熱−処理した。生成青色固体は12.6m2/gの表面
積を有していた。 実施例 4 Co9CrBiP12O42 硝酸塩溶液を、硝酸コバルト6水和物(131
g)、硝酸クロム()9水和物(20g)、硝酸ビ
スマス5水和物(24.3g)及び水5c.c.からつくつ
た。それを、水50c.c.中リン酸二水素アンモニウム
(69g)溶液に加え、実施例1のように乾燥し熱
−処理した。生成青色固体は14.3m2/gの表面積
を有していた。 実施例 5 Co7La1.5Bi2P12O42 硝酸塩溶液を、硝酸コバルト6水和物(101.9
g)、硝酸ランタン6水和物(32.8g)、硝酸ビス
マス5水和物(48.5g)及び濃硝酸7c.c.からつく
つた。それを、水50c.c.中リン酸二水素アンモニウ
ム(69g)溶液に加え、550℃熱−処理を16時間
に延長した以外は110℃で乾燥し、実施例1のよ
うに熱−処理した。生成青色固体は19.4m2/gの
表面積を有していた。 実施例 6 Co8La0.5Bi2P12O42 硝酸塩溶液を、硝酸コバルト6水和物(116.4
g)、硝酸ランタン6水和物(10.9g)、硝酸ビス
マス5水和物(48.5g)、及び濃硝酸3c.c.から水
10c.c.でつくつた。それを、水50c.c.中に溶かしたリ
ン酸二水素アンモニウム(69g)に加え、ついで
実施例5のように乾燥し熱−処理した。生成青色
固体は7.7m2/gの表面積を有していた。 実施例 7 Co9La1.0Bi1P12O42 硝酸塩溶液を、硝酸コバルト6水和物(131
g)、硝酸ランタン6水和物(217g)、及び硝酸
ビスマス5水和物(24.3g)から水10c.c.でつくつ
た。それを水50c.c.に溶かしたリン酸二水素アンモ
ニウム(69g)に加えた。スラリーを110℃で乾
燥し、実施例1のように熱−処理した。生成青色
固体は10.5m2/gの表面積を有していた。 実施例 8 K0.01Co9La1BiP12O42 硝酸塩溶液を実施例7のように調製した。10c.c.
の酢酸カリウム溶液(0.5g/100c.c.)を混合硝酸
塩に加え、ついで該硝酸塩溶液を実施例7のよう
にリン酸二水素アンモニウムに加えた。スラリー
を実施例5のように乾燥し熱−処理した。生成青
色固体は19.0m2/gの表面積を有していた。 実施例 9 Co7Zn2La1BiP12O42 硝酸塩溶液を、水5c.c.中で硝酸コバルト6水和
物(101.9g)、硝酸亜鉛6水和物(29.8g〕、硝
酸ランタン6水和物(21.7g)及び硝酸ビスマス
5水和物(24.3g)からつくつた。それを水50c.c.
中リン酸二水素アンモニウム(69g)に加えた。
撹拌し加熱した後、該スラリーを実施例5のよう
に乾燥し熱−処理した。生成青色固体は8.6m2
gの表面積を有していた。 実施例 10 Co9CeBiP13O45 硝酸第二セリウムアンモニウム(27.4g)を5
c.c.濃硝酸及び100c.c.の水に溶かした。硝酸ビスマ
ス5水和物(24.3g)及び硝酸コバルト6水和物
(131g)をセリウム溶液に加えて溶かした。生成
溶液を水50c.c.中リン酸二水素アンモニウム(74.8
g)溶液に加えた。生成スラリーを110℃で乾燥
し、実施例1のように熱−処理した。生成した固
体は10.3m2/gの表面積を有していた。 実施例 11 Co9“Di1”BiP12O42 “デイデイミウム(Didymium)”酸化物、混
合稀土類(16.5g)(トロナ Corp.コード422)
を25c.c.の濃硝酸中に溶かした。硝酸ビスマス5水
和物(24.3g)を“デイデイミウム”溶液に加え
ついでこれを、水50c.c.中リン酸二水素アンモニウ
ム(69g)の溶液に加えた。ついで水10c.c.中硝酸
コバルト6水和物(131g)溶液を加えた。スラ
リーを110℃で乾燥し、実施例1のように熱−処
理した。生成青色固体は15.4m2/gの表面積を有
していた。 実施例 12 Co8BaFeBiP12O42 硝酸塩溶液を、硝酸コバルト6水和物(116.4
g)、硝酸ビスマス5水和物(24.3g)、硝酸第二
鉄9水和物(20.2g)及び水50c.c.からつくつた。
水酸化バリウム8水和物(15.8g)を濃硝酸/水
10%溶液でPH1.5の酸性にし、ついで硝酸塩に加
えた。生成スラリーを水50c.c.中リン酸二水素アン
モニウム(69g)溶液に加えた。該スラリーを
110℃で乾燥し、実施例1のように熱−処理し、
10.6m2/gの表面積を有する固体を得た。 実施例 13 Co9CeBiP12O45 実施例9と同一の触媒を、反応温度で触媒上に
空気を通すことにより再生(regenerated)させ
た。 実施例 14 K0.1CO9Cr1Bi1P12O42 本触媒を、硝酸塩溶液に酢酸カリウム(0.49
g)を添加した以外は実施例4の触媒と同様にし
て調製した。表面積は15.2m2/gであつた。 実施例1〜14の触媒中の酸素原子数は概算され
たものである。しかしながら、酸素数は反応条件
に依存して、実際は約30〜60に変わる。 上記触媒は、15c.c.の触媒体積容量を有する1/2
−インチ(外径)のステンレス鋼管からなる固定
床反応器中、エチルベンゼンからスチレン、ジエ
チルベンゼンからジビニルベンゼン及びメチルエ
チルピリジンからメチルビニルピリジンへの酸化
脱水素化に使用された。 空気、芳香族化合物及び窒素の反応混合体を、
5/1/2のモル比で、夫々予備混合し反応器へ
供給した。反応器を530〜532℃の温度及び大気圧
に維持した。触媒上への芳香族供給の液空間速度
(毎時)は0.23/時間であり、かつ接触時間は3.3
秒であつた。使用した触媒の粒径は20〜35メツシ
ユであつた。表1〜3に報告する所望するアルケ
ニル芳香族化合物への1回パス当りの転化率
(%)並びに反応の選択率は以下のように計算し
た。 転化率(%)=変換されたアルキル芳香族化合物のモ
ル数/供給したアルキル芳香族化合物のモル数×100 1回パス収率(%)=得られたアルケニル芳香族化合
物のモル数/供給されたアルキル芳香族化合物のモル数
×100 選択率=得られたアルケニル芳香族化合物のモル数/
変換されたアルキル芳香族化合物のモル数×100
The present invention relates to an oxidative dehydrogenation catalyst for alkyl aromatic compounds. For example, current commercial dehydrogenation processes such as the conversion of ethylbenzene to styrene suffer from low conversion, while higher conversion oxidative dehydrogenation processes suffer from poor selectivity. Selectivity is particularly important in this particular reaction since the starting materials for producing styrene account for more than 80% of its production cost. Thus, the search continues for more effective catalyst materials to minimize side reactions and improve conversion rates. A number of catalysts and catalyst systems have been disclosed that utilize various phosphates and pyrophosphates for the conversion of alkylaromatic compounds to derivatives with side chain unsaturation. For example, US Pat. No. 3,923,916 claims nickel pyrophosphate as an excellent catalyst for the oxidative dehydrogenation of alkyl aromatic compounds. U.S. Patent No. 3933932 and U.S. Patent No.
No. 3,957,897 discloses the use of lanthanum, rare earth and alkaline earth salts of phosphoric acid, respectively, as oxidative dehydrogenation catalysts for alkylaromatics. However, no catalyst composition containing an arsenic, antimony, bismuth, or cadmium salt of phosphoric acid that exhibits a significant effect on the dehydrogenation reaction of the present invention has been disclosed. U.S. Pat. No. 3,873,633 utilizes a cobalt-bismuth-phosphorus-oxygen composition as a catalyst for the oxidative dehydrogenation of paraffinic hydrocarbons to mono-olefins or diolefins, but converts alkyl aromatic compounds to unsaturated side chain derivatives. The use of catalysts of this type for the conversion of is hitherto unknown. The present invention relates to oxidative dehydrogenation catalysts from alkyl-substituted aromatic compounds to corresponding alkenyl-substituted aromatic compounds, provided that the alkyl-substituted aromatic compounds have at least one carbon atom having from 2 to 6 carbon atoms.
1 alkyl group, and the alkyl group is 1
Bonded to only one aromatic ring. ). The aromatic compound may be a monocyclic aromatic compound or a fused-ring bicyclic aromatic compound or a corresponding nitrogen-containing heteroaromatic compound. A gaseous mixture of molecular oxygen, such as air, and an alkyl aromatic compound, in the presence or absence of a diluent, such as water vapor, carbon dioxide, nitrogen, or an inert hydrocarbon, is applied over the catalyst of the invention. It is passed through at a temperature of approximately 300° to 650°C. The catalyst has a composition expressed by the following empirical formula. A a M b M c 〓M d 〓B e P y O x (wherein A is potassium, M is zinc, cobalt or barium, M is iron, chromium, lanthanum, cerium or deidiumium, M〓 is boron, B is bismuth, P is phosphorus, a=0~5, b=4~20, c=0.1~10, d=0~4, e=0.1~12, y= (8 to 16, x is the number of oxygens required to satisfy the valence requirements of other present elements, and 2b+3(c+e) is greater than 9 and less than 3y). It is a good oxidative dehydrogenation catalyst. For example, in the dehydrogenation of ethylbenzene to styrene, 1 to styrene in the 70% range
Conversion rates per pass and selectivities reaching 90% are obtained. Catalysts useful in the process of the invention may be used alone or supported. Suitable support materials include silica, alundum, titania and mullite and especially phosphate-type supports such as zirconium phosphate, antimony phosphate, aluminum phosphate and especially boron phosphate. Generally, the support may be used in an amount up to 95% by weight of the final catalyst composition, and the catalyst may be mixed into the support by coating, impregnation, and co-precipitation. These catalysts are prepared by coprecipitation or by other methods known to those skilled in the art. Generally they are prepared by mixing an aqueous solution of a metal nitrate salt with an aqueous solution of ammonium dihydrogen phosphate and then drying the precipitate. The catalyst may be calcined to obtain desired physical properties such as attrition resistance, optimal surface area and particle size. It is generally preferred to further heat-treat the calcined catalyst in the presence of oxygen at temperatures above 250 DEG C., but below temperatures harmful to the catalyst. Among the alkyl aromatic compounds that are contemplated to be within the scope of the invention are -substituted aromatic compounds such as, for example, ethylbenzene, isopropylbenzene, sec-butylbenzene; ethyltoluene, diethylbenzene, t-butylethylbenzene, Disubstituted aromatic compounds such as; trisubstituted aromatic compounds such as ethylxylenes; fused ring aromatic compounds such as ethylnaphthalene, methylethylnaphthalene, diethylnaphthalene; and ethylpyridine, methylethylpyridine, ethylquinoline,
These include nitrogen-containing heteroaromatic compounds such as ethylisoquinoline. Particularly preferred reactants in this reaction are ethylbenzene which is readily converted to styrene, diethylbenzene which is converted to a mixture of ethylstyrene and divinylbenzene, ethylpyridine and methylpyridine which are converted to vinylpyridine and methylvinylpyridine, respectively. The reaction is carried out in a fixed bed reactor or a fluidized bed reactor.
Although it may be carried out at temperatures as low as 300°C, the optimum temperature for dehydrogenation of alkyl side chains is about 400° to 600°C.
℃ range, and there is no obvious advantage to operating at temperatures much above 650℃. The pressure at which the catalyst of the present invention is used is approximately atmospheric, although pressures from slightly below atmospheric to about 3 atmospheres can be used. Apparent contact times in reactions in which the catalysts of the invention are used may range from 0.1 to 50 seconds, with contact times of 1 to 15 seconds being preferred for good selectivity and yield. The molar ratio of oxygen to alkyl aromatic compound fed to the reactor can range from about 0.5 to about 4 moles of oxygen per mole of alkyl aromatic compound, but a preferred range is from about 0.5 to about 4 moles of oxygen per mole of aromatic compound. about
0.5 to about 1.5 moles of oxygen. The oxygen used is
Although pure oxygen may be used, the use of air is preferred for convenience. Diluents such as steam, carbon dioxide, nitrogen, inert hydrocarbons or other inert gases may also be used, and amounts of 0 to 20 volumes per volume of alkyl aromatic compound are suitable. The following examples illustrate the convenience and improvements obtained in the catalytic oxidative dehydrogenation process of the present invention compared to prior art catalysts. Examples 1-14 are representative of the invention, Comparative Examples A-E
represents a prior art method. Catalyst Preparation Comparative Example A Ni 2 P 2 O 7 Nickel nitrate hexahydrate (168.5 g) was dissolved in 500 c.c. of water, and the acidity was then adjusted to PH 6.4 with ammonia. Ammonium dihydrogen phosphate (77.7g)
Dissolve it in 250 c.c. water, then adjust the pH to 6.8 with ammonia.
It was adjusted to The solution was mixed and stirred for 15 minutes at room temperature, the pH was adjusted to 6.0 with ammonia, and then filtered. The light green precipitate was filtered, dried at 110℃, heated to 290℃ for 3 hours, 427℃ for 3 hours, and then dried at 550℃ for 3 hours.
Heat-treatment for 2 hours at <0>C gave a yellow colored solid with a surface area of 14 m2 /g. Comparative Example B Mg 2 P 2 O 7 Magnesium nitrate hexahydrate (309.2 g) was added to 60 c.c.
It was heated and dissolved in water. Ammonium dihydrogen phosphate (138.2 g) was heated and dissolved in 100 c.c. of water. The solution was mixed and stirred with heating to form a white thick paste. The paste was dried at 110°C and heat-treated in air for 3 hours at 290°C, 3 hours at 427°C and then 16 hours at 550°C to give a white solid with a surface area of 21.8 m 2 /g. Comparative Example C La 4 (P 2 O 7 ) 3 lanthanum nitrate hexahydrate (Trona Code 548)
(130 g) was dissolved in 31.5 cc of nitric acid and diluted with water to 250 cc. Ammonium dihydrogen phosphate (57.1g)
It was dissolved in 250 c.c. of water and then made acidic with 25 c.c. of nitric acid to a pH of less than 1. When the solution was mixed with stirring, opalescence was produced. After 22 hours of mixing with heating, a milky white precipitate formed. Heating to boiling concentrates the gel. Filter the gel and dry at 110 °C and 290 °C in air.
°C (3 hours), 427 °C (3 hours), then 550 °C (16
A white solid with a surface area of 17 m 2 /g was obtained. Comparative Example D Co 7 Fe 3 P 12 O 41.5 Ferric nitrate nonahydrate (121.2 g) and cobalt nitrate hexahydrate (203.8 g) were heated and dissolved in 10 ml of water. Ammonium dihydrogen phosphate (138.0g)
was heated and dissolved in 100ml of water. The solution was mixed and stirred with heating to form a thick paste. The paste was dried at 110°C, then 290°C (3 hours), 427°C (3 hours) and 550°C in air.
Heat-treatment (3 hours) gave a blue solid with a surface area of 0.8 m 2 /g. Comparative Example E Co 2 P 2 O 7 Cobalt nitrate hexahydrate (349.1 g) was heated and dissolved in 20 c.c. of water. Ammonium dihydrogen phosphate (138.0 g) was heated and dissolved in 100 c.c. of water. The solution was mixed and stirred with heating to form a thick purple paste. The paste was dried at 110°C, then 290°C (3 hours) and 427°C (3 hours).
Then heat treated at 550℃ (16 hours) to reduce the surface area to 12.2
A blue solid with m 2 /g was obtained. Example 1 A Co 7 Fe 3 Bi 0.7 P 12 O 43 nitrate solution was mixed with cobalt nitrate hexahydrate (203.8
g) from ferric nitrate nonahydrate (121.2 g), bismuth nitrate pentahydrate (35.1 g) and 10 c.c. added to the solution. Next, the obtained paste was heated in air at 290°C (5 hours) and at 427°C (3 hours).
After heat-treatment at 550° C. (3 hours), the resulting blue solid had a surface area of 7.7 m 2 /g. Example 2 50% Co 7 Fe 3 Bi 1 P 12 O 43 −50% BPO 4 nitrate solution was mixed with cobalt nitrate hexahydrate (85 g),
It was made from ferric nitrate nonahydrate (50.5 g) and bismuth nitrate pentahydrate (20.2 g) with 5 c.c. of water. This was mixed with ammonium dihydrogen phosphate (57.5
g) Added to the solution, to which was then added 53 g of boron phosphate. After stirring and heating the slurry to 110℃
It was dried and baked. The resulting blue solid had a surface area of 11.9 m 2 /g. Example 3 Co 9.5 Fe 0.5 BiP 12 O 42 nitrate solution was converted into cobalt nitrate hexahydrate (276.5
g), prepared from ferric nitrate nonahydrate (20.2g) and bismuth nitrate pentahydrate (48.5g). It was added to a solution of ammonium dihydrogen phosphate (138 g) in 100 c.c. of water, dried at 110 DEG C. and heat-treated as in Example 1. The resulting blue solid had a surface area of 12.6 m 2 /g. Example 4 A Co 9 CrBiP 12 O 42 nitrate solution was mixed with cobalt nitrate hexahydrate (131
g), chromium nitrate nonahydrate (20 g), bismuth nitrate pentahydrate (24.3 g) and water 5 c.c. It was added to a solution of ammonium dihydrogen phosphate (69 g) in 50 c.c. of water, dried and heat-treated as in Example 1. The resulting blue solid had a surface area of 14.3 m 2 /g. Example 5 A Co 7 La 1.5 Bi 2 P 12 O 42 nitrate solution was mixed with cobalt nitrate hexahydrate (101.9
g), lanthanum nitrate hexahydrate (32.8 g), bismuth nitrate pentahydrate (48.5 g) and concentrated nitric acid 7 c.c. It was added to a solution of ammonium dihydrogen phosphate (69 g) in 50 c.c. of water, dried at 110°C, except that the 550°C heat-treatment was extended to 16 hours, and heat-treated as in Example 1. . The resulting blue solid had a surface area of 19.4 m 2 /g. Example 6 Co 8 La 0.5 Bi 2 P 12 O 42 nitrate solution was mixed with cobalt nitrate hexahydrate (116.4
g), lanthanum nitrate hexahydrate (10.9 g), bismuth nitrate pentahydrate (48.5 g), and water from concentrated nitric acid 3 c.c.
Made with 10c.c. It was added to ammonium dihydrogen phosphate (69 g) dissolved in 50 c.c. of water, then dried and heat-treated as in Example 5. The resulting blue solid had a surface area of 7.7 m 2 /g. Example 7 A Co 9 La 1.0 Bi 1 P 12 O 42 nitrate solution was mixed with cobalt nitrate hexahydrate (131
g), lanthanum nitrate hexahydrate (217 g), and bismuth nitrate pentahydrate (24.3 g) in 10 c.c. of water. It was added to ammonium dihydrogen phosphate (69 g) dissolved in 50 c.c. of water. The slurry was dried at 110°C and heat-treated as in Example 1. The resulting blue solid had a surface area of 10.5 m 2 /g. Example 8 A K 0.01 Co 9 La 1 BiP 12 O 42 nitrate solution was prepared as in Example 7. 10c.c.
of potassium acetate solution (0.5 g/100 c.c.) was added to the mixed nitrate and the nitrate solution was then added to ammonium dihydrogen phosphate as in Example 7. The slurry was dried and heat-treated as in Example 5. The resulting blue solid had a surface area of 19.0 m 2 /g. Example 9 A Co 7 Zn 2 La 1 BiP 12 O 42 nitrate solution was mixed with cobalt nitrate hexahydrate (101.9 g), zinc nitrate hexahydrate (29.8 g), and lanthanum nitrate hexahydrate in 5 c.c. of water. (21.7 g) and bismuth nitrate pentahydrate (24.3 g).It was mixed with 50 c.c. of water.
Added to medium ammonium dihydrogen phosphate (69 g).
After stirring and heating, the slurry was dried and heat-treated as in Example 5. The blue solid produced is 8.6m 2 /
It had a surface area of g. Example 10 Co 9 CeBiP 13 O 45 Ceric ammonium nitrate (27.4 g)
Dissolved in cc concentrated nitric acid and 100 cc water. Bismuth nitrate pentahydrate (24.3 g) and cobalt nitrate hexahydrate (131 g) were added to and dissolved in the cerium solution. The resulting solution was dissolved in ammonium dihydrogen phosphate (74.8
g) added to the solution. The resulting slurry was dried at 110°C and heat-treated as in Example 1. The solid produced had a surface area of 10.3 m 2 /g. Example 11 Co 9 “Di 1 ” BiP 12 O 42 “Didymium” Oxide, Mixed Rare Earths (16.5 g) (Trona Corp. Code 422)
was dissolved in 25 c.c. of concentrated nitric acid. Bismuth nitrate pentahydrate (24.3 g) was added to the "Deidymium" solution, which was then added to a solution of ammonium dihydrogen phosphate (69 g) in 50 c.c. of water. A solution of cobalt nitrate hexahydrate (131 g) in 10 c.c. of water was then added. The slurry was dried at 110°C and heat-treated as in Example 1. The resulting blue solid had a surface area of 15.4 m 2 /g. Example 12 Co 8 BaFeBiP 12 O 42 nitrate solution was converted into cobalt nitrate hexahydrate (116.4
g), bismuth nitrate pentahydrate (24.3 g), ferric nitrate nonahydrate (20.2 g) and water 50 c.c.
Barium hydroxide octahydrate (15.8g) in concentrated nitric acid/water
Acidified to pH 1.5 with a 10% solution and then added to the nitrate. The resulting slurry was added to a solution of ammonium dihydrogen phosphate (69 g) in 50 c.c. of water. the slurry
dried at 110°C and heat-treated as in Example 1;
A solid with a surface area of 10.6 m 2 /g was obtained. Example 13 Co 9 CeBiP 12 O 45 The same catalyst as in Example 9 was regenerated by passing air over the catalyst at the reaction temperature. Example 14 K 0.1 CO 9 Cr 1 Bi 1 P 12 O 42This catalyst was added to a nitrate solution with potassium acetate (0.49
The catalyst was prepared in the same manner as in Example 4 except that g) was added. The surface area was 15.2 m 2 /g. The number of oxygen atoms in the catalysts of Examples 1-14 is estimated. However, the oxygen number actually varies from about 30 to 60, depending on the reaction conditions. The above catalyst is 1/2 with a catalyst volume capacity of 15 c.c.
It was used for the oxidative dehydrogenation of ethylbenzene to styrene, diethylbenzene to divinylbenzene, and methylethylpyridine to methylvinylpyridine in a fixed bed reactor consisting of -inch (outside diameter) stainless steel tubing. A reaction mixture of air, aromatics and nitrogen,
They were each premixed in a molar ratio of 5/1/2 and fed to the reactor. The reactor was maintained at a temperature of 530-532°C and atmospheric pressure. The liquid hourly space velocity of the aromatic feed onto the catalyst is 0.23/hour and the contact time is 3.3
It was hot in seconds. The particle size of the catalyst used was 20-35 mesh. The percent conversion per pass to the desired alkenyl aromatic compound as well as the selectivity of the reaction reported in Tables 1-3 were calculated as follows. Conversion rate (%) = Number of moles of alkyl aromatic compound converted/Number of moles of alkyl aromatic compound fed x 100 One pass yield (%) = Number of moles of alkenyl aromatic compound obtained/Number of moles of alkenyl aromatic compound fed Number of moles of alkenyl aromatic compound obtained × 100 Selectivity = Number of moles of alkenyl aromatic compound obtained /
Number of moles of converted alkyl aromatic compound x 100

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 単一芳香族環に結合する、2〜6個の炭素原
子のアルキル基を少くとも1つ含み、かつ芳香族
基が単環式芳香族、縮合二環式芳香族及び対応す
る窒素含有複素環式芳香族からなる群から選ばれ
たアルキル芳香族化合物から、対応するアルケニ
ル芳香族化合物への脱水素用触媒であつて、 前記触媒が次式: AaMbMc〓Md〓BePyOx (ただし、 Aはカリウムであり、 Mは亜鉛、コバルト又はバリウムであり、 M〓は鉄、クロム、ランタン、セリウム又はデ
イデイミウムであり、 M〓は硼素であり、 Bはビスマスであり、 Pはリンであり、 a=0〜5、 b=4〜20、 c=0.1〜10、 d=0〜4、 e=0.1〜12、 y=8〜16、 xは他の存在元素の原子価要求を満足するのに
必要な酸素数であり、そして2b+3(c+e)が
9より大きく、3yより小さい。) を有する触媒。 2 a=0〜1、 b=4〜12、 c=0.1〜4、 d=0〜2、 e=0.1〜4、 2b+3(c+e)が9より大きく、3yより小さ
い、 特許請求の範囲第1項記載の触媒。 3 Mがコバルトで、M〓がランタンである特許
請求の範囲第1項記載の触媒。 4 Mがコバルトで、M〓が鉄である特許請求の
範囲第1項記載の触媒。 5 dが0である特許請求の範囲第1項記載の触
媒。 6 dが0より大きい特許請求の範囲第1項記載
の触媒。
[Scope of Claims] 1 Contains at least one alkyl group of 2 to 6 carbon atoms bonded to a single aromatic ring, and the aromatic group is a monocyclic aromatic or a fused bicyclic aromatic and a corresponding nitrogen-containing heteroaromatic compound for the dehydrogenation of an alkyl aromatic compound to a corresponding alkenyl aromatic compound, the catalyst having the following formula: A a M b M c 〓M d 〓B e P y O x (where A is potassium, M is zinc, cobalt or barium, M is iron, chromium, lanthanum, cerium or deidiumium, M is boron) Yes, B is bismuth, P is phosphorus, a=0-5, b=4-20, c=0.1-10, d=0-4, e=0.1-12, y=8-16, x is the number of oxygens necessary to satisfy the valence requirements of other elements present, and 2b+3(c+e) is greater than 9 and less than 3y). 2 a=0-1, b=4-12, c=0.1-4, d=0-2, e=0.1-4, 2b+3(c+e) is greater than 9 and smaller than 3y, Claim 1 Catalysts as described in section. 3. The catalyst according to claim 1, wherein M is cobalt and M is lanthanum. 4. The catalyst according to claim 1, wherein M is cobalt and M is iron. 5. The catalyst according to claim 1, wherein d is 0. 6. The catalyst according to claim 1, wherein d is greater than 0.
JP4717478A 1977-05-02 1978-04-20 Method of oxydehydrogenating alkyl aromatic hydrocarbon and catalyst therefor Granted JPS53135940A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79263777A 1977-05-02 1977-05-02

Publications (2)

Publication Number Publication Date
JPS53135940A JPS53135940A (en) 1978-11-28
JPH0154095B2 true JPH0154095B2 (en) 1989-11-16

Family

ID=25157563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4717478A Granted JPS53135940A (en) 1977-05-02 1978-04-20 Method of oxydehydrogenating alkyl aromatic hydrocarbon and catalyst therefor

Country Status (16)

Country Link
JP (1) JPS53135940A (en)
BE (1) BE866403A (en)
BR (1) BR7802706A (en)
CA (1) CA1117120A (en)
CS (1) CS199528B2 (en)
DD (1) DD135897A5 (en)
DE (1) DE2816946A1 (en)
EG (1) EG13250A (en)
ES (2) ES469145A1 (en)
FR (1) FR2389590A1 (en)
GB (2) GB1598509A (en)
IN (1) IN148087B (en)
IT (1) IT1094807B (en)
NL (1) NL7804618A (en)
NO (1) NO781508L (en)
PT (1) PT67944B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849637A1 (en) * 1978-11-16 1980-05-29 Hoechst Ag CARRIER CATALYST AND METHOD FOR THE PRODUCTION THEREOF
DE2849715A1 (en) * 1978-11-16 1980-05-29 Hoechst Ag CARRIER CATALYST AND METHOD FOR THE PRODUCTION THEREOF
ATE7861T1 (en) * 1980-07-18 1984-06-15 Mitsubishi Chemical Industries Limited CATALYTIC COMPOSITION, PROCESS FOR ITS PREPARATION AND ITS USE.
US4777313A (en) * 1983-08-12 1988-10-11 Atlantic Richfield Company Boron-promoted reducible metal oxides and methods of their use
JPH0764763B2 (en) * 1987-03-05 1995-07-12 東ソー株式会社 Method for producing methylstyrene
DE19530454A1 (en) * 1995-08-18 1997-02-20 Manfred Prof Dr Baerns Economical continuous oxidative dehydrogenation of propane to propene in high yield

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844202A (en) * 1969-12-29 1973-06-26
JPS4938257A (en) * 1972-08-15 1974-04-09
US3957897A (en) * 1974-05-28 1976-05-18 The Dow Chemical Company Method of oxydehydrogenation of alkyl aromatic compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925499A (en) * 1971-11-01 1975-12-09 Phillips Petroleum Co Oxidative dehydrogenation using group IA or IIA metal Sn/P/O catalyst
US3935126A (en) * 1974-05-28 1976-01-27 The Dow Chemical Company Catalyst and method of oxydehydrogenation of alkyl aromatic compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844202A (en) * 1969-12-29 1973-06-26
JPS4938257A (en) * 1972-08-15 1974-04-09
US3957897A (en) * 1974-05-28 1976-05-18 The Dow Chemical Company Method of oxydehydrogenation of alkyl aromatic compounds

Also Published As

Publication number Publication date
ES470908A1 (en) 1979-02-01
GB1598509A (en) 1981-09-23
DD135897A5 (en) 1979-06-06
IT1094807B (en) 1985-08-10
IN148087B (en) 1980-10-18
BR7802706A (en) 1979-01-23
CA1117120A (en) 1982-01-26
EG13250A (en) 1981-03-31
BE866403A (en) 1978-08-14
CS199528B2 (en) 1980-07-31
JPS53135940A (en) 1978-11-28
NL7804618A (en) 1978-11-06
PT67944B (en) 1979-11-14
NO781508L (en) 1978-11-03
DE2816946A1 (en) 1978-11-09
ES469145A1 (en) 1978-11-16
IT7822880A0 (en) 1978-04-28
FR2389590A1 (en) 1978-12-01
GB1598510A (en) 1981-09-23
PT67944A (en) 1978-05-01

Similar Documents

Publication Publication Date Title
US4224187A (en) Olefin oxidation catalyst and process for its preparation
EP0437056B1 (en) Catalyst and process for the manufacture of acrylonitrile and methacrylonitrile
US3156705A (en) Production of dicarboxylic acid anhydrides by the catalytic oxidation of olefins
EP0043100B1 (en) Oxidation catalyst and process for preparation thereof
US4267386A (en) Olefin oxidation catalyst
US4414133A (en) Catalytic composition
GB2133307A (en) Catalyst for use in producing methacrylic acid
US4246421A (en) Oxydehydrogenation process for alkylaromatics
US5175334A (en) Process for the manufacture of acrylonitrile and methacrylonitrile
US3801670A (en) Catalytic process for the production of diolefins
US3200081A (en) Mixed antimony oxide-manganese oxide oxidation catalyst
US3544616A (en) Ammoxidation of propylene or isobutylene to acrylonitrile or methacrylonitrile
JPH0154095B2 (en)
US3957897A (en) Method of oxydehydrogenation of alkyl aromatic compounds
US3576764A (en) Catalyst for the oxidation of olefins to unsaturated aldehydes and acids
US4255283A (en) Oxydehydrogenation process for alkylaromatics and catalyst therefor
US4046833A (en) Dehydrogenation of paraffins
EP0146099A2 (en) A process for producing acrylic acid by oxidation of acrolein and a novel catalyst useful thereof
EP0030837B1 (en) Dehydrocoupling of toluene
US3929899A (en) Process for the oxidation of olefins to unsaturated aldehydes and catalysts therefore
JP2003531874A (en) Catalyst for oxidation of lower olefins to unsaturated aldehydes, method of making and using the same
US3935126A (en) Catalyst and method of oxydehydrogenation of alkyl aromatic compounds
US3525701A (en) Oxidation catalyst of an oxide composition of antimony,tin and copper
EP0703889B1 (en) Process for the production of styrene
US3900426A (en) Catalysts for the oxidation of olefines