JPH0153264B2 - - Google Patents

Info

Publication number
JPH0153264B2
JPH0153264B2 JP6526281A JP6526281A JPH0153264B2 JP H0153264 B2 JPH0153264 B2 JP H0153264B2 JP 6526281 A JP6526281 A JP 6526281A JP 6526281 A JP6526281 A JP 6526281A JP H0153264 B2 JPH0153264 B2 JP H0153264B2
Authority
JP
Japan
Prior art keywords
trimethylphenol
reaction
parts
cyclohexadien
trimethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6526281A
Other languages
Japanese (ja)
Other versions
JPS57183734A (en
Inventor
Yoshiaki Toyoda
Yoshihiro Ikeda
Tadaharu Hase
Nobuhiro Kitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6526281A priority Critical patent/JPS57183734A/en
Publication of JPS57183734A publication Critical patent/JPS57183734A/en
Publication of JPH0153264B2 publication Critical patent/JPH0153264B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、2,4,6―トリメチルフエノール
を酸化して4―ヒドロキシ―2,4,6―トリメ
チル―2,5―シクロヘキサジエン―1―オンを
高収率で製造する方法に関する。 4―ヒドロキシ―2,4,6―トリメチル―
2,5―シクロヘキサジエン―1―オンは塩基の
存在下で容易に転位反応を起こし、2,3,6―
トリメチルヒドロキノンを生成する。この2,
3,6―トリメチルヒドロキノンは、酸化防止剤
や重合禁止剤として用いられるばかりでなく、ビ
タミンEの製造原料として非常に有用である。 4―ヒドロキシ―2,4,6―トリメチル―
2,5―シクロヘキサジエン―1―オンの製造方
法としては、種々提案されており、例えばサルコ
ミン触媒を用いて有機溶媒中で2,4,6―トリ
メチルフエノールを分子状酸素で酸化する方法
(例えばGer.Offen.2747497)やアルカリ水溶液中
で2,4,6―トリメチルフエノールを分子状酸
素で酸化する方法(例えば特開昭50―4044号)な
どがあげられる。しかし、いずれの方法において
も、2,4,6―トリメチルフエノールは高純度
のものであることが必要であり、また高価な試剤
が必要であつたり、あるいは目的生成物への選択
性が十分高いとは言い難いという欠点があつた。 本発明者らは、こうした従来の4―ヒドロキシ
―2,4,6―トリメチル―2,5―シクロヘキ
サジエン―1―オンの製造方法の欠点を克服する
ため種々の検討を重ねた結果2,4,6―トリメ
チルフエノールを酸化するに当り、ある種のフエ
ノール化合物を共存させることにより、目的の4
―ヒドロキシ―2,4,6―トリメチル―2,5
―シクロヘキサジエン―1―オンへの選択率が画
期的に向上することを見出し、この知見に基づき
本発明をなすに至つた。 すなわち本発明は、2,4,6―トリメチルフ
エノールを一般式 (式中のR1ないしR5は、水素原子又は低級アル
キル基を示し、それらは互いに同じでも又異なつ
ていてもよい) で表わされるフエノール化合物(ただし2,4,
6―トリメチルフエノールを除く)の1種又は2
種以上の存在下で酸化することを特徴とする4―
ヒドロキシ―2,4,6―トリメチル―2,5―
シクロヘキサジエン―1―オンの製造方法を提供
するものである。 本発明方法においては、原料として用いられる
2,4,6―トリメチルフエノールは、いかなる
方法で合成されたものでもよい。 本発明の酸化反応は反応方法を問わず、液体媒
体の存在下でも不存在下でも実施することができ
るが、好ましくは、液体媒体中で行なわれる。こ
の液体媒体としては、例えば、水、メタノール、
エタノール、n―プロパノール、i―プロパノー
ル、n―ブタノール、i―ブタノール、t―ブタ
ノール、四塩化炭素、クロロホルム、アセトニト
リル、ジメチルアセトアミド、ジメチルホルムア
ミド、アセトン、メチルエチルケトン、シクロヘ
キサン、ベンゼン、トルエンなどがあり、さらに
水と前記有機液体媒体との溶液も用いられる。 酸化反応は例えば、液体媒体中に溶解又は懸濁
した2,4,6―トリメチルフエノールと分子状
酸素又は、分子状酸素含有ガスを接触せしめる方
法や液体媒体中に溶解又は懸濁した2,4,6―
トリメチルフエノールに過酸化水素を滴下する方
法などにより実施される。この場合、分子状酸素
又は分子状酸素含有ガスは、例えば、常圧〜80
Kg/cm2Gの範囲で、また過酸化水素は例えば、30
重量%程度の過酸化水素水として用いられる。 この酸化反応はアルカリ条件下で行うのが好ま
しい。このアルカリ条件は特に制限はないが、ア
ルカリ金属もしくはその化合物又はアルカリ土類
金属もしくはその化合物の添加により調整するの
が好ましい。 酸化反応の反応温度は、目的の4―ヒドロキシ
―2,4,6―トリメチル―2,5―シクロヘキ
サジエン―1―オンが生成するが、分解又は変化
しない温度であれば十分であるが、通常0〜80℃
の範囲が好ましい。反応温度が0℃未満では反応
が、実質的に進まず、また80℃を越えると目的化
合物の選択率が低下する。また反応時間は10分〜
5時間の範囲が好ましい。 本発明方法において添加剤として用いられる、
前記一般式で表わされるフエノール化合物の例と
しては、2,3―キシレノール、2,4―キシレ
ノール、2,5―キシレノール、2,6―キシレ
ノール、2,3,6―トリメチルフエノール、
2,6―ジ―tert―ブチル―4―メチルフエノー
ル、2,4,6―トリ―tert―ブチルフエノール
などをあげることができる。これらの化合物の2
種以上を併用することも可能である。この化合物
は、精製した2,4,6―トリメチルフエノール
を用いて別に添加剤として加える場合ばかりでな
く、2,4,6―トリメチルフエノール中に、そ
れを合成した際の副生物の一つとして含まれてい
る形で用いてもよい。 本発明において、前記一般式で表わされるフエ
ノール化合物の添加量は、2,4,6―トリメチ
ルフエノール1モルに対し、通常0.001〜100モル
の範囲であり、好ましくは0.05〜10.0モル、より
好ましくは0.1〜5.0モルの範囲である。この場
合、その添加量が0.001モル未満では、実質的な
効果が認められず、また100モルより多いと、反
応液量の増加や添加物の酸化による副生物の増加
などによつて経済的な損失が生じるので好ましく
ない。 このように、本発明方法によれば、2,4,6
―トリメチルフエノールの酸化による4―ヒドロ
キシ―2,4,6―トリメチル―2,5―シクロ
ヘキサジエン―1―オンの収率を画期的に向上さ
せることができる。 次に本発明を実施例に基づきさらに詳細に説明
する。なお各例中における部は重量部を示し、ま
た%はモル%を示す。反応生成物の組成分析は、
ガスクロマトグラフイーによつて行つた。 実施例1〜3及び比較例1〜3 ガス導入部を有し、温度計及び撹拌機を装備し
た200ml容ステンレス製オートクレーブに水100
部、水酸化ナトリウム3.5部と下記第1表に示す
量の2,4,6―トリメチルフエノール(以下
TMPと略記する)及び2,6―キシレノールを
仕込み、30Kg/cm2Gの酸素圧をかけ、内温を30℃
に保ち、激しく撹拌しながら4.5時間反応させた。
反応終了後、反応生成物を取り出し分析した結果
を第1表に示した。なお表中HTCDは4―ヒド
ロキシ―2,4,6―トリメチル―2,5―シク
ロヘキサジエン―1―オンを示す。
The present invention relates to a method for producing 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadien-1-one in high yield by oxidizing 2,4,6-trimethylphenol. 4-hydroxy-2,4,6-trimethyl-
2,5-cyclohexadien-1-one easily undergoes a rearrangement reaction in the presence of a base, resulting in 2,3,6-
Produces trimethylhydroquinone. This 2,
3,6-trimethylhydroquinone is not only used as an antioxidant and polymerization inhibitor, but is also very useful as a raw material for producing vitamin E. 4-hydroxy-2,4,6-trimethyl-
Various methods for producing 2,5-cyclohexadien-1-one have been proposed, including a method in which 2,4,6-trimethylphenol is oxidized with molecular oxygen in an organic solvent using a sarcomine catalyst (e.g. Ger. Offen. 2747497) and a method of oxidizing 2,4,6-trimethylphenol with molecular oxygen in an alkaline aqueous solution (for example, JP-A-50-4044). However, in either method, 2,4,6-trimethylphenol must be of high purity, require expensive reagents, or have sufficiently high selectivity to the desired product. The drawback was that it was difficult to say. The present inventors have conducted various studies in order to overcome the shortcomings of the conventional method for producing 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadien-1-one, and as a result2,4 When oxidizing ,6-trimethylphenol, the objective 4
-Hydroxy-2,4,6-trimethyl-2,5
It was discovered that the selectivity to -cyclohexadien-1-one was dramatically improved, and the present invention was completed based on this finding. That is, the present invention provides 2,4,6-trimethylphenol with the general formula (In the formula, R 1 to R 5 represent a hydrogen atom or a lower alkyl group, and they may be the same or different from each other.)
1 or 2 of (excluding 6-trimethylphenol)
4-, which is characterized by being oxidized in the presence of more than one species.
Hydroxy-2,4,6-trimethyl-2,5-
A method for producing cyclohexadien-1-one is provided. In the method of the present invention, 2,4,6-trimethylphenol used as a raw material may be synthesized by any method. The oxidation reaction of the present invention can be carried out in the presence or absence of a liquid medium, regardless of the reaction method, but is preferably carried out in a liquid medium. Examples of this liquid medium include water, methanol,
Ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, carbon tetrachloride, chloroform, acetonitrile, dimethylacetamide, dimethylformamide, acetone, methyl ethyl ketone, cyclohexane, benzene, toluene, etc. Solutions of water and the organic liquid medium described above may also be used. The oxidation reaction can be carried out, for example, by contacting 2,4,6-trimethylphenol dissolved or suspended in a liquid medium with molecular oxygen or a molecular oxygen-containing gas, or by contacting 2,4,6-trimethylphenol dissolved or suspended in a liquid medium. ,6-
This is carried out by dropping hydrogen peroxide into trimethylphenol. In this case, the molecular oxygen or molecular oxygen-containing gas is, for example, at normal pressure to 80
Kg/cm 2 G and hydrogen peroxide e.g.
It is used as a hydrogen peroxide solution of about % by weight. This oxidation reaction is preferably carried out under alkaline conditions. The alkaline conditions are not particularly limited, but are preferably adjusted by adding an alkali metal or a compound thereof, or an alkaline earth metal or a compound thereof. The reaction temperature for the oxidation reaction is sufficient if the target 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadien-1-one is produced but does not decompose or change. 0~80℃
A range of is preferred. If the reaction temperature is less than 0°C, the reaction will not substantially proceed, and if it exceeds 80°C, the selectivity of the target compound will decrease. Also, the reaction time is 10 minutes ~
A range of 5 hours is preferred. used as an additive in the method of the present invention,
Examples of the phenol compound represented by the above general formula include 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol,
Examples include 2,6-di-tert-butyl-4-methylphenol and 2,4,6-tri-tert-butylphenol. 2 of these compounds
It is also possible to use more than one species in combination. This compound is added not only as a separate additive using purified 2,4,6-trimethylphenol, but also as one of the by-products when it is synthesized into 2,4,6-trimethylphenol. It may also be used in a contained form. In the present invention, the amount of the phenol compound represented by the above general formula added is generally in the range of 0.001 to 100 mol, preferably 0.05 to 10.0 mol, more preferably 0.05 to 10.0 mol, per 1 mol of 2,4,6-trimethylphenol. It ranges from 0.1 to 5.0 moles. In this case, if the amount added is less than 0.001 mol, no substantial effect will be observed, and if it is more than 100 mol, it will not be economical due to an increase in the amount of reaction liquid and an increase in by-products due to oxidation of the additive. This is not preferable because it causes loss. Thus, according to the method of the present invention, 2, 4, 6
- The yield of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadien-1-one by oxidation of trimethylphenol can be dramatically improved. Next, the present invention will be explained in more detail based on examples. In each example, parts indicate parts by weight, and % indicates mol%. Compositional analysis of reaction products
This was done by gas chromatography. Examples 1 to 3 and Comparative Examples 1 to 3 100ml of water was placed in a 200ml stainless steel autoclave equipped with a gas inlet, a thermometer, and a stirrer.
part, 3.5 parts of sodium hydroxide and the amounts of 2,4,6-trimethylphenol (hereinafter referred to as
(abbreviated as TMP) and 2,6-xylenol, an oxygen pressure of 30 kg/cm 2 G was applied, and the internal temperature was kept at 30°C.
The reaction was carried out for 4.5 hours while stirring vigorously.
After the reaction was completed, the reaction product was taken out and analyzed. The results are shown in Table 1. Note that HTCD in the table indicates 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadien-1-one.

【表】 実施例 4 実施例1と同様のオートクレーブにTMP7.5
部、水100部、水酸化ナトリウム3.5部及び2,6
―ジ―tert―ブチル―4―メチルフエノール7.5部
を仕込み30Kg/cm2Gの酸素圧をかけ、内温を30℃
に保ち、激しく撹拌しながら4.5時間反応させた。
反応生成物を取り出し分析したところ、TMP転
化率72.2%、HTCD選択率64.5%であつた。 実施例 5及び6 実施例1と同様のオートクレーブに水100部、
水酸化ナトリウム3.5部と下記第2表に示した量
のTMP、2,6―キシレノール及び2,6―ジ
―tert―ブチルフエノールを仕込み、30Kg/cm2
の酸素圧をかけ内温を30℃に保ち、激しく撹拌し
ながら、4.5時間反応させた。反応生成物を取り
出し分析した結果を第2表に示す。
[Table] Example 4 TMP7.5 in the same autoclave as Example 1
parts, 100 parts of water, 3.5 parts of sodium hydroxide and 2.6 parts
- 7.5 parts of di-tert-butyl-4-methylphenol was added, an oxygen pressure of 30 kg/cm 2 G was applied, and the internal temperature was raised to 30°C.
The reaction was carried out for 4.5 hours while stirring vigorously.
When the reaction product was taken out and analyzed, it was found that the TMP conversion rate was 72.2% and the HTCD selectivity was 64.5%. Examples 5 and 6 100 parts of water was added to the same autoclave as in Example 1.
3.5 parts of sodium hydroxide and the amounts of TMP, 2,6-xylenol and 2,6-di-tert-butylphenol shown in Table 2 below were charged, and 30Kg/cm 2 G
of oxygen pressure was applied, the internal temperature was maintained at 30°C, and the mixture was reacted for 4.5 hours with vigorous stirring. The reaction products were extracted and analyzed, and the results are shown in Table 2.

【表】 実施例 7 実施例1と同様のオートクレーブにTMP10.5
部、2,6―キシレノール3.0部、2,6―ジ―
tert―ブチルフエノール1.5部、水100部及び水酸
化ナトリウム3.5部を仕込み80Kg/cm2Gの酸素圧
をかけ内温を30℃に保ち、激しく撹拌しながら
3.5時間反応させた。反応生成物を取り出し分析
したところTMP転化率99.0%、HTCD選択率
67.7%であつた。 実施例8、9及び比較例4、5 TMP1.5部、NaOH0.35部、水30部、及び下記
第3表に示した添加剤を0.2〜0.3部仕込み、反応
液を50℃に保ち、常圧で3時間酸素をバブリング
した。反応生成物を取り出し分析した結果を第3
表に示した。
[Table] Example 7 TMP10.5 in the same autoclave as Example 1
part, 2,6-xylenol 3.0 parts, 2,6-di-
Add 1.5 parts of tert-butylphenol, 100 parts of water, and 3.5 parts of sodium hydroxide, apply oxygen pressure of 80 kg/cm 2 G, keep the internal temperature at 30°C, and stir vigorously.
The reaction was allowed to proceed for 3.5 hours. When the reaction product was taken out and analyzed, the TMP conversion rate was 99.0% and the HTCD selectivity was found to be 99.0%.
It was 67.7%. Examples 8 and 9 and Comparative Examples 4 and 5 1.5 parts of TMP, 0.35 parts of NaOH, 30 parts of water, and 0.2 to 0.3 parts of the additives shown in Table 3 below were charged, and the reaction solution was kept at 50°C. Oxygen was bubbled for 3 hours at normal pressure. The results of extracting and analyzing the reaction products are shown in the third column.
Shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 2,4,6―トリメチルフエノールを一般式 (式中のR1ないしR5は、水素原子又は低級アル
キル基を示し、それらは互いに同じでも又、異な
つていてもよい。) で表わされるフエノール化合物(ただし2,4,
6―トリメチルフエノールを除く)の1種又は2
種以上の存在下で酸化することを特徴とする4―
ヒドロキシ―2,4,6―トリメチル―2,5―
シクロヘキサジエン―1―オンの製造方法。
[Claims] 1 2,4,6-trimethylphenol expressed by the general formula (In the formula, R 1 to R 5 represent a hydrogen atom or a lower alkyl group, and they may be the same or different from each other.)
1 or 2 of (excluding 6-trimethylphenol)
4-, which is characterized by being oxidized in the presence of more than one species.
Hydroxy-2,4,6-trimethyl-2,5-
A method for producing cyclohexadien-1-one.
JP6526281A 1981-05-01 1981-05-01 Production of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadiene- 1-one Granted JPS57183734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6526281A JPS57183734A (en) 1981-05-01 1981-05-01 Production of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadiene- 1-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6526281A JPS57183734A (en) 1981-05-01 1981-05-01 Production of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadiene- 1-one

Publications (2)

Publication Number Publication Date
JPS57183734A JPS57183734A (en) 1982-11-12
JPH0153264B2 true JPH0153264B2 (en) 1989-11-13

Family

ID=13281819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6526281A Granted JPS57183734A (en) 1981-05-01 1981-05-01 Production of 4-hydroxy-2,4,6-trimethyl-2,5-cyclohexadiene- 1-one

Country Status (1)

Country Link
JP (1) JPS57183734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102667A1 (en) 2020-11-10 2022-05-19 株式会社Zero Food Evaporation heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118733B2 (en) * 2011-02-07 2017-04-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for oxidation of mesitol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102667A1 (en) 2020-11-10 2022-05-19 株式会社Zero Food Evaporation heater

Also Published As

Publication number Publication date
JPS57183734A (en) 1982-11-12

Similar Documents

Publication Publication Date Title
JP3904640B2 (en) Method for oxidizing primary or secondary alcohol
US3247262A (en) Process for making polyphenols
SU689614A3 (en) Method of producing two-atom phenol derivatives
US4100205A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of aminoketo compounds
US4098830A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of dicarboxylic acid compounds
JPH11240847A (en) Oxidation of aromatic compound to hydroxy aromatic compound
JPH0153264B2 (en)
US4124633A (en) Tellurium catalyzed decomposition of peroxide intermediates resulting from the autoxidation of unsaturated aldehydes
US3631227A (en) Halocyclohexanone conversion to catechol diacetate
US4100203A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of an oxime of a keto or aldehyde compound
US6441248B1 (en) Preparation of biphenols by oxidative coupling of alkylphenols using copper catalyst
US4072722A (en) Process for preparing dihydric phenol derivatives
JPWO2006006414A1 (en) 2-Adamantanone production method
US6689921B2 (en) Preparation of biphenols by oxidative coupling of alkylphenols using a recyclable copper catalyst
US5089656A (en) Process for the preparation of aryl-substituted propionic acid esters
US4100204A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of a hydroxy- or keto-acid compound
US4097461A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of diketo compounds
US4100206A (en) Oxidative coupling of alkylphenols or 1-naphthols catalyzed by metal complexes of keto alcohol compounds
EP0527642B1 (en) Process for simultaneously producing lactone and aromatic carboxylic acid
JPH0217531B2 (en)
US5149849A (en) Process for the preparation of quinhydrones
US5003109A (en) Destruction of acetone peroxides
JPH10130192A (en) Production of 2-cycloalken-1-one compounds
JPS6217587B2 (en)
EP0351336B1 (en) Process for the preparation of hydroxybenzaldehydes by hydrocarbonylation